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We study the propagation of in-plane elastic waves in a soft thin
strip, a specific geometrical and mechanical hybrid framework
which we expect to exhibit a Dirac-like cone. We separate the
low frequencies guided modes (typically 100 Hz for a 1-cm-wide
strip) and obtain experimentally the full dispersion diagram. Dirac
cones are evidenced together with other remarkable wave phe-
nomena such as negative wave velocity or pseudo-zero group
velocity (ZGV). Our measurements are convincingly supported
by a model (and numerical simulation) for both Neumann and
Dirichlet boundary conditions. Finally, we perform one-way chiral
selection by carefully setting the source position and polarization.
Therefore, we show that soft materials support atypical wave-
based phenomena, which is all of the more interesting as they
make most of the biological tissues.

Dirac cone | soft matter | elastic waves | chiral waves

Graphene has probably become the most studied material
in recent decades. It displays unique electronic properties

resulting from the existence of the so-called Dirac cones (1). At
these degeneracy points, the motion of electrons is described in
quantum mechanics by the Dirac equation: The dispersion rela-
tion becomes linear and electrons behave like massless fermions
(2). As a result, interesting transport phenomena such as the
Klein tunneling or the Zitterbewegung effect have been reported
(3). But Dirac cones are not specific to graphene. They corre-
spond to transition points between different topological phases
of matter (4). This discovery has enabled the understanding
of topologically protected transport phenomena, such as the
quantum Hall effect (5).

Dirac cones are the consequence of a specific spatial pat-
terning rather than a purely quantum phenomenon. Inspired by
these tremendous findings from condensed-matter physics, the
wave community thus started to search for classical analogs in
photonic crystals (6, 7). Abnormal transport properties similar
to the Zitterbewegung effect were highlighted (8, 9). In recent
years, the quest for photonic (and phononic) topological insu-
lators (10) has become a leading topic. This specific state of
matter results from the opening of a band gap at the Dirac fre-
quency and is praised for its application to robust one-way wave-
guiding (11, 12). Surprisingly, similar degeneracies have been
observed for unexpected photonic lattices as the consequence
of an accidental adequate combination of parameters (13). Such
Dirac-like cones have a fundamentally different nature as they
occur in the k→ 0 limit (14) but still offer interesting fea-
tures: Wave packets propagate with a nonzero group velocity
while exhibiting no phase variation, just like in a zero-index
material (15, 16).

A similar accidental k→ 0 Dirac-like cone can be observed
in the dispersion relation of elastic waves propagating in a sim-
ple plate. In this context, the cone results from the coincidence
of two cutoff frequencies occurring when the Poisson’s ratio is
exactly of ν=1/3 (17–20). This condition seriously restricts the
amount of potential materials to nearly the Duraluminum or
zircalloy. However, a recent investigation emphasized that the
in-plane modes of a thin strip are analogous to Lamb waves

propagating in a plate of Poisson’s ratio ν′= ν/(1+ ν) (21).
The degeneracy should then occur in the case of incompressible
materials (ν=1/2). This indicates that the strip configuration is
the perfect candidate for the observation of Dirac cones in the
world of soft matter. Due to their nearly incompressible nature,
soft materials indeed present interesting dynamical properties
embodied by the propagation of elastic waves: The velocity of
the transversely polarized waves is several orders of magnitude
smaller than its longitudinal counterpart. This aspect has been
at the center of interesting developments in various contexts
from evidencing the role of surface tension in soft solids (22,
23) to model experiments for fracture dynamics (24) or transient
elastography (25, 26).

In this article, we study in-plane elastic waves propagating
in a soft (i.e., incompressible and highly deformable) thin strip
and propose an experimental platform to monitor the propa-
gation of the in-plane displacement due to a particle-tracking
algorithm. We provide a full experimental and analytical descrip-
tion of these in-plane waves both for free and for rigid edge
conditions. We notably extract the low-frequency part of the dis-
persion diagram for the two configurations. We clearly evidence
the existence of Dirac-like cones for this simple geometry and
highlight some other remarkable wave phenomena such as back-
ward modes or zero group velocity (ZGV) modes. Eventually, we
perform chiral selective excitation resulting in the propagation of
a one-way state and in the separation of the two contributions of
a ZGV wave.

Significance

We monitor the propagation of in-plane elastic waves in
an incompressible thin strip and observe a Dirac cone in a
soft material. Additional remarkable wave features such as
negative phase velocities, pseudo-zero group velocity, and
one-way chiral selection are highlighted. These results are uni-
versal: Any thin strip made of any soft elastomer will display
the same behavior. Dirac cones have inspired many develop-
ments in the condensed-matter field over the last decade.
Our findings enable the search for analogs in the realm of
soft matter, leading to a wide range of potential applica-
tions. Additionally, they are of practical interest for biolo-
gists since soft strips are ubiquitous among human tissues
and organs.
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Experimental Configuration. To start off, a thin strip of dimen-
sions L×w × d =600× 39× 3 mm is prepared in a soft silicone
elastomer (for details see Materials and Methods) and seeded
with dark pigments for tracking purposes. The strip is then
suspended and connected to a point-like source consisting of
a clamp mounted on a low-frequency (1 to 200 Hz) shaker.
When vibrated, the strip hosts the propagation of guided elas-
tic waves traveling along the vertical direction x1 (Fig. 1). Here,
we specifically study in-plane motions, i.e., displacement compo-
nents u1 and u2 corresponding to respective directions x1 and
x2. The low-frequency regime enables the optical monitoring
of the in-plane motion. A 60-images sequence corresponding
to a single-wave period is acquired due to stroboscopic means
before being processed with a digital image correlation (DIC)
algorithm (27) which retrieves the displacement of the dark
seeds. Typical displacement fields (u1, u2) measured when shak-
ing at 110 Hz are reported in Fig. 2A (the data are available in
ref. 28). This method is sensitive to displacement magnitudes
in the micrometer range and thus enables field extraction to
be performed over large areas despite the significant viscous
damping.

Free Edges Configuration. The interpretation of the displacement
maps is not straightforward. As for any waveguiding process the
field gathers contributions from several modes. Given the system
geometry, we project the data on their symmetrical (respec-
tively [resp.] antisymmetrical) component with respect to the
vertical central axis. For improved extraction performances, a
single-value decomposition (SVD) is then operated and only the
significant solutions are kept (for details see SI Appendix). For
example, at 110 Hz, the raw data (Fig. 2) gather three main con-

Fig. 1. Experimental setup. A soft elastic strip (of dimensions L = 600 mm,
w = 39 mm, d = 3 mm) seeded with dark pigments (for motion-tracking
purposes) is suspended. A shaker connected to a clamp induces in-plane
displacement propagating along the strip.

tributions: two antisymmetrical modes (denoted A0 and A1) and
one symmetrical mode (S0). Each mode goes along with a sin-
gle spatial frequency k which we extract by Fourier transforming
the right-singular vectors (containing the information relative
to the x1 direction). Repeating this procedure for frequencies
ranging from 1 to 200 Hz, one obtains the full dispersion dia-
gram displayed in Fig. 2C (solid circles correspond to values
directly extracted from the data, while open circles are obtained
by symmetry with respect to the k =0 axis). The dispersion dia-
gram reveals several branches with different symmetries and
behaviors. Here, the branches are indexed with increasing cutoff
frequencies. Note that, due to viscous dissipation, the wavenum-
ber k is intrinsically complex valued. As a matter of fact, this
is well pictured by the decaying character of the field maps
(Fig. 2). The Fourier analysis yields its real part (peaks location)
but also its imaginary part (peaks width) which is provided in
SI Appendix, Fig. S4.

Those experimental results are in good agreement with theo-
retical predictions (Fig. 2C, solid line) obtained with a simplified
model and by numerical simulation (both are presented in SI
Appendix). Indeed, one can show that the in-plane modes of
a given strip are analogous to the Lamb waves propagating in
a virtual two-dimensional (2D) plate of appropriate effective
mechanical properties (21). When the strip is made of a soft
material, the analogy holds for a plate of thickness w , with a
shear wave velocity of vT and a longitudinal velocity of exactly
2vT . Strikingly, this amounts to acknowledging that, for a thin
strip of soft material, the low-frequency in-plane guided waves
are independent of the bulk modulus (or equivalently of the lon-
gitudinal wave velocity) and of the strip thickness d . One can
then retrieve the full dispersion solely from the knowledge of the
strip’s shear modulus G , width w , and density ρ. Of course, the
intrinsic dispersive properties of the soft material as well as its
lossy character must be taken into account. A simple and com-
monly accepted model for describing the low-frequency rheology
of silicone polymers is the fractional Kelvin–Voigt model (29–
31), for which the complex shear modulus writes G =G0[1+
(iωτ)n ]. This formalism being injected in the 2D model, our
measurements are convincingly adjusted (solid lines in Fig. 2C)
when the following set of parameters is input: G0 =26 kPa,
τ =260 µs, and n =0.33. Note that this choice of parameters
turns out to match relatively well the measurements obtained
with a traditional rheometer (details in SI Appendix). The trans-
parency of the theoretical line represents the weight of the
imaginary part of the wavenumber k (detailed in SI Appendix,
Fig. S5). When k becomes essentially imaginary, the solution is
evanescent which explains why it cannot be extracted from the
experiment.

Let us now comment on a few interesting features of this
dispersion diagram. First, at low frequencies, the single symmet-
rical branch (labeled S0) presents a linear slope, hence defining
a nondispersive propagation or equivalently a propagation at
constant wave velocity. Experimentally, the latter corresponds
to
√
3vT which confirms the prediction from ref. 21. This is

somehow counterintuitive: The displacement of S0 is quasi-
exclusively polarized along the x1 direction, giving it the aspect
of a pseudo-longitudinal wave, but it propagates at a speed inde-
pendent of the longitudinal velocity. At 150 Hz, two branches
cross linearly in the k→ 0 limit. This is the signature of a Dirac-
like cone (13, 18, 32). It is worth mentioning that, despite the
three-dimensional (3D) character of the system, the propaga-
tion occurs only in one direction (x1) which means that the
cone should be regarded as a linear crossing. Its slope (group
velocity) is found to be ±2vT/π (calculation in SI Appendix).
The cone, which turns out to be well defined despite the signifi-
cant damping, directly results from the incompressible nature of
the soft elastomer. Indeed, the condition vL� vT (i.e., ν≈ 1/2)
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Fig. 2. Free edges field maps and dispersion. Here w = 39 mm. (A and B) Real part of the raw displacements at 110 Hz (A) and the three corresponding
singular vectors (B) (main text). (C) Experimental (circles) and analytical (solid lines) dispersion curves. Transparency renders the ratio Im(k)/Abs(k) (SI
Appendix). Solid gray and blue circles correspond to extracted symmetrical and antisymmetrical modes. Open circles are obtained by symmetry.

automatically yields the coincidence of the second and third cut-
off frequencies (21). In other words, any thin soft strip would
display such a Dirac-like cone. Because the cone is located
at k =0, the low-frequency part of the S2 branch (below 150
Hz) features negative wavenumbers (Fig. 2C, solid circles). In
this region, the phase and group velocities are antiparallel (33,
34). More specifically, the group velocity remains positive (as
imposed by causality) when the phase velocity becomes nega-
tive; i.e., the wavefronts travel toward the source (Movie S3).
This effect has been the scope of many developments in the
metamaterials field (35, 36) but occurs spontaneously here.

Fixed Edges Configuration. From now on, we implement Dirich-
let boundary conditions on a w =50.6-mm strip by clamping its
edges in a stiff aluminum frame (Movie S4; data available in
ref. 28). Again, the dispersion curves (Fig. 3) are extracted fol-
lowing the previous experimental steps. See how the low-order
branches (A0 and S0 in Fig. 2B) have disappeared as a con-
sequence of the field cancellation at the boundaries. Besides,
a Dirac-like cone is observed for this configuration as well but
it now occurs at the crossing of antisymmetrical branches. Just
like in the free edges configuration, the slope at the Dirac point
is vg =±2vT/π. Extracting the field patterns for this particular
point, one finds that the motion is elliptical (Movie S5). The
polarization even becomes circular at a distance ±w/6 from
the center of the strip. All these observations are supported by
the calculation provided in SI Appendix. Once again, the pre-
diction obtained with the 2D equivalence model assuming rigid
boundaries convincingly matches the experiment. Also, an inter-
esting feature shows up at 102 Hz where the branches A1 and A∗2
nearly meet each other. In a nondissipative system, one expects
the two branches to connect, thus yielding a singular point asso-
ciated with a ZGV, a phenomenon which has been previously
observed in rigid plates (37–41). Here, because the propaga-
tion is damped by viscous mechanisms, the connection does not
strictly occur, the reason why we talk about the pseudo-ZGV
mode, but as we will see below similar wave phenomena still
exist in the presence of damping (see SI Appendix, Fig. S2 for an
analytical comparison between the conservative and dissipative
scenarios).

Let us now illustrate the rich physics associated to this
dispersion diagram by specifically selecting a few interesting
modes (Movies S6–S9; data available in ref. 28). To begin
with, the source is placed in the center and shaken vertically

at 136 Hz. This excitation is intrinsically symmetrical and only
S1 should be fed at this frequency. The chronophotographic
sequence displayed in Fig. 4A reports 12 successive snapshots
of the displacement u1 taken over a full period of vibration
at 136 Hz. As expected, the field pattern respects the S1

symmetry. Also, the zeroes of the field (dashed lines) move
away from the source, which corresponds to diverging waves
(see Fig. 4A).

On either side of the strip, there are two solutions with iden-
tical profiles but opposite phase velocities, in other words, two
time-reversed partners. Thus, the bottom part of the strip hosts
the solution S1 while its top part supports S∗1 . Furthermore,
the transverse field u2 is π/2 phase shifted compared to u1

at this frequency (SI Appendix, Fig. S7 and Movie S6). This
essentially suggests that the in-plane displacement is elliptically
polarized, an interesting feature since such a polarization is

Fig. 3. Fixed edges dispersion. Shown are experimental (circles) and the-
oretical (solid lines) dispersion curves for a strip of width w = 50.6 mm
with fixed edges. Symmetrical modes (resp. antisymmetrical) are labeled
in gray (resp. blue). Similar to Fig. 2C, the transparency renders the
ratio Im(k)/Abs(k) (SI Appendix). Solid gray and blue circles correspond
to extracted symmetrical and antisymmetrical modes. Open circles are
obtained by symmetry.
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Fig. 4. Selective generation. Shown are chronophotographic sequences (12 snapshots) over a full oscillation cycle. (A) The source is placed at the center of
the strip and shaken vertically at 136 Hz: Symmetric diverging waves are observed on both parts. (B) Two sources facing each other are rotated in opposite
directions at 136 Hz: The wave travels only to the x1 > 0 region. (C) Two sources are shaken horizontally at 102 Hz: A stationary wave associated to an
antisymmetric pseudo-ZGV mode is observed. (D) The two sources are rotated at 102 Hz in an antisymmetrical manner: The propagation is restored and the
phase velocity is negative in the on the top region (x1 < 0). The black dashed lines are visual guides highlighting the zeroes of displacement and the sketches
show the source shape and motion. For the sake of clarity, one represents only u1 for A and B and u2 for C and D. See Movies S6–S9 for more details.

known to flip under a time-reversal operation. One can easily
take advantage of this effect by imposing a chiral excitation. To
this end, we use a source made of two counterrotating clamps
located at equal distances from the center of the strip. The
rotating motion is produced by driving two distinct clamps with
four different speakers connected to a soundboard (Presonus
AudioBox 44VSL). As depicted in Fig. 4B, such a chiral source
excites the S1 mode which propagates toward x1> 0; how-
ever, it cannot produce its time-reverse partner S∗1 propagating
in the opposite direction. By controlling the source’s chiral-
ity, we performed selective feeding and one-way wave trans-
port, a feature which has recently been exploited in different
contexts (42–44).

One can also try to capture the strip behavior near the pseudo-
ZGV point. As it is associated with an antisymmetrical motion,
the system is shaken horizontally by two clamps driven simul-
taneously at 102 Hz, and the field displacement u2 over a full
cycle is represented in Fig. 4C. It exhibits a very unique prop-
erty: The zeroes remain still (dashed lines) whatever the phase
within the cycle which indicates that the solution is stationary.
To understand this feature, let us take a look back at Fig. 3.
Causality imposes that A1 and A2 (solid circles and solid lines)
propagate in the bottom part of the strip while their time part-
ners A∗1 and A∗2 (open circles and dashed lines) travel toward
the top part. Interestingly, at 102 Hz, A1 and A2 (resp. A∗1 and
A∗2) have almost opposite wavenumbers and interfere to pro-
duce a standing wave. The stationarity does not result from
reflections at the strip ends but is a direct consequence of the
coincidence of the two branches. Because the system is damped,
the exact coincidence is lost. But the difference in magnitudes
is small enough for the effect to survive at the pseudo-ZGV
frequency.

Again, introducing some chirality will result in breaking the
time-reversal symmetry. The sources are now rotated in an
antisymmetrical manner (Fig. 4 D, Inset), resulting in the mea-
surements reported in Fig. 4D. The propagative nature of the
field is retrieved on both sides: The zeroes of the field are
traveling. Note that, on the upper part, the wavefronts are anti-
causal; i.e., they seem to move toward the source which is typical
of a negative phase velocity. Strictly speaking, only A1 (resp.
A∗2) remains in the lower part (resp. upper part) of the strip.
Due to the chiral excitation, we have separated the two con-

tributions of a pseudo-ZGV point and highlighted their unique
nature as a superposition of two modes propagating in opposite
directions.

Perspectives. In this article, we report the observation of Dirac-
like cones in a soft material despite a significant dissipation due
to viscous effects. The associated dispersion is also found to
induce atypical wave phenomena such as a negative phase veloc-
ity and a stationary mode. For both the Dirichlet and Neumann
boundaries, a convincing agreement is found between the experi-
ments, the theoretical simplified model, and the numerical analy-
sis. Additionally, we perform selective feeding by controlling the
chirality of the source. Beyond the original wave physics, the soft
strip configuration may stimulate interest in different domains in
the near future. From a material point of view, we show how a
very simple platform provides comprehensive information about
the visco-elastic properties of a soft solid. This result offers inter-
esting perspectives in terms of rheology measurements. From
a biological point of view, understanding the complex physics
associated with a geometry that is ubiquitous in the human tis-
sues and organs is a major challenge. Imaging and therapeutic
methods based on elastography would benefit from an in-depth
understanding of the specific dynamic response of tendons (45),
myocardium (46), or vocal cords (47) among others. Some physi-
ological mechanisms could also be unveiled by accounting for the
atypical vibrations of a soft strip. In the inner ear, for instance,
the sound transduction is essentially driven by a combination of
two soft strips, namely the basilar and tectorial membranes (48–
50). Overall, we might soon discover that evolution had long
ago transposed the exceptional properties of graphene to the
living world.

Materials and Methods
Sample Preparation. The strips are prepared by molding a commercial elas-
tomer (Smooth-On Ecoflex 00-30). The monomer and cross-linking agent
are mixed in a 1:1 ratio and left for curing for roughly 0.5 d. Once
cured, the measured polymer density is ρ= 1,010 kg.m−3. Rheological
measurements are performed on a conventional apparatus (Anton-Paar
MCR501) set in a plate–plate configuration. The results are available in
SI Appendix.

Vibration. The strips are excited by a shaker (Tira Vib 51120) driven
monochromatically with an external signal generator (Keysight 33220A) and
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amplifier (Tira Analog Amplifier BAA 500) with frequencies ranging from 1
to 200 Hz. A point-like excitation is ensured by connecting the shaker to
a 3D-printed clamp tightening the strip at a specific location and designed
with conical termination. Spurious out-of-plane vibrations are reduced by
immerging the strip’s bottom end in glycerol (visible in Fig. 1).

Motion Tracking. During the curing stage, the blend is seeded with “Ivory
black” dark pigments (the particles are smaller than 500 µm) enabling one
to monitor the motion by DIC. Video imaging is performed with a wide-
sensor camera (Basler acA4112-20um) positioned roughly 2 m away from the
strip (raw videos are available in Movies S1 and S4). For each dataset, a 60-
images sequence is acquired with an effective frame rate set to 60 images
per waveperiod (to capture exactly one wave oscillation). These relatively
high effective frame rates are reached by stroboscopy (the actual acquisition
rate is larger than the waveperiod). The video data are then processed with
the DIC algorithm (27) which renders 60× 2 (u1 and u2) displacement maps
for each frequency.

Postprocessing. Retrieving the dispersion curves requires further process-
ing. First, the monochromatic displacement maps are converted to a single
complex map by computing a discrete time-domain Fourier transform. The
data are then projected on their symmetrical and antisymmetrical parts as
a preliminary step to the SVD operation (details of the SVD are available
in SI Appendix). After selecting the relevant singular vectors, the spatial
frequencies are extracted by Fourier transformation.

Data Availability. DIC field patterns data have been deposited in Zenodo
(DOI: 10.5281/zenodo.4030853).
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