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Abstract

These notes summarize the content of lectures that have been given in different Master
courses and summer schools. The purpose is to describe the emission dynamics of a dipole
emitter in a structured environment. The focus is on the weak-coupling regime, in which the
main feature is the dependence of the spontaneous decay rate on the environment, known as the
Purcell effect. The local density of states is introduced as a central concept in the description.

1 Introduction

These notes introduce the theoretical concepts needed to describe the spontaneous emission dynamics
of an emitter embedded in a structured environment (surface, cavity, nanoantenna...) in the weak
coupling regime. A feature of this regime is the irreversible transition of the emitter from an excited
state to the ground state by photon emission (a process also known as fluorescence).

The spontaneous emission dynamics is characterized by the lifetime τ of the excited state, or equiv-
alently the decay rate Γ = 1/τ . The decay rate is directly observable, as shown in Fig. 1.Fluorescence (spontaneous emission) dynamics

I(t) ⇠ exp(��t)
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|ei
|gi

P (t) ⇠ exp(��t)

Figure 1: Measurement of the fluorescence decay rate Γ. On an ensemble (for example fluorescent
molecules in solution), the molecules are initially excited by a short laser pulse and the fluorescence
intensity I(t) decays over time as exp(−Γt). For a single emitter, one needs to repeat many cycles
of excitation by a short laser pulse and detection of the emitted photon, and build a histogram of
the delays between excitation and photon detection, as shown in the right panel. The probability
P (t) for the emitter to remain excitated at time t decays as exp(−Γt).
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It is known that the spontaneous decay rate is not an intrinsic property of an emitter, but depends
on the environment. An example of an early measurement is shown in Fig. 2. The lifetime of the
emitters is seen to depend substantially on the distance to a silver mirror [1].

Early « cavity QED » experiments in optics

d

Figure 2: Fluorescence lifetime of emitters (here europium ions) in front of a silver mirror versus
the distance d. One observes oscillations resulting from the interaction with the reflected field, and
a strong decrease at short distance due to non radiative coupling (absorption). The solid line is a
theoretical model using concepts similar to those introduced in the present note. Adapted from [1].

Here we will introduce the basic concepts and methods needed to describe the dependence of the
decay rate on the local environment of the emitter. We will favor an approach connecting the decay
rate to the power emitted by a classical dipole, as described for example in [2]. The interested reader
could find an alternative approach based on a scattering formalism in Ref. [3], that allows one to
recover the results included in the present notes but from a different perspectives, and that also
includes other regimes (strong coupling, energy transfer) not discussed here.

2 Power radiated by classical dipole source

2.1 General expression for a monochromatic source

Consider a monochromatic source radiating in an arbitrary environment at frequency ω (we assume
that all fields and sources have a time dependence of the form exp(−iωt)). The source is described
by a current density with complex amplitude j occupying a volume V . The time-averaged power
transferred from the source to the environment is

P = −1

2
Re

∫
j∗(r) ·E(r) d3r , (1)

where the superscript ∗ denotes the complex conjugate, and the integral is extended to the volume
V of the source. For an electric dipole source located at the point rs, the current density is j(r) =
−iω p δ(r− rs), with p the dipole moment. The emitted power takes the simple form

P =
ω

2
Im [p∗ ·E(rs)] . (2)
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2.2 The response of the environment: Green’s function

In an arbitrary environment described by a dielectric function ε(r) (we assume that the media
surrounding the source are non-magnetic), the electric field obeys the vector form of Helmholtz’s
equation:

∇×∇×E(r)− ε(r)k20 E(r) = iµ0ω j(r) , (3)

where k0 = ω/c with c the speed of light in vacuum. By making use of the concept of Green’s
function, the general solution of the above equation can be written as an integral connecting the
electric field to the source j. Formally, the (tensor) Green’s function is the solution to

∇×∇×G(r, r′, ω)− ε(r)k20 G(r, r′, ω) = I δ(r− r′) , (4)

where I is the unit second-rank tensor. Physically, the Green’s function describes the radiation at
the point r generated by a point source located at r′. One usually chooses the solution satisfying an
outgoing wave condition when |r − r′| → ∞, meaning that far from the source point the radiated
field behaves as an outgoing spherical wave of the form exp(ik0|r − r′|)/(|r − r′|). For a deeper
introduction to Green’s functions, see for example the dedicated chapters in [4, 5].

Making use of the Green’s function, the solution to Eq. (3) can be written

E(r) = iµ0ω

∫
G(r, r′, ω) j(r′) d3r′ , (5)

which can be understood as a linear superposition of the fields emitted by each point of the source.
Note that here G is a second-rank tensor with components Gjk such that the vector components of
E and j are related by

Ej(r) = iµ0ω

∫ ∑
k

Gjk(r, r
′, ω) jk(r

′) d3r′ . (6)

In the case of the emission by an electric dipole source located at the point rs, the radiated field
takes the form

E(r) = µ0ω
2G(r, rs, ω)p , (7)

and Eq. (2) can be rewritten as

P =
µ0ω

3

2
|p|2 Im [u ·G(rs, rs, ω)u] . (8)

In this equation u = p/|p| is the unit vector defining the orientation of the emitting dipole. One
advantage of this representation is that the source power (|p|2) and the electromagnetic response of
the environment (G) factorize. We also note that the emitted power is driven by the imaginary part
of the Green’s function.

2.3 Particular case: Emission in free space

In free space, the Green’s function G0 is the solution to Eq. (4) with ε(r) = 1 everywhere. The
solution satisfying the outgoing wave condition is [4, 5]

G0(r, r
′, ω) =

exp(ik0R)

4πR

[
I− R̂⊗ R̂−

(
1

ik0R
+

1

k20R
2

)(
I− 3R̂⊗ R̂

)]
− I

3k20
δ(R) , (9)
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where R = r − r′, R = |R| and R̂ = R/R is the unit vector along R. We use the notation ⊗ for
the dyadic product.1

The calculation of the imaginary part in the limit r = r′ gives

ImG0(r, r, ω) =
k0
6π

I , (10)

the derivation of this result being left as an exercise. Inserting the above expression into Eq. (8)
leads to

P0 =
ω4

12πε0c3
|p|2 , (11)

which is the well-known expression of the power radiated by en electric dipole in vacuum.

3 Spontaneous decay rate of a quantum emitter

3.1 Decay rate from quantum perturbation theory

Consider a two-level atom with excited and ground states |e〉 and |g〉, respectively. We denote by
ω the transition frequency such that ω = (Ee − Eg)/~, with Ee and Eg the energies of the two
states. The spontaneous decay rate Γ of an atom initially in the excitated state can be obtained
from perturbation theory. For an atom located at the point rs, the result takes the form

Γ =
2µ0ω

2

~
|peg|2 Im [u ·G(rs, rs, ω)u] . (12)

Here peg is the transition dipole, defined as the matrix element peg = 〈g|D|e〉 of the transition
dipole operator D, and u = peg/|peg| defines the orientation of the dipole, as in the classical case.
Deriving the above equation in a quantum framework is beyond the scope of these lecture notes (see
for example [6, 7] for a detailed treatment). Instead, we will show that Eq. (12) can be deduced
from the classical emitted power in a correspondence fashion.

3.2 A classical to quantum correspondence

We propose here to deduce the expression of the quantum decay rate Γ from the expression (8)
of the power radiated by a classical electric dipole. We follow an approach introduced by Born in
Ref. [8], based on correspondence arguments.

First, we change in Eq. (8) the classical dipole moment p into the quantum transition dipole peg, and
the classical frequency ω into the Bohr frequency ω = (Ee−Eg)/~, to obtain the power emitted per
unit time in the quantum picture. In the replacement of the transition dipole, we need to account for
a factor of 2, due to the fact that only positive frequencies have to be used (in quantum mechanics,
a clear meaning is given to either positive or negative frequencies).2 Second, we write that for an
atom initially in the excited state, the emitted power is Γ~ω.

1For any two vectors u and v the components of the tensor (u⊗ v) are (u⊗ v)ij = uivj . Applying this tensor to
a vector w leads to (u⊗ v)w = (v ·w)u.

2The frequency spectrum of the electric dipole p(t) is expressed by the Fourier transform p(t) =∫ +∞
−∞ p(ω) exp(−iωt)dω. Since p(t) is real, p(−ω) = p∗(ω) and p(t) = 2Re

∫ +∞
0

p(ω) exp(−iωt)dω. We see
that the spectrum reduced to positive frequencies contains a factor of 2.
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These two steps lead to the conclusion that Γ = P/~ω, where P is given by Eq. (8) with the two
replacements above, and we find that

Γ =
2µ0ω

2

~
|peg|2 Im [u ·G(rs, rs, ω)u] , (13)

which agrees with Eq. (12).

3.3 Decay rate in free space

The decay rate in free space Γ0 is obtained by using the vacuum Green’s function G0 in Eq. (13),
and making use of Eq. (10). We find that

Γ0 =
ω3

3π~ε0c3
|peg|2 , (14)

which is the known result for the decay rate of a two-level atom in vacuum.

3.4 Normalized decay rate

The normalized decay rate Γ/Γ0 is readily obtained from the two equations above:

Γ

Γ0
=

6π

k0
Im [u ·G(rs, rs, ω)u] . (15)

The right-hand side describes the change in the decay rate of a quantum emitter due to the envi-
ronment.

It can be easily verified that for the radiation from a classical dipole source, normalizing the emitted
power P by the free space power P0 leads to the same result, namely

P

P0
=

6π

k0
Im [u ·G(rs, rs, ω)u] . (16)

In other words, the change in the emitted power P of a classical dipole with fixed dipole moment p
due to the environment is the same as the change in the decay rate of a quantum emitter emitting
at the same frequency and located at the same position. We conclude that changes in decay rates
can be computed from purely classical concepts.

4 Local density of states

We have seen that the internal dynamics of the emitter and the influence of the environment can
be factorized in the expression of the decay rate, the role of the environment being described by the
imaginary part of the Green’s function (more precisely by its projection on the orientation u of the
emitting dipole). The role of the environment is often described in terms of the local density of states
(LDOS) that we will introduce in this section. For a more detailed presentation see Refs. [2, 4, 5].
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4.1 LDOS and Green’s function

We start by defining the LDOS of the electromagnetic field as

ρ(r, ω) =
2ω

πc2
Im [TrG(r, r, ω)] , (17)

with Tr denoting the trace of a tensor. More precisely, this expression defines the electric contribution
to the LDOS, relevant to describe the decay rate of emitters with an electric dipole transition. For
magnetic dipole transitions, a magnetic LDOS can be introduced [2].

We also define a projected LDOS, relevant to describe the decay rate of emitters with a given
orientation u of the transition dipole as follows:

ρu(r, ω) =
2ω

πc2
Im [u ·G(r, r, ω)u] . (18)

The full LDOS ρ = ρux + ρuy + ρuz sums up the three orientational degrees of freedom.

In terms of the projected LDOS, the spontaneous decay rate of a quantum emitter located at the
point rs, emitting at a frequency ω, and with a transition dipole oriented along the unit vector u,
can be written as

Γ =
πω

~ε0
|peg|2 ρu(rs, ω) . (19)

This expression takes the form of Fermi’s golden rule (the larger the density of states, the larger the
decay rate).

4.2 Physical picture: A local counting of electromagnetic modes

Defining the LDOS from the imaginary part of the Green’s function is very general, but the fact that
the LDOS defined this way performs a counting of the electromagnetic modes is somehow hidden. To
make it explicit, we consider a non-absorbing and non-dispersive medium described by a real-valued
and frequency-independent dielectric function ε(r) enclosed in a cavity (no radiation losses). In this
particular case, we can introduce a set of eigenmodes for the electromagnetic field (we follow the
approach in Ref. [9]).

We consider the eigenmodes en with eigenfrequencies ωn which obey the vector Helmholtz equation

∇×∇× en(r)− ε(r)
ω2
n

c2
en(r) = 0 . (20)

This equation can be rewritten as[
1√
ε(r)
∇×∇× 1√

ε(r)

]
un(r)− ω2

n

c2
un(r) = 0 (21)

with un(r) =
√
ε(r)en(r). Equation (21) defines an eigenvalue problem for a Hermitian operator,

that admits real eigenfrequencies ωn and eigenfunctions satisfying the orthonormality condition∫
um(r) · u∗n(r) d3r = δmn . (22)
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The orthogonality condition for the eigenmodes solution to Eq. (20) takes the form∫
ε(r) em(r) · e∗n(r) d3r = δmn . (23)

Our goal is to expand the Green’s function satisfying Eq. (4) on the basis of the eigenmodes en in
the form

G(r, r′, ω) =
∑
n

en(r)⊗ gn(r′) , (24)

where the coefficients gn need to be determined.

Inserting (24) into (4) yields

∑
n

[
∇×∇× en(r)− ε(r)

ω2

c2
en(r)

]
⊗ gn(r′) = δ(r− r′)I (25)

which, using Eq. (20), can be transformed into

∑
n

(
ω2
n

c2
− ω2

c2

)
ε(r) en(r)⊗ gn(r′) = δ(r− r′)I . (26)

Multiplying both sides by e∗m(r), integrating over r and using the orthogonality condition (23) leads
to

(ω2
n − ω2)gn(r′) = c2e∗n(r′) . (27)

The general solution to the above equation is of the form

gn(r′) = c2e∗n(r′)

[
P

(
1

ω2
n − ω2

)
+Aδ(ω − ωn) +Bδ(ω + ωn)

]
, (28)

where A and B are constants and P denotes the principal value. To determine the constants, we
note that

1

ω2
n − ω2

=
1

2ωn

(
1

ωn − ω
+

1

ωn + ω

)
(29)

and make use of the identity

lim
η→0

1

x− x0 − iη
= PV

1

x− x0
+ iπ δ(x− x0) . (30)

This leads to A = iπ/(2ω) and B = −iπ/(2ω). Finally, from Eqs. (24) and (28), we obtain the
eigenmodes expansion of the Green’s function:

G(r, r′, ω) =
∑
n

c2 en(r)⊗ e∗n(r′)

[
P

(
1

ω2
n − ω2

)
+

iπ

2ωn
δ(ω − ωn)

]
. (31)

We have dropped the term proportionnal to δ(ω + ωn) since we will define the LDOS for positive
frequencies only, and this term does not contribute.3

3The Green’s function has Hermitian symmetry G(r, r′,−ω) = G∗(r, r′, ω) in the frequency domain and the
spectrum can be restricted to positive frequencies.
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From this expression, we readily deduce that

Im [TrG(r, r, ω)] =
πc2

2ω

∑
n

|en(r)|2δ(ω − ωn) , (32)

where ωn had been replaced by ω in the prefactor, keeping the result unchanged due to the presence
of the delta function. We immediately find that the LDOS defined in Eq. (17) reads

ρ(r, ω) =
∑
n

|en(r)|2 δ(ω − ωn) . (33)

This expression gives insight into the meaning of the LDOS. We see that ρ(r, ω) counts the number
of eigenfrequencies in an infinitely small frequency interval around ω (the LDOS is a spectral density),
weighted by the contribution of each eigenmode at the point r. Large (small) LDOS means many
(few) modes and/or modes with large (weak) intensities at a given points, as illustrated in Fig. 3.
It is important to keep in mind that an explicit relation of the type (33) makes sense when a set
of eigenmodes can be properly defined, which occurs only in a few particular cases such as a non-
dissipative medium enclosed in a cavity. In the most general situation of a dissipative system (with
material absorption and/or radiation losses), no such simple expansion exist. Nevertheless, we can
still define a LDOS based on expression (17) or (18) and use it to describe spontaneous emission.

Meaning of the LDOS

large LDOS small LDOS

Figure 3: Illustrating the concept of LDOS, with roads representing eigenmodes.

4.3 LDOS and the impedance of an antenna

Connecting the change in the decay rate Γ/Γ0 to a change in the LDOS is the common approach in
quantum theory. The equivalence with the change P/P0 in the power emitted by a classical dipole
emitter (or antenna) calls for another point of view. Indeed, in antenna theory, the change in the
emitted power is usually associated to a change in the impedance. Here we show that LDOS and
impedance are actually related by a simple expression. A deeper discussion of this relation, and its
implications, can be found in Ref. [10].

Consider a wire antenna, as depicted in the left panel in Fig. 4. The antenna is fed by a monochro-
matic current I (frequency ω) produced by an ideal current source, and we denote by U the voltage
between the two extremities of the antenna. We assume an ideal antenna with radiation losses only.
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Figure 4:

The time-averaged power emitted by the antenna can be written as

P =
1

2
Re(UI∗) =

1

2
Re(Z) |I|2 , (34)

where Z = U/I is the radiation impedance of the antenna.

For an electric dipole antenna, taken to be an infinitely thin wire with length d� λ, located at the
point rs, and oriented along the z-direction (as depicted in the right panel in Fig. 4), the emitted
power can be expressed using Eq. (8). We find that

P =
µ0ω

3

2
|p|2Im [uz ·G(rs, rs, ω)uz] , (35)

where uz is the unit vector along the z-axis, p = puz is the dipole moment of the antenna, and G
is the Green’s function describing the electrodynamic response of the environment.

Using the fact that −iωp =
∫
j(r)d3r = Iduz, we find that the dipole moment and the current in

the antenna are related by |p|2 = |I|2d2/ω2. Making use of Eqs. (34) and (35), we obtain

Re(Z) = µ0ω d
2 Im [uz ·G(rs, rs, ω)uz] . (36)

This simple expression establishes a connection between the real part of the impedance Z and the
imaginary part of the Green’s function G, or equivalently the LDOS.

5 Purcell factor

The change in the spontaneous decay rate Γ/Γ0 induced by the environment of the emitter is known
as the Purcell effect. Indeed, Purcell described this effect in a seminal paper [11], considering an
emitter in a single mode cavity. In this section we show that the formalism described above includes
Purcell’s result.

The expansion (31) of the Green’s function is valid in the absence of dissipation. For a cavity with
weak losses, mode attenuation can be accounted for phenomenologically by introducing a damping
rate γn for each mode, and rewriting the expansion as

G(r, r′, ω) =
∑
n

c2
en(r)⊗ e∗n(r′)

ω2
n − ω2 − iωγn

. (37)

It can be verified that (31) is recovered in the limit γn → 0.
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Following Purcell’s approach, we assume that the emitter is resonant with one specific eigenmode
(ω = ωn) that dominates in the expansion of the Green’s function. From Eqs. (13) and (37) we find
that

Γ =
2

ε0~
|peg|2Q |en(rs) · u|2 (38)

where u defines the orientation of the transition dipole peg and rs is the position of the emitter. We
have introduced the quality factor of the mode Q = ω/γn. The last term defines the so-called mode
volume V such that

1

V
= |en(rs) · u|2 , (39)

which measures the volume occupied by the cavity mode. From Eqs. (14) and (38), we find that the
normalized decay rate for a single mode cavity with weak losses reads

Γ

Γ0
=

3

4π2
λ3
Q

V
(40)

where λ = 2πc/ω is the mode wavelength. The right-hand side in the equation above is known as
the Purcell factor. It describes the change in the LDOS induced by a single mode cavity.
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