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The D.O.R.T. methodFrench acronym for Decomposition of the Time Reversal Opeéragoan

active remote sensing technique using arrays of antennas for the detection and localization of
scatterer§Pradaet al., J. Acoust. Soc. Am99, 2067—-20761996 ]. The analogy between the time
reversal operator and the covariance matrix used for classical sources separation in passive remote
sensing[Bienvenu et al, IEEE Trans. ASSP31, 1235-1247(1983] is established. Then, an
experiment of subwavelength detection and localization of point-like scatterers with a linear array
of transducers is presented. Using classical estimators in reception like Maximum-Likelihood and
Multiple Signal CharacterizatiotMUSIC), two point-like scatterers separated X3 and placed at

100\ from the array of transducers are resolved. In these experiments, the role of multiple scattering
and the existence of additional eigenvectors associated with dipolar and monopolar radiation of each
scatterer is discussed. @003 Acoustical Society of AmericdDOI: 10.1121/1.1568759

PACS numbers: 43.60.Pt, 43.28.We, 43.20.F@B]|

I. INTRODUCTION and time shift invariance of the propagation. This decompo-
) _ sition provides the eigenvector decomposition of the product
_ Remote sensing techniques are developed for many apg * ()K (), the so-called time reversal operator. Hence,
plications in the field of elgctromagne_nc or acoustic wavesihis processing, like time reversal or phase conjugation, is
Methods with superresolution properties, like MUSIC, haveagaptive to phase aberrations induced by heterogeneities in
been the subject of an intense field of research in the framgne medium. It was shown that when the scatterers are small
work of passive array processing. However, numerous applisgompared to the wavelength, the number of significant sin-
cations involve the detection and the localization of scatterg, ,iar values is. in general, equal to the number of scatterers.
ers and consequently require array processing adapted [ rthermore, for well-resolved scatterers of distinct apparent
active array, like the D.O.R.T. method described below. INefectivities, the associated singular vector is the response of
this work we establish the analytical link between D.O.R.T.qna scatterer to the array. In fact, Chambetss shown
and methods developed for the passive detection of SOUICeg 5 ytically that for a point-like scatterer, there are four sin-
that are based on an eigendecomposition of a covariance Mgy |4y values(three for a 2-D configurationof which three
trix. This formal demonstration is illustrated by an experi- 5re very weak in most configurations. When the scatterers
ment in which subwavelength resolution is obtained. have sizes comparable to or larger than the wavelength, there
Active transducer arrays with electronic focusing andis 5 \yhole set of singular values and singular vectors associ-
stgerlng capabilities are now commo_nly used in medical Mated either with the specular part or with resonances of the
aging; they have also become available for nondestructive.4itered wave?
evaluation and even in underwater acoustics. In the Labora- | the field of source detection sophisticated array sig-

toire Ondes et Acoustique, a new adaptive detection teClyjy| processing was developed to estimate the number, direc-
nique, the D.O.R.T. method was implemented to Optimiz&;,, and signal intensity of sources. Among them, the signal
the use Of“S”,Ch arrays. The DORT. methiadFrench ac- g hspace-type techniques were given great attention. Such
ronym for “Decomposition de 'Opeateur de Retournement ,o44s start with an estimate of the data covariance matrix
Tempore) is an active detection technique that efficiently deduced from the impinging wavefront on the receiving ar-
detects and separates the responsg%of several scatterersJ For noncorrelated sources, the decomposition of this ma-
homogeneous or h.eteSrogeneous mediggven in the pres- iy intg a source space and a noise space provides the num-
ence of reverberatp‘h. It was applied to the detection of por of sources. Then, their directions and strengths are
flaws in nondestructive testlr?d:target detection and iden-  opiained by various estimators applied to the source space.
tification in underwater acoustics, and in electromagnetisiyage processings are employed either in RADAR and
as the first stage in the resolution of an inverse profiem. SONAR for the detection and separation of souréés.

This method is based on the singular value decomposi- |, 5 first stage, the connection between the D.O.R.T.
tion of the matrixK (w) of the interelement responses of the a0 and classical array processing is established by iden-
array at frequency. The processing assumes only linearity i ing the scatterers with secondary sources and showing
that the time reversal operator can be written as a covariance
3Electronic mail: claire.prada-julia@espci.fr matrix like the one introduced in passive source detection. In
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a second stage, classical estimators in reception likguence, the singular vectors Kfw) are the invariants of the
Maximum-Likelihood(ML) and MUItiple Slignal Character- iterative time reversal process. These invariants are quite
ization (MUSIC), will be applied in order to evaluate the well known for “Rayleigh”-type scatterers and single scat-
resolving power of this active method. The possibility of tering. In this case, the transfer matkXw) is the product of
applying MUSIC processing in reception was shown inde-three matrices,H,(»), D(w), and H;(w), respectively,
pendently by Devanéy and also discussed by Cherféy. modeling(1) the propagation from the transmit array toward
A 2-D experiment with a linear array and two identical the scattererg?) the scattering, an(8) the propagation from
wires ten times thinner than the wavelength will illustrate thethe scatterers toward the receive array:
resolution and the precision of the method in the presence of .
noise. It will be shown that the method can separate and K(w)=Hy(w)D(w)Hz(w). @
locate two scatterers positioned less than half a wavelengthrom this equation, one can see that the rank of the transfer
apart. Furthermore, this will give an experimental evidencematrix is less than or equal to the number of scatterers. If
that each target is associated with a 3-D signal space, asultiple scattering is negligible thed(w) is a diagonal ma-
predicted by Chambers, and will also illustrate how multipletrix. Furthermore, if the scatterers have distinct reflectivities
scattering affects the singular values distribution for closeand are ideally resolved by both transmit and receive arrays,
scatterers. then there is a one-to-one correspondence between the scat-
terers and the singular vectors. In other words, each vector
corresponds to the response of one scatterer to the array.
l. THE D.O.R.T. METHOD In fact, the assumption of isotropic scattering is only

To recall the D.O.R.T. method in a general manner, drue for a point-like discontinuity in compressibility. In gen-
propagating medium with point-like scatterers is considerederal, a scatterer is also associated with a density variation and
The medium may be heterogeneous with gradual variation o recent study has shown that four eigenvalues of the time
density and sound speed. An arrayMftransmitters and an 'eversal operator are associated with each scatterer. How-
array ofL receivers are used to detect these scatterers. A§Ver, for hard materials, if the scatterer is much smaller than
suming time shift invariance and linearity, any transmit—2 wavelength, then three of the eigenvalues are much smaller
receive process performed from array #Mbfransmitters to ~ than the dominant one. This is why the multiple eigenstates
array #2 ofL receivers, is described by tHexM inter- ~ have not been observed in experiments to date.

element impulse responskg,(t). The expression of,(t), _ Following Egq. (4), the time reversal operator is now
the signal received on element numbgis the following: written as
M *K* (@)K (w)="H3 (0)D* (0)'H] (0)Hi(0)D(w)Hy(w).
r,(t)=mE:1 Kim(t) ®em(t) +by (1), (1) (5)

We will see below how this operator can be considered as an

wheree,(t) is the signal applied to element numberand  estimate of a covariance matrix of the kind introduced in
b(t) is noise. A Fourier transform of Eql) leads to passive source detection.

R(w)=K(w)E(w)+B(w), 2
. . . . Ill. THE COVARIANCE MATRIX AND THE TIME
whereR(w) is the received vector signd(w) is the trans- REVERSAL OPERATOR

fer matrix from transmit array to receive arrdy{w) is the

emitted vector and®(w) a noise vector. Before discussing the analogy between the time reversal
The transfer matriX (w) can be measured by transmit- operator and the covariance matrix, the construction of the

ting successively a set ®f independent vectors. The Singu- covariant matrix in passive source detection is recalled.

lar Value DecompositioiiSVD) of this complex matrix is A. The covariance matrix for passive source

K(w)=U(0)3(0)V* (o), 3 detection technique
where3,(w) is a real diagonal matrix of singular valué$(w) In usual descriptions of source detection techniques, a
andV(w) are unitary matrices. distribution of unknown sources and an array of receivers are

The physica| meaning of this Singu]ar value decomposi_conSidere(?.'lo The prOblem to be solved is to find the num-
tion is illuminated through the analysis of the iterative time ber of sources and their directions.
reversal process. This process has been widely destribed ~ Let (Si(t),....sq(t)) be the signals emitted by un-
for a single array of transmit and receive transducers angnown sources, and lét;(t),...,r (t)) be the signals mea-
generalized to separate arragsd the time reversal operator sured on an array df receivers. Assuming that the propaga-
was defined in a general manner'# (w)K (w). Once the tion is linear and time invariant, the signal measured on
matrix K (w) is measured, the processing is purely numericaleceiver numbet can be written as
so that the role of the two arrays may be switched. At this
stage, only the reciprocity principle, the time shift invari- n(H)=2 hy(t)@si(t)+b(t), (6)
ance, and the linearity of the medium are used. The SVD of '
K(w) can now be interpreted: the eigenvalues ofwhere, for Ixi<d and I<I<L, hj(t) is the response from
'K* (w)K (w) are the squares of the singular valuesKdtv) source number to receiver numbel. In the frequency do-
and its eigenvectors are the columns Wfw). In conse- main, Eq.(6) can be written in matrix form as
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RleI=h@)Se) T Ble) D =3 R(@R (). 12
whereR(w) is the receive vector signdf(w) is the transfer .
matrix from the source onto the arra$(w) is the source
vector, andB(w) the noise vector. 1M realizations of the
receive vector are measurgd,,(w),1=m=<M], an estimate
of the covariance matrix can be obtained by averaging of the  C(w)=H;(w)D(w)
corresponding matrice8,(®) = Rpy(®)'Rp(w)*.

Assuming that the medium and source positions are time %
invariant and that the noise is not correlated to the sources,
the covariance matrix is expressed from the source covari-

Using the expression oR,(w) in Eq. (11), C(w) is
written as

; H2n<w>‘H§n<w>)D*(w)tHi‘(w)

ance matrix as +Hl<w>D<w>(Z H2n<w)tB:<w>)
n
(C(w))=H(w)(S(w) 'S(w)*) H(w)*
+(B(w) 'B(w)*). 8 + ; Bn(w)tHin(w)>D*(w)‘HI(w)
If the sources are uncorrelated, the mati® o) 'S(w)*) is
diagonal. If the elements of the noise vecRlfw) are also +( X Bn(w)tBﬁ(w))- (13
uncorrelated, mean zero and variamgehen the noise term "
is If the noise vector is not correlated to the scatterer responses,
and if the number of measurements is large enough, the
(B(w) 'B(w)*)=0?I. ) ' p N S orge Nt

cross-terms vanish. Using E@®) the expression simplifies to

The next stage of spectral methods is to compute an eigen-

~ ~ t * * ty*
decomposition of the covariance matf€(w)). If the re- Clw)=Hy(w)D(@) Ha(@)H; (0)D* (w) Hy (@)

sponses from the sources are orthogonal vectors, then the +no?l. (14
preceding expression provides the diagonalization of the co- i ] o
variance matrix. The eigenvalues are the following: In the absence of noisert=0), this last expression is ex-

actly the time reversal operatii( »)'K* () [see Eq(5)]. It
L can also be compared with E@), in which the source co-
Ni=(IS(@)%) 2 [Hi(w)|?+ 02 (100 variance matrix(S(w)'S(w)*) is replaced by the matrix
- 2 1D(®) Han(@)H3p(0) D* (@) = D(@) Ha(w) H3 (@) D* (),
The eigenvalues are proportional to the average intensity ovhere the average is taken over the different emissions. In
the sources and the eigenvectors are the Veﬂprs'_e_’ the genel’al, when the number of scatterers is less than the num-
frequency response from the source to the array. However, iger of emitters, the rank of this last matrix is equal to the

a general case, the responses from the sources to the arr@ymber of scatterers. _ .
are not orthogonal vectors. The next stage consists in computing the eigenvalues

and eigenvectors of the covariance matrix, which is equiva-
lent to computing an SVD of the transfer matt& This
decomposition is a way of sorting the data from most domi-
We now reconsider the measurement of the transfer masant to the weakest contribution.
trix in a scattering experiment with “Rayleigh-type” scatter-
ers. We use the same notations as in Edsand (5).
Insonifying the medium with a pulse on transdueer |, HeecTION PROCESSING AND SUPER-
the received vector signal is theth column ofK and is  resoLUTION
expressed as

B. Link between the time reversal operator and the
covariance matrix

In order to improve the resolution of the D.O.R.T.
method, we have tried two estimators developed in classical
array processing using the covariance matrix: Maximum
Likelihood (ML) and MUSIC. To perform this analysis the

| vector signalG(M) received by the array from a scatterer
located at pointM has to be modeled. In our model we
choose the Green'’s function for free space.

The Maximum Likelihood estimator looks for the

Ry(w)=H;(w)D(w)Hyn(w)+By(w), (11

whereH,, () is thenth column ofH,(w) andB,(w) is the
noise vector.

The vectorD(w)H,,(w) can be considered as one rea
ization of the source vectd®(w) of Eq. (7). The measure-
ment of theN columns ofK is analogous ttN measurements
of the source signal in passive detecti@ec. Il A). If the ) )
aperture of the array and the number of elements are larg@@Xima of the functiorty, (M):
enough, there will be enough diversity in the measurements 1
to decorrelate these secondary sources. I (M) = GF(M)C 1G(M)"

Though the responses of the scatteRRy&w) are purely
deterministic, they can be used to built a “pseudocovariancé\s the inverse of the covariance matrix may be computed by
matrix” as follows: using the SVD ofC, Eq. (15 becomes

(15
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FIG. 1. Experimental setup.

frequency (MHz)

. 1 FIG. 2. Singular values versus frequency for a wire separation disthnce
- tG* (M)UA~ Lty G(M) =3.5 mm(arbitrary unit$.
The height of the piezoelectric transducer is 10 mm. The
_ 1 (16) received signals are sampled at a frequency of 20 MHz. The
L ’ scatterers are two copper wires of 0.1 mm diameter, which is
> —l(UlG(M)? approximately a tenth of a wavelength. The wires are placed
i=1 )\i .
perpendicular to the array at a range of 60 mm. They can be
whereA =33, is the diagonal matrix composed of the eigen-considered as point-like in the plane of insonification. This
values ofC(w). A great advantage of this method is that it setting and the small size of the scatterers ensures a
does not require the knowledge of the source space dimeiRayleigh-like scattering for the whole bandwidth of the
sion. transducers. A translation system was built to vary precisely
If the dimension of the signal spagg,is known or can the distance between the wires. The two wires are stretched
be estimated from the singular value distribution, then theon a rigid frame. The fasteners of one of them are mobile on

Im (M)

MUSIC algorithm applies. The estimator is then slides and the distance between the wires is then regulated
1 with block gauges.
Imu(M) = A. Acquisition of the array response matrix
1=, [(U|G(M))[? K y response
The most natural way to acquire the array response ma-
1 trix is to use the canonical basis, that is to say, to acquire
-0 : (17 ; ,
separately the response of each pair of elements in the array.
> {UIG(M))[2 However, in our experiment the scattered energy is weak as
i=p+1 each scatterer is small compared to the wavelength. In order

This function is the inverse of the square of the EuclidearfO improve the signal to noise ratio, the array was driven
distance from the Green’s vect@&(M) to the signal space. USINg the more energetic Walsh function ba$ian orthonor-
These two estimators are very similar, but MUSIC givesma| basis in which all the elements are excited in each trans-
more importance to the eigenvector of the noise space. mission. However, the measured matrix is transformed to the

It appears that these two estimators are nonlinear conf:@nonical basis before computing its SVD. This procedure
binations of the back-propagation of each singular vectordllows a significant increase of signal to noise raticound
1,(M)=|(V|G(M))|, used in our preceding papérs. 20 dB for an array of 128 element#\cquisition of the array

In all of these three methods, the choice of the Green'$€Sponse matrix was done for several wire separation dis-
function is crucial and ang priori knowledge introduced to tancesd ranging from 0.3 to 3.5 mm.

improve the model is worth trying. B. Result of the decomposition for well-resolved

scatterers d=3.5 mm

V. EXPERIMENTAL RESULT .
SULTS In the case of two targets separated by a distance much

The experimental results are obtained in a 2-D geometrgreater than the array point spread function, the correspond-
with a linear transmit and receive array and two point-likeing Green’s functions are almost orthogonal. The SVD of the
scatterergFig. 1. A single plane linear array of 128 piezo- matrix K provides a decomposition of the received signal
electric transducers is used for the transmission and the rgpace into a signal subspace of rank 2 and a noise subspace
ception. The array pitch is 0.5 mm and the central frequencyf rank 126. Figure 2 displays the amplitude of the singular
is 1.5 MHz with 60% bandwidth. This half-wavelength pitch values for all frequencies in the bandwidth of the transduc-
allows a very good spatial sampling of the ultrasonic field.ers. As the two wires are identical and well resolved, the two

238  J. Acoust. Soc. Am., Vol. 114, No. 1, July 2003 C. Prada and J.-L. Thomas: Sub-wavelength localization of scatterers



singular values (frequency 1.05 MHz)
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FIG. 3. Wires spaced 3.5 mm, image obtained by back-propagation of the 1 51
two main eigenvector$V1l and V2, compared to the image obtained by

MUSIC at frequency 1.52 MHz.
1 L

highest singular values have almost the same amplitude. Ttos}
locate the two scatterers, one may compute the scalar produr

of the singular vector¥; andV, with the Green'’s function o XYY Y. X % Y Y
G(M) for all pointsM in the area of interest. This treatment 05 o115 2 25 3 35
distance between the wires (mm)

is a focusing in receive mode also called back-propagation or
virtual time reversal. This treatment in receive mode pro-FIG. 4. Experimentaltriangle) three main singular values versus the wire
vides the position of each scattef&ig. 3, ® and+). In this separation distance compared with a ma@elid line with full circle); (a)
case, each singular vector focuses onto both scatterers. figauency 1.05 MHz antb) frequency 1.56 MHz.

fact, even if the two scatterers are well resolved by the array,

the symmetry of the experiment causes a significant couplin .
between the scatterers’ responses that has a strong influen%@en the scatterers get closer, converges to twice the
on the singular vectors. In several papers, we have used thiPParent reflectivity of the scatterers, whie converges

back-propagation to make different images with the domifoward 0.
nant singular vectors:® A simple model using exKr)/\r as a surrogate for the
Using the MUSIC estimator, a h|gher resolution is 2-D free space Green'’s function, and the assumption that the
achieved. The main lobes of the image provided by MUSICtransducers are point-like was used to calculate the theoreti-
is five times thinner than with conventional focusing. How- cal singular values of the array response matrix. These theo-
ever, the evaluation of the resolution limit of these methodgetical values are compared to the experimental ones in
can only be achieved by studying less distant scatterers. Thisg. 4.
will be pursued in Sec. VD. The third experimental singular value shows the noise
level. It appears to be independent of the distances between
the wires. We see that when the distance between the wires
C. The singular values as a function of the distance reaches 0.4 mnfor 0.4 wavelengthsthe second singular
between the scatterers value reaches the noise singular values. Looking only at the
. . singular values, one may conclude that wires closer than half
When the distance between the two wires decreases {0 o .
. . a wavelength cannot be distinguished. However, as will be
zero, the correlation between the two corresponding Green S later. high luti b hieved th h ao-
functions increases. This coupling modifies the singular va/>"oWn fater, igher resolution can be achieve rough ap
ues. In the present case of two identical scatterers of reﬂe(p_roprlate processing in reception.

tivity C in a symmetrical geometry, the first two singular Furthermore, for dlstan.ces betwgen the wires smaller
values can be expressed: than the wavelength, there is some discrepancy between the

theoretical and experimental singular values. Introducing
N N multiple scattering in the simulation, a similar effect is ob-
s.=C| > |Hyl?= > HyH% . (18)  served on the first singular valgEig. 5). It is interesting to
I=1 I=1 . .
note that multiple scattering does not change the number of
We see that if the two scatterers are very clade~H, significant singular values. Though multiple scattering in-

=H andH,—H,=dH, and Eq(18) can be approximated by duces a global phase shift and global amplitude factor on the
wave front emerging from the two wires, the wave impinging

s, =2C||H||? and s_=2C(H|dH). on array elements is still a linear combination of these two
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singular values (frequency 1.5625 MHz) source space dimension = 2 source space dimension = 6
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FIG. 6. Image obtained with the MUSIC criterion assuming a signal space
of dimension 2(left) and of dimension &right).

wave fronts, consequently, the rank of the matfixis un-
changed.

D. Detection and localization for subwavelength

0 0.5 1 1.5 2 2.5 3 3.5 Separation
distance between the wires (mm) . )
The following experimental results demonstrate the su-

FIG. 5. Three main singular values versus the wire separation distancBer resolution property of the Maximum Likelihood and

compared with a model, taking into account multiple scattering at frequenc . .
1.56 MHz. Experiment: square symbol, simple model: solid line with stars?fvlusIC methods in the case of active array and scatterers.

model taking into account multiple scattering: solid line with dots. The analysis is performed for frequencies between 0.8 and

(a) distance between the wires 0.3 mm (C) distance between the wires 0.5 mm

T T T T

T T T

061
-161

o
'S

Distance to the array axis (mm)
Distance to the array axis (mm)
o
[N

-2
211 -0.2
2.2, . . . . 0.4b . . . . . . . 4
08 1 1.2 14 16 1.8 2 2.2 08 1 1.2 14 16 1.8 2 22
Freguency (MHz) Frequency (MHz)
(b) distance between the wires 0.4 mm (@ distance between the wires 0.7

Distance to the array axis (mm)
Distance to the array axis (mm)

08 1 1.2 14 16 1.8 2 22 0.8 1 1.2 14 1.6 18 2 22
Frequency (MHz) Frequency (MHz)

FIG. 7. Estimated lateral coordinates for the Maximum Likelihé®il ) and for the MUSIC algorithm assuming the signal space has dimension 2, 4, 6, and
8 (2, 4, 6, and 8 ey From top to bottom the distances between the wires are 0.3, 0.4, 0.5, and 0.7 mm.
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source space dimension = 2

source space dimension = 6 distance between the wires 0.5 mm
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FIG. 8. Image obtained with MUSIC criterion for a signal space of dimen- §
sion 2(left) and of dimension &right). é sal
la}

2.4 MHz (\ ranging from 0.6 to 1.9 minand for wire axis
separation distances=0.3, 0.4, 0.5, and 0.7 mm.

The first example examines the casedlef0.5 mm. The 57.5L,
MUSIC estimator is computed in a small area around the :
location of the wires at frequency 1.34 MHz and assuming a
signal subspace of dimension 2, Fig. 6 left. The image pre-
sents two maxima located around 58 mm in range and sepe
rated by a distance of around 0.6 mm. The criterion is then 586
computed using the six dominant singular vectors, Fig. 6'558.5, .
right. A significant resolution gain can be observed. This re-&
sult suggests that the signal subspace has a dimension high®
than 2, as predicted by Chambétsnore evidence of thisis T
presented later.

To get better estimates of the resolution limit of the MU-
SIC and ML methods, this processing was repeated for alf2 58.1
frequencies and for the four wire separation distances. Fur g
thermore, the MUSIC criterion was computed for a signal
subspace of dimension 2, 4, 6, or 8. Figure 7 presents the
lateral positions of the maxima for each estimator. This last s7.s : . : : ' : ‘
figure illustrates the super-resolution property of these meth- 08 ! 12 14 s 8 2 22
ods. The best results are obtained with MUSIC for a signakIG. 9. Distance from the wires to the arrépp: no correction; bottom:
subspace of dimension 6. The resolution frequency thresholeprrected matrix
is 1.5, 1.1, 1, and 0.9 MHz for expected distances between
the wires of 0.3, 0.4, 0.5, and 0.7 mm, respectively. As exof density gives rise to dipolar radiation. This nonisotropic
pected, MUSIC and ML provide much better resolution thanbehavior is responsible for additional singular vectors. This
classical focusing, for which the point spread function of theis the first experimental evidence of the existence of these
array is 1 mm at 1.5 MHz. Furthermore, the resolution limitadditional singular values.
computed as the ratio between the wavelength and the wire
separation distance is, respectively, 3.3, 3.4, 3 and 2.4. For .
d=0.5 mm andd=0.7 mm, this resolution threshold is lim- E. Improvemgnt of the accuracy by correction of the
ited primarily by the bandwidth of the transducer. Indeed, thetransfer matrix
sensitivity below 1 MHz is very weak so that the difference One important drawback of these two super-resolution
between the second singular value and the noise singulanethods is the loss of accuracy in the estimated location of
values is smal(Fig. 2). Ford=0.3 mm andd=0.4 mm, the the scatterers when the wavelength increases, i.e., the corre-
separation occurs when the two wires are separated by letation between the responses of the two scatterers increases.
than \/3. This result is remarkable, as the array is locatedThis deterioration of the performance is partly accounted for
about 60 wavelengths from the scatterers, where evanescdny increased sensitivity to the discrepancies between the true
waves are negligible. response of each scatterer and the model used. Previously,

The sharpening of the criterion shown in Fig. 6 and thethe array elements were assumed point-like and identical.
fact that the best resolution is reached with a signal subspacghe model has two main imperfections: first, the sensitivity
of dimension 6(Fig. 7), indicate that each scatterer is asso-varies from one element to the other; second, the finite size
ciated with a 3-D signal space, as predicted by Chambiers  of the array elements leads to averaging of the incident field
a 2-D configuration. These three dimensions come from thand induces amplitude and phase modulation that vary with
fact that, in general, the incident field is scattered by heteroboth the frequency and direction of scattering In the follow-
genities in both density and compressibility. Heterogeneity inng an empirical correction is applied on the experimental
compressibility gives rise to monopolar radiation that leadsneasurements to take into account these array imperfections.
to a lone isotropic singular vector. In contrast, heterogeneityAs a correction we use the first eigenvectoof the matrix
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FIG. 10. Estimated coordinate for the corrected matrix using maximum likelikilad and the MUSIC algorithm, assuming the signal space is dimension
2,4, 6,and 82, 4, 6, and 8 eY. From top to bottom the distances between the wires are 0.3, 0.4, 0.5, and 0.7 mm.

measured for a single wire. The error between this eigenveanm, respectively. The ratio of wavelength to wire separation
tor and the estimated respon¥e is used to compensate is, respectively, 2.7, 2.7, and 2.4. Again the bandwidth is the
each column of the array response malifw). More pre-  limiting factor at 0.9 MHz. The experimental Green’s func-
cisely, we replac;;(w) by Kjj(w)/Vi(w)*Ve(w), for all tion, used to correct our model is necessarily noisy. This
pairsi,j. The SVD of the corrected matrix is performed and, produces noise in our empirical model and we believe is
as was done to the original matrix, the MUSIC estimator isresponsible for this loss of resolution.
calculated for signal spaces of dimensions 2 ar(&i§. 8).
The level of the peak |s_7 times hlgher thgn before correctloQ/I_ CONCLUSION
(Fig. 6) and the resolution of the image is much better. The
improvement is also significant for range localization, as can  In this paper we establish the analogy between the time
be seen in Fig. 9. The estimated range is 58.6 mm with aeversal operator and the pseudocovariance matrix used in
fluctuation of=0.15 mm within the whole bandwidth. With- high resolution subspace techniques for source detection and
out correction, the amplitude fluctuation was larger by atlocalization with passive sensor arrays. As a consequence,
least a factor of 3. Similarly, fluctuations in lateral position the D.O.R.T. method appears as a generalization to active
are decreased significantly, and now vary 1¥.025 mm arrays of classical source separation processing. The
around the mean positioffrig. 10. This is a quarter of the D.O.R.T. processing starts with the successive transmission
wire diameter. of N independent signals resulting k backscattered wave
Our correction, however, decreases the resolution powefronts from which the “pseudocovariance matrix” is con-
The two wires 0.3 mm away are no longer resolved and thatructed. The decorrelation of the scatterers’ responses is ob-
resolution threshold is, respectively, 1.4, 1.1, and 0.9 MHzained thanks to the spatial diversity of emissions achieved
for expected distances between the wires of 0.4, 0.5, and 04y the array.
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