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The D.O.R.T. method~French acronym for Decomposition of the Time Reversal Operator! is an
active remote sensing technique using arrays of antennas for the detection and localization of
scatterers@Pradaet al., J. Acoust. Soc. Am.99, 2067–2076~1996!#. The analogy between the time
reversal operator and the covariance matrix used for classical sources separation in passive remote
sensing@Bienvenu et al., IEEE Trans. ASSP31, 1235–1247~1983!# is established. Then, an
experiment of subwavelength detection and localization of point-like scatterers with a linear array
of transducers is presented. Using classical estimators in reception like Maximum-Likelihood and
Multiple Signal Characterization~MUSIC!, two point-like scatterers separated byl/3 and placed at
100l from the array of transducers are resolved. In these experiments, the role of multiple scattering
and the existence of additional eigenvectors associated with dipolar and monopolar radiation of each
scatterer is discussed. ©2003 Acoustical Society of America.@DOI: 10.1121/1.1568759#

PACS numbers: 43.60.Pt, 43.28.We, 43.20.Fn@JCB#
a
es
ve
m
p

te
d
I

.T
rc
m

ri-

nd
im
tiv
or
c
iz

t
tly
er

f
-
is
.
os
e

ity

po-
uct
e,

, is
s in

mall
in-
ers.
ent
e of

in-

rers
here
oci-
the

ig-
irec-
nal
uch
trix

ar-
ma-
um-
are
ace.
nd

.T.
den-
ing
nce
. In
I. INTRODUCTION

Remote sensing techniques are developed for many
plications in the field of electromagnetic or acoustic wav
Methods with superresolution properties, like MUSIC, ha
been the subject of an intense field of research in the fra
work of passive array processing. However, numerous ap
cations involve the detection and the localization of scat
ers and consequently require array processing adapte
active array, like the D.O.R.T. method described below.
this work we establish the analytical link between D.O.R
and methods developed for the passive detection of sou
that are based on an eigendecomposition of a covariance
trix. This formal demonstration is illustrated by an expe
ment in which subwavelength resolution is obtained.

Active transducer arrays with electronic focusing a
steering capabilities are now commonly used in medical
aging; they have also become available for nondestruc
evaluation and even in underwater acoustics. In the Lab
toire Ondes et Acoustique, a new adaptive detection te
nique, the D.O.R.T. method was implemented to optim
the use of such arrays. The D.O.R.T. method~a French ac-
ronym for ‘‘Décomposition de l’Ope´rateur de Retournemen
Temporel! is an active detection technique that efficien
detects and separates the responses of several scatter
homogeneous or heterogeneous media,1–3 even in the pres-
ence of reverberation.4,5 It was applied to the detection o
flaws in nondestructive testing,6,7 target detection and iden
tification in underwater acoustics, and in electromagnet
as the first stage in the resolution of an inverse problem8

This method is based on the singular value decomp
tion of the matrixK ~v! of the interelement responses of th
array at frequencyv. The processing assumes only linear

a!Electronic mail: claire.prada-julia@espci.fr
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and time shift invariance of the propagation. This decom
sition provides the eigenvector decomposition of the prod
tK* (v)K (v), the so-called time reversal operator. Henc
this processing, like time reversal or phase conjugation
adaptive to phase aberrations induced by heterogeneitie
the medium. It was shown that when the scatterers are s
compared to the wavelength, the number of significant s
gular values is, in general, equal to the number of scatter
Furthermore, for well-resolved scatterers of distinct appar
reflectivities, the associated singular vector is the respons
one scatterer to the array. In fact, Chambers11 has shown
analytically that for a point-like scatterer, there are four s
gular values~three for a 2-D configuration! of which three
are very weak in most configurations. When the scatte
have sizes comparable to or larger than the wavelength, t
is a whole set of singular values and singular vectors ass
ated either with the specular part or with resonances of
scattered wave.12

In the field of source detection, sophisticated array s
nal processing was developed to estimate the number, d
tion, and signal intensity of sources. Among them, the sig
subspace-type techniques were given great attention. S
methods start with an estimate of the data covariance ma
deduced from the impinging wavefront on the receiving
ray. For noncorrelated sources, the decomposition of this
trix into a source space and a noise space provides the n
ber of sources. Then, their directions and strengths
obtained by various estimators applied to the source sp
These processings are employed either in RADAR a
SONAR for the detection and separation of sources.13,14

In a first stage, the connection between the D.O.R
method and classical array processing is established by i
tifying the scatterers with secondary sources and show
that the time reversal operator can be written as a covaria
matrix like the one introduced in passive source detection
235235/9/$19.00 © 2003 Acoustical Society of America
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a second stage, classical estimators in reception
Maximum-Likelihood~ML ! and MUltiple SIgnal Character
ization ~MUSIC!, will be applied in order to evaluate th
resolving power of this active method. The possibility
applying MUSIC processing in reception was shown ind
pendently by Devaney15 and also discussed by Cheney.16

A 2-D experiment with a linear array and two identic
wires ten times thinner than the wavelength will illustrate t
resolution and the precision of the method in the presenc
noise. It will be shown that the method can separate
locate two scatterers positioned less than half a wavele
apart. Furthermore, this will give an experimental eviden
that each target is associated with a 3-D signal space
predicted by Chambers, and will also illustrate how multip
scattering affects the singular values distribution for clo
scatterers.

II. THE D.O.R.T. METHOD

To recall the D.O.R.T. method in a general manner
propagating medium with point-like scatterers is consider
The medium may be heterogeneous with gradual variatio
density and sound speed. An array ofM transmitters and an
array of L receivers are used to detect these scatterers.
suming time shift invariance and linearity, any transm
receive process performed from array #1 ofM transmitters to
array #2 of L receivers, is described by theL3M inter-
element impulse responsesklm(t). The expression ofr l(t),
the signal received on element numberl, is the following:

r l~ t !5 (
m51

M

klm~ t ! ^ em~ t !1bl~ t !, ~1!

whereem(t) is the signal applied to element numberm and
bl(t) is noise. A Fourier transform of Eq.~1! leads to

R~v!5K ~v!E~v!1B~v!, ~2!

whereR(v) is the received vector signal,K ~v! is the trans-
fer matrix from transmit array to receive array,E(v) is the
emitted vector andB(v) a noise vector.

The transfer matrixK ~v! can be measured by transm
ting successively a set ofN independent vectors. The Singu
lar Value Decomposition~SVD! of this complex matrix is

K ~v!5U~v!S~v! tV* ~v!, ~3!

whereS~v! is a real diagonal matrix of singular values,U~v!
andV~v! are unitary matrices.

The physical meaning of this singular value decompo
tion is illuminated through the analysis of the iterative tim
reversal process. This process has been widely describe1–3

for a single array of transmit and receive transducers
generalized to separate arrays4 and the time reversal operato
was defined in a general manner astK* (v)K (v). Once the
matrix K ~v! is measured, the processing is purely numeri
so that the role of the two arrays may be switched. At t
stage, only the reciprocity principle, the time shift inva
ance, and the linearity of the medium are used. The SVD
K ~v! can now be interpreted: the eigenvalues
tK* (v)K (v) are the squares of the singular values ofK ~v!
and its eigenvectors are the columns ofV~v!. In conse-
236 J. Acoust. Soc. Am., Vol. 114, No. 1, July 2003
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quence, the singular vectors ofK ~v! are the invariants of the
iterative time reversal process. These invariants are q
well known for ‘‘Rayleigh’’-type scatterers and single sca
tering. In this case, the transfer matrixK ~v! is the product of
three matrices,H2(v), D(v), and H1(v), respectively,
modeling~1! the propagation from the transmit array towa
the scatterers,~2! the scattering, and~3! the propagation from
the scatterers toward the receive array:

K ~v!5H1~v!D~v!H2~v!. ~4!

From this equation, one can see that the rank of the tran
matrix is less than or equal to the number of scatterers
multiple scattering is negligible thenD~v! is a diagonal ma-
trix. Furthermore, if the scatterers have distinct reflectivit
and are ideally resolved by both transmit and receive arra
then there is a one-to-one correspondence between the
terers and the singular vectors. In other words, each ve
corresponds to the response of one scatterer to the arra

In fact, the assumption of isotropic scattering is on
true for a point-like discontinuity in compressibility. In gen
eral, a scatterer is also associated with a density variation
a recent study11 has shown that four eigenvalues of the tim
reversal operator are associated with each scatterer. H
ever, for hard materials, if the scatterer is much smaller t
a wavelength, then three of the eigenvalues are much sm
than the dominant one. This is why the multiple eigensta
have not been observed in experiments to date.

Following Eq. ~4!, the time reversal operator is now
written as

tK* ~v!K ~v!5 tH2* ~v!D* ~v! tH1* ~v!H1~v!D~v!H2~v!.
~5!

We will see below how this operator can be considered as
estimate of a covariance matrix of the kind introduced
passive source detection.

III. THE COVARIANCE MATRIX AND THE TIME
REVERSAL OPERATOR

Before discussing the analogy between the time reve
operator and the covariance matrix, the construction of
covariant matrix in passive source detection is recalled.

A. The covariance matrix for passive source
detection technique

In usual descriptions of source detection techniques
distribution of unknown sources and an array of receivers
considered.9,10 The problem to be solved is to find the num
ber of sources and their directions.

Let „s1(t),...,sd(t)… be the signals emitted byd un-
known sources, and let„r 1(t),...,r L(t)… be the signals mea
sured on an array ofL receivers. Assuming that the propag
tion is linear and time invariant, the signal measured
receiver numberl can be written as

r l~ t !5(
i

hli ~ t ! ^ si~ t !1b~ t !, ~6!

where, for 1< i<d and 1< l<L, hli (t) is the response from
source numberi to receiver numberl. In the frequency do-
main, Eq.~6! can be written in matrix form as
C. Prada and J.-L. Thomas: Sub-wavelength localization of scatterers
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R~v!5H~v!S~v!1B~v!, ~7!

whereR(v) is the receive vector signal,H~v! is the transfer
matrix from the source onto the array,S(v) is the source
vector, andB(v) the noise vector. IfM realizations of the
receive vector are measured@Rm(v),1<m<M #, an estimate
of the covariance matrix can be obtained by averaging of
corresponding matricesCm(v)5Rm(v) tRm(v)* .

Assuming that the medium and source positions are t
invariant and that the noise is not correlated to the sour
the covariance matrix is expressed from the source cov
ance matrix as

^C~v!&5H~v!^S~v! tS~v!* & tH~v!*

1^B~v! tB~v!* &. ~8!

If the sources are uncorrelated, the matrix^S(v) tS(v)* & is
diagonal. If the elements of the noise vectorB(v) are also
uncorrelated, mean zero and variances, then the noise term
is

^B~v! tB~v!* &5s2I . ~9!

The next stage of spectral methods is to compute an ei
decomposition of the covariance matrix^C~v!&. If the re-
sponses from the sources are orthogonal vectors, then
preceding expression provides the diagonalization of the
variance matrix. The eigenvalues are the following:

l i5^uSi~v!u2&(
l 51

L

uHil ~v!u21s2. ~10!

The eigenvalues are proportional to the average intensit
the sources and the eigenvectors are the vectorsHi , i.e., the
frequency response from the source to the array. Howeve
a general case, the responses from the sources to the
are not orthogonal vectors.

B. Link between the time reversal operator and the
covariance matrix

We now reconsider the measurement of the transfer
trix in a scattering experiment with ‘‘Rayleigh-type’’ scatte
ers. We use the same notations as in Eqs.~4! and ~5!.

Insonifying the medium with a pulse on transducern,
the received vector signal is thenth column of K and is
expressed as

Rn~v!5H1~v!D~v!H2n~v!1Bn~v!, ~11!

whereH2n(v) is thenth column ofH2(v) andBn(v) is the
noise vector.

The vectorD(v)H2n(v) can be considered as one rea
ization of the source vectorS(v) of Eq. ~7!. The measure-
ment of theN columns ofK is analogous toN measurements
of the source signal in passive detection~Sec. III A!. If the
aperture of the array and the number of elements are l
enough, there will be enough diversity in the measureme
to decorrelate these secondary sources.

Though the responses of the scatterersRn(v) are purely
deterministic, they can be used to built a ‘‘pseudocovaria
matrix’’ as follows:
J. Acoust. Soc. Am., Vol. 114, No. 1, July 2003 C. Prad
e

e
s,
ri-

n-

the
o-

of

in
ray

a-

ge
ts

e

C̃~v!5(
n

Rn~v! tRn* ~v!. ~12!

Using the expression ofRn(v) in Eq. ~11!, C̃(v) is
written as

C̃~v!5H1~v!D~v!

3S (
n

H2n~v! tH2n* ~v! DD* ~v! tH1* ~v!

1H1~v!D~v!S (
n

H2n~v! tBn* ~v! D
1S (

n
Bn~v! tH2n* ~v! DD* ~v! tH1* ~v!

1S (
n

Bn~v! tBn* ~v! D . ~13!

If the noise vector is not correlated to the scatterer respon
and if the number of measurements is large enough,
cross-terms vanish. Using Eq.~9! the expression simplifies to

C̃~v!>H1~v!D~v! tH2~v!H2* ~v!D* ~v! tH1* ~v!

1ns2I . ~14!

In the absence of noise (s50), this last expression is ex
actly the time reversal operatorK (v) tK* (v) @see Eq.~5!#. It
can also be compared with Eq.~8!, in which the source co-
variance matrix^S(v) tS(v)* & is replaced by the matrix
(nD(v) tH2n(v)H2n* (v)D* (v)5D(v) tH2(v)H2* (v)D* (v),
where the average is taken over the different emissions
general, when the number of scatterers is less than the n
ber of emitters, the rank of this last matrix is equal to t
number of scatterers.

The next stage consists in computing the eigenval
and eigenvectors of the covariance matrix, which is equi
lent to computing an SVD of the transfer matrixK . This
decomposition is a way of sorting the data from most dom
nant to the weakest contribution.

IV. DETECTION PROCESSING AND SUPER-
RESOLUTION

In order to improve the resolution of the D.O.R.
method, we have tried two estimators developed in class
array processing using the covariance matrix: Maxim
Likelihood ~ML ! and MUSIC. To perform this analysis th
vector signalG(M ) received by the array from a scatter
located at pointM has to be modeled. In our model w
choose the Green’s function for free space.

The Maximum Likelihood estimator looks for th
maxima of the functionI ML(M ):

I ML~M !5
1

tG* ~M !C21G~M !
. ~15!

As the inverse of the covariance matrix may be computed
using the SVD ofC, Eq. ~15! becomes
237a and J.-L. Thomas: Sub-wavelength localization of scatterers
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1
tG* ~M !UL21 tU* G~M !

5
1

(
i 51

L 1

l i
u^Ui uG~M !&u2

, ~16!

whereL5SS is the diagonal matrix composed of the eige
values ofC(v). A great advantage of this method is that
does not require the knowledge of the source space dim
sion.

If the dimension of the signal space,p, is known or can
be estimated from the singular value distribution, then
MUSIC algorithm applies. The estimator is then

I MU~M !5
1

12( i 51
p u^Ui uG~M !&u2

5
1

(
i 5p11

L

u^Ui uG~M !&u2
. ~17!

This function is the inverse of the square of the Euclide
distance from the Green’s vectorG(M ) to the signal space
These two estimators are very similar, but MUSIC giv
more importance to the eigenvector of the noise space.

It appears that these two estimators are nonlinear c
binations of the back-propagation of each singular vec
I v(M )5u^VuG(M )&u, used in our preceding papers.3

In all of these three methods, the choice of the Gree
function is crucial and anya priori knowledge introduced to
improve the model is worth trying.

V. EXPERIMENTAL RESULTS

The experimental results are obtained in a 2-D geom
with a linear transmit and receive array and two point-li
scatterers~Fig. 1!. A single plane linear array of 128 piezo
electric transducers is used for the transmission and the
ception. The array pitch is 0.5 mm and the central freque
is 1.5 MHz with 60% bandwidth. This half-wavelength pitc
allows a very good spatial sampling of the ultrasonic fie

FIG. 1. Experimental setup.
238 J. Acoust. Soc. Am., Vol. 114, No. 1, July 2003
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The height of the piezoelectric transducer is 10 mm. T
received signals are sampled at a frequency of 20 MHz.
scatterers are two copper wires of 0.1 mm diameter, whic
approximately a tenth of a wavelength. The wires are pla
perpendicular to the array at a range of 60 mm. They can
considered as point-like in the plane of insonification. Th
setting and the small size of the scatterers ensure
Rayleigh-like scattering for the whole bandwidth of th
transducers. A translation system was built to vary precis
the distance between the wires. The two wires are stretc
on a rigid frame. The fasteners of one of them are mobile
slides and the distance between the wires is then regul
with block gauges.

A. Acquisition of the array response matrix

The most natural way to acquire the array response
trix is to use the canonical basis, that is to say, to acqu
separately the response of each pair of elements in the a
However, in our experiment the scattered energy is weak
each scatterer is small compared to the wavelength. In o
to improve the signal to noise ratio, the array was driv
using the more energetic Walsh function basis,17 an orthonor-
mal basis in which all the elements are excited in each tra
mission. However, the measured matrix is transformed to
canonical basis before computing its SVD. This proced
allows a significant increase of signal to noise ratio~around
20 dB for an array of 128 elements!. Acquisition of the array
response matrix was done for several wire separation
tancesd ranging from 0.3 to 3.5 mm.

B. Result of the decomposition for well-resolved
scatterers dÄ3.5 mm

In the case of two targets separated by a distance m
greater than the array point spread function, the correspo
ing Green’s functions are almost orthogonal. The SVD of
matrix K provides a decomposition of the received sign
space into a signal subspace of rank 2 and a noise subs
of rank 126. Figure 2 displays the amplitude of the singu
values for all frequencies in the bandwidth of the transd
ers. As the two wires are identical and well resolved, the t

FIG. 2. Singular values versus frequency for a wire separation distand
53.5 mm~arbitrary units!.
C. Prada and J.-L. Thomas: Sub-wavelength localization of scatterers
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highest singular values have almost the same amplitude
locate the two scatterers, one may compute the scalar pro
of the singular vectorsV1 andV2 with the Green’s function
G(M ) for all pointsM in the area of interest. This treatme
is a focusing in receive mode also called back-propagatio
virtual time reversal. This treatment in receive mode p
vides the position of each scatterer~Fig. 3,d and1!. In this
case, each singular vector focuses onto both scatterer
fact, even if the two scatterers are well resolved by the ar
the symmetry of the experiment causes a significant coup
between the scatterers’ responses that has a strong influ
on the singular vectors. In several papers, we have used
back-propagation to make different images with the do
nant singular vectors.1–5

Using the MUSIC estimator, a higher resolution
achieved. The main lobes of the image provided by MUS
is five times thinner than with conventional focusing. Ho
ever, the evaluation of the resolution limit of these metho
can only be achieved by studying less distant scatterers.
will be pursued in Sec. V D.

C. The singular values as a function of the distance
between the scatterers

When the distance between the two wires decrease
zero, the correlation between the two corresponding Gre
functions increases. This coupling modifies the singular v
ues. In the present case of two identical scatterers of re
tivity C in a symmetrical geometry, the first two singul
values can be expressed:

s65CS (
l 51

N

uH1l u26(
l 51

N

H1lH2l* D . ~18!

We see that if the two scatterers are very close,H1'H2

5H andH12H25dH, and Eq.~18! can be approximated b

s152CiHi2 and s252C^HudH&.

FIG. 3. Wires spaced 3.5 mm, image obtained by back-propagation o
two main eigenvectors~V1 and V2!, compared to the image obtained b
MUSIC at frequency 1.52 MHz.
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When the scatterers get closer,s1 converges to twice the
apparent reflectivity of the scatterers, whiles2 converges
toward 0.

A simple model using exp(jkr)/Ar as a surrogate for the
2-D free space Green’s function, and the assumption that
transducers are point-like was used to calculate the theo
cal singular values of the array response matrix. These th
retical values are compared to the experimental ones
Fig. 4.

The third experimental singular value shows the no
level. It appears to be independent of the distances betw
the wires. We see that when the distance between the w
reaches 0.4 mm~or 0.4 wavelengths! the second singula
value reaches the noise singular values. Looking only at
singular values, one may conclude that wires closer than
a wavelength cannot be distinguished. However, as will
shown later, higher resolution can be achieved through
propriate processing in reception.

Furthermore, for distances between the wires sma
than the wavelength, there is some discrepancy between
theoretical and experimental singular values. Introduc
multiple scattering in the simulation, a similar effect is o
served on the first singular value~Fig. 5!. It is interesting to
note that multiple scattering does not change the numbe
significant singular values. Though multiple scattering
duces a global phase shift and global amplitude factor on
wave front emerging from the two wires, the wave impingi
on array elements is still a linear combination of these t

he

FIG. 4. Experimental~triangle! three main singular values versus the wi
separation distance compared with a model~solid line with full circle!; ~a!
frequency 1.05 MHz and~b! frequency 1.56 MHz.
239a and J.-L. Thomas: Sub-wavelength localization of scatterers
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FIG. 5. Three main singular values versus the wire separation dist
compared with a model, taking into account multiple scattering at freque
1.56 MHz. Experiment: square symbol, simple model: solid line with sta
model taking into account multiple scattering: solid line with dots.
240 J. Acoust. Soc. Am., Vol. 114, No. 1, July 2003
wave fronts, consequently, the rank of the matrixK is un-
changed.

D. Detection and localization for subwavelength
separation

The following experimental results demonstrate the
per resolution property of the Maximum Likelihood an
MUSIC methods in the case of active array and scatter
The analysis is performed for frequencies between 0.8

ce
y
,

FIG. 6. Image obtained with the MUSIC criterion assuming a signal sp
of dimension 2~left! and of dimension 6~right!.
, and
FIG. 7. Estimated lateral coordinates for the Maximum Likelihood~ML ! and for the MUSIC algorithm assuming the signal space has dimension 2, 4, 6
8 ~2, 4, 6, and 8 eV!. From top to bottom the distances between the wires are 0.3, 0.4, 0.5, and 0.7 mm.
C. Prada and J.-L. Thomas: Sub-wavelength localization of scatterers
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2.4 MHz ~l ranging from 0.6 to 1.9 mm! and for wire axis
separation distancesd50.3, 0.4, 0.5, and 0.7 mm.

The first example examines the case ofd50.5 mm. The
MUSIC estimator is computed in a small area around
location of the wires at frequency 1.34 MHz and assumin
signal subspace of dimension 2, Fig. 6 left. The image p
sents two maxima located around 58 mm in range and s
rated by a distance of around 0.6 mm. The criterion is th
computed using the six dominant singular vectors, Fig
right. A significant resolution gain can be observed. This
sult suggests that the signal subspace has a dimension h
than 2, as predicted by Chambers;11 more evidence of this is
presented later.

To get better estimates of the resolution limit of the M
SIC and ML methods, this processing was repeated for
frequencies and for the four wire separation distances.
thermore, the MUSIC criterion was computed for a sign
subspace of dimension 2, 4, 6, or 8. Figure 7 presents
lateral positions of the maxima for each estimator. This l
figure illustrates the super-resolution property of these m
ods. The best results are obtained with MUSIC for a sig
subspace of dimension 6. The resolution frequency thres
is 1.5, 1.1, 1, and 0.9 MHz for expected distances betw
the wires of 0.3, 0.4, 0.5, and 0.7 mm, respectively. As
pected, MUSIC and ML provide much better resolution th
classical focusing, for which the point spread function of t
array is 1 mm at 1.5 MHz. Furthermore, the resolution lim
computed as the ratio between the wavelength and the
separation distance is, respectively, 3.3, 3.4, 3 and 2.4.
d50.5 mm andd50.7 mm, this resolution threshold is lim
ited primarily by the bandwidth of the transducer. Indeed,
sensitivity below 1 MHz is very weak so that the differen
between the second singular value and the noise sing
values is small~Fig. 2!. For d50.3 mm andd50.4 mm, the
separation occurs when the two wires are separated by
than l/3. This result is remarkable, as the array is loca
about 60 wavelengths from the scatterers, where evanes
waves are negligible.

The sharpening of the criterion shown in Fig. 6 and t
fact that the best resolution is reached with a signal subsp
of dimension 6~Fig. 7!, indicate that each scatterer is ass
ciated with a 3-D signal space, as predicted by Chambers11 in
a 2-D configuration. These three dimensions come from
fact that, in general, the incident field is scattered by hete
genities in both density and compressibility. Heterogeneity
compressibility gives rise to monopolar radiation that lea
to a lone isotropic singular vector. In contrast, heterogen

FIG. 8. Image obtained with MUSIC criterion for a signal space of dim
sion 2 ~left! and of dimension 6~right!.
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of density gives rise to dipolar radiation. This nonisotrop
behavior is responsible for additional singular vectors. T
is the first experimental evidence of the existence of th
additional singular values.

E. Improvement of the accuracy by correction of the
transfer matrix

One important drawback of these two super-resolut
methods is the loss of accuracy in the estimated location
the scatterers when the wavelength increases, i.e., the c
lation between the responses of the two scatterers increa
This deterioration of the performance is partly accounted
by increased sensitivity to the discrepancies between the
response of each scatterer and the model used. Previo
the array elements were assumed point-like and identi
The model has two main imperfections: first, the sensitiv
varies from one element to the other; second, the finite s
of the array elements leads to averaging of the incident fi
and induces amplitude and phase modulation that vary w
both the frequency and direction of scattering In the follo
ing an empirical correction is applied on the experimen
measurements to take into account these array imperfect
As a correction we use the first eigenvectorV of the matrix

-

FIG. 9. Distance from the wires to the array~top: no correction; bottom:
corrected matrix!.
241a and J.-L. Thomas: Sub-wavelength localization of scatterers



ion
FIG. 10. Estimated coordinate for the corrected matrix using maximum likelihood~ML ! and the MUSIC algorithm, assuming the signal space is dimens
2, 4, 6, and 8~2, 4, 6, and 8 eV!. From top to bottom the distances between the wires are 0.3, 0.4, 0.5, and 0.7 mm.
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measured for a single wire. The error between this eigenv
tor and the estimated responseVe is used to compensat
each column of the array response matrixK(v). More pre-
cisely, we replaceKi j (v) by Ki j (v)/Vi(v)* Vei(v), for all
pairs i,j . The SVD of the corrected matrix is performed an
as was done to the original matrix, the MUSIC estimator
calculated for signal spaces of dimensions 2 and 6~Fig. 8!.
The level of the peak is 7 times higher than before correc
~Fig. 6! and the resolution of the image is much better. T
improvement is also significant for range localization, as c
be seen in Fig. 9. The estimated range is 58.6 mm wit
fluctuation of60.15 mm within the whole bandwidth. With
out correction, the amplitude fluctuation was larger by
least a factor of 3. Similarly, fluctuations in lateral positio
are decreased significantly, and now vary by60.025 mm
around the mean position~Fig. 10!. This is a quarter of the
wire diameter.

Our correction, however, decreases the resolution po
The two wires 0.3 mm away are no longer resolved and
resolution threshold is, respectively, 1.4, 1.1, and 0.9 M
for expected distances between the wires of 0.4, 0.5, and
242 J. Acoust. Soc. Am., Vol. 114, No. 1, July 2003
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mm, respectively. The ratio of wavelength to wire separat
is, respectively, 2.7, 2.7, and 2.4. Again the bandwidth is
limiting factor at 0.9 MHz. The experimental Green’s fun
tion, used to correct our model is necessarily noisy. T
produces noise in our empirical model and we believe
responsible for this loss of resolution.

VI. CONCLUSION

In this paper we establish the analogy between the t
reversal operator and the pseudocovariance matrix use
high resolution subspace techniques for source detection
localization with passive sensor arrays. As a conseque
the D.O.R.T. method appears as a generalization to ac
arrays of classical source separation processing.
D.O.R.T. processing starts with the successive transmis
of N independent signals resulting inN backscattered wave
fronts from which the ‘‘pseudocovariance matrix’’ is con
structed. The decorrelation of the scatterers’ responses is
tained thanks to the spatial diversity of emissions achie
by the array.
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An experiment conducted with a linear array of 128 a
tennas and 2 thin wires illustrates the resolution power of
technique in the farfield. Two estimators were used to de
mine the position of the wires: the MUSIC and the Max
mum Likelihood estimators. Both methods provide reso
tion much finer than the point spread function, and the b
resolution was achieved with the MUSIC algorithm assu
ing a signal space of dimension 6. The found resolution li
is l/3, which is three times smaller than the point spre
function ~herel! and beyond the classical diffraction lim
l/2. For such small distances multiple scattering becom
significant, and we observed that although this phenome
modifies the eigenvalues distribution, it does not affect
localization process.

The D.O.R.T. method as the time reversal process
robust in heterogeneous media. However, when the aco
properties of the medium are not constant, any estimato
reception like MUSIC or ML requires an accurate model
the medium. This new method has many potential appl
tions in ultrasonic imaging such as, for example, the de
tion and localization of flaws in nondestructive evaluati
and the detection of mines in underwater acoustics.
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