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Abstract

In Room Acoustics, the quantity that fully describes the hall is a set of room impulse responses (RIRs), which
are composed of the succession of arrivals (i.e., some sound rays which have undergone one or more reflections on
their way from the source to the receiver). The mixing time is defined as the time it takes for initially adjacent sound
rays to spread uniformly across the room. This paper proposes to investigate the temporal distribution of arrivals
and the estimation of mixing time. A method based on maxima of correlations (Matching Pursuit) between the
source impulse and the RIR allows to estimate in practice arrivals. This paper compares the cumulative distribution
function of arrivals of experimental and synthesized RIRs (using a stochastic model). The mixing time is estimated
when the arrival density becomes constant. The dependance of mixing time upon the distance source/receiver is
investigated with measured and synthesized RIRs.
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1 Introduction

In 1975, Joyce [1] revolutionized the approach to audito-
rium acoustics by introducing to the acoustical commu-
nity the concept of ergodic dynamical systems. Indeed,
this theory was able to justify some earlier spectral obser-
vations in the frequency domain, namely the existence of
discrete modes at low frequencies and modal superposition
at high frequency. The purpose of the present paper is to
illustrate similar findings in the time domain, namely a
domain where reflections are singled out, shortly after the
direct sound, followed at longer times by superposed re-
flections that follow a different distribution in time (Fig.1).
More specifically, we focus on the experimental evaluation
of the transition time between the two regimes, which is
called the mizing time throughout this paper, in reference
to Krylov [2].

Indeed, a standard way to document the acoustics of a
room is to measure a set of Room Impulse Responses
(RIRs). The RIR is built by the superposition of ar-
rivals, that is, modified versions of an original pulse emit-
ted by the source and reaching the receiver after travelling
through the room. Sound emitted by the source undergoes
scattering and absorption when encountering boundaries
of the room. The source pulse is therefore divided in many
wavelets that each follows a different trajectory within the
hall. The RIR is composed of the succession of all these
trajectories, called arrivals [3], with due consideration for
their respective amplitudes. In room acoustics, the time
distribution of these arrivals plays an important role since
it is directly linked to the acoustical quality of the room,
as is demontrated in numerous books [4] [5]. But so far,
no demonstrattion of the role of the mixing time has been
given, since its estimation was lacking of consistency [6].
The goal of this paper is to study the relevance of using
a tool from the signal processing domain as an estimator
of mixing time on experimental room impulse responses,
and to check its consistency on a model of RIRs. The
comparison of our estimator to some others is no goal of
the present paper.

This article is built as follows.

Section 2 reviews the ergodic theory of room acoustics
and the idea of a transition time, insisting on the time
domain.

The mixing time is estimated by studying the temporal
distribution of the arrivals of RIRs. This is achieved us-
ing a well-known audio decomposition technique called
Matching Pursuit (MP) [7] (Section 3).

Assuming the hall to be a system of time invariant lin-
ear impulse responses, or a bunch of filters with delay, the
source is expected to be filtered and translated in time
along the RIR. Therefore, supposing a high correlation
between the RIR and the pulses emitted by the source
(i.e., the direct sound), with due consideration to the fil-
tering of the room, MP appears to be well suited for this
purpose. Matching Pursuit (Section 3.1) decomposes any
signal into a linear expansion of waveforms that belong
to a dictionary. These waveforms are selected iteratively
in order to best match the signal structures. Although
Matching Pursuit is non-linear [7], it maintains an energy
conservation which guarantees its convergence. In prac-
tice the number of iterations must be finite, leading to
only an approximate decomposition of the signal (Section
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Figure 1: Early times of an experimental RIR (encapsuled
graphic), measured in Salle Pleyel.

3.2). In these experiments, the waveforms (or atoms) that
constitute the dictionary is limited to the direct sound it-
self, translated in time. The determination of its exact
temporal boundaries is of importance for a perfect match
with the RIR, but is achieved within MP itself, as exposed
in Section 3.3 and explored in [8].

Matching Pursuit run on RIR provides a linear set of co-
efficients which can be seen as a temporal distribution of
arrivals of the RIR, providing the knowledge of the cu-
mulative distribution function (CDF') of arrivals. Section
4 compares the temporal density of arrival to the theory
presented in Section 2 and in [9], using a stochastic model
of RIRs.

Mixing times are estimated from experimental RIRs of a
concert hall and are compared to those obtained with the
stochastic model (Section 5). The relationship between
mixing time and the distance source/receiver is investi-
gated in both cases. Differences between data from the
model and from the measurements are explained in Sec-
tion 6. The issues of estimating mixing times using MP
are discussed in Section 7.

2 Theoretical review of ergodic rooms

Since Weyl’s path-breaking paper on eigenfrequency den-
sity in bounded rooms [10], it is well known that this
density increases with the square of the frequency. How-
ever, when experimentally measuring this density in a
box albeit with electromagnetic waves, that display much
sharper resonances, Schroeder found out in 1954 [11] that
it is not the case at high frequencies: the finite width of
the modes, created by the losses, leads to a superposition
of many modes at any frequency and to a constant density
of peaks.

Schroeder carried out further his investigation in or-
der to determine the transition frequency between the two
regimes, and introduced what is now called the Schroeder
frequency [11], linked to volume and decay time, i.e., to
mode width.

Weyl’s estimation of eigenfrequency density was based
on the approximation of the general solution to the Hel-
mholtz equation in a bounded space by the Green function
of free space. Thus, the notion of trajectory, that is, sound
travelling in a room, was implicitly introduced in mode-
counting, albeit in a crude way as represented by the Green
function that links a source position to a receiver position.
In Weyl’s free space approximation, no reflections on the
boundaries were taken into account, but later refinements



to his theory [12] took reflections into account.

As a consequence, Weyl’s theory and its successors
naturally induce researchers to look at the temporal suc-
cession of arrivals from trajectories linking the source to
the receiver and taking into account reflections at the
boundaries. More specifically, the present paper inves-
tigates whether a transition time can experimentally be
demonstrated between two domains: an initial time do-
main where many arrivals are discrete; and a late time
domain where arrivals are superposed and therefore be-
come statistically equidistributed. Indeed, Krylovs theory
of mixing [2] teaches us that most dynamical systems grad-
ually loose memory of their history with time. Thus, tra-
jectories become independent of their origin, so that the
probability of reaching any phase point, at any time, along
the trajectory becomes equivalent (ergodicity). In such a
case, the arrival density at any receiver position becomes
constant and independent of the receiver position.

However, at short times, arrival density is not con-
stant, but increases with time. A simple theory, derived
for rectangular rooms [13], teaches us that the density
D.(t) (Eq.(1) is proportional to the square of the time
elapsed since the sound was emitted by the source (which
is different from the time laps between the arrival and the
direct sound).

(1)

where D,(t) is in number of arrivals per second, N is the

number of arrivals, ¢ is the speed of sound in m.s~!, and

V is the volume of the room in m3.

Therefore, it should be experimentally possible to de-
termine the transition time as the time after which arrivals
are superposed so that their ditribution becomes constant.
The present paper concentrates therefore on the exper-
imental determination of this transition time, which we
call mizing time in accordance with [2], and investigate
the robustness of different estimators of it.

In [14], Polack proposes a somewhat different definition
of mixing time, base on experiment, linked to the resolu-
tion of the auditory system instead of the characteristic
duration of arrivals. Mixing time is reached when 10 re-
flections overlap within the characteristic time resolution
of the auditory system, taken equal to 24ms [5]. Then Eq.
(1) leads to:

tm ~VV (2)

where t,, is the mixing time, expressed in ms, and V is
the volume of the room in m?3.

This value was proposed as a reasonnable approxima-
tion for the transition time between early reflections and
late reverberation (Fig.1). It is shown in [9] and [14] that
the exponentially decaying stochastic model [15] can be
established within the framework of geometrical acoustics
and billiard theory. The mixing character of a room de-
pends on its geometry and on the diffusing properties of
the boundaries of the hall. Consequently, the value vV
can be considered as an upper limit for the mixing time
in mixing rooms, as it has been discussed in [9] [16].

3 Matching Pursuit applied to RIR

A RIR can be seen as a linear combination of occurence
of the direct sound reproduced in time, and filtered by
reflections on the surfaces of the hall. Figure 2 shows a first
reflection which is similar to the direct sound, up to the
filtering of the surfaces of the hall. For this latter reason, it
is believed that a technique based on a correlation between
the RIR and the direct sound is well indicated for detecting
arrivals into the signal, as presented in the Introduction.

3.1 Theoretical reviews

Matching Pursuit can help understanding more deeply the
architecture of a RIR, since this algorithm introduced by
[7] provides information, which can be seen as maxima of
correlation (Eq.4) [17] between two signals: the RIR (z)
and the direct sound (the atom).

Matching Pursuit works as follows:

1. Imitialization: m =0, x,, = xg =z

2. Computation the correlations between the signal x,,
and every atom vy of a dictionary ¢, using inner prod-
ucts:

Vyed CORR(2m,7) = {Zm, V)|

3)
The dictionary ¢ is a set of atoms ~y, of the same
length than x, constituted by the direct sound and
translated in time, by step of one sample.

3. Search the most correlated atom, by searching for
the maximum inner product:

ﬁ/m = argmax(CORR(fUma 7))Ve¢ (4)

4. Substracting the corresponding weighted atom o, ¥,
from the signal z,,:

Tm+1 Tm — OmYm (5)
xg%m) = Z Ak (6)
k<m
where am = (@, Jm);
5. e stops if the desired level of accuracy is reached:

R = Tm+1-

e otherwise, re-iterate the pursuit to step 2:
m<«—m+ 1.

where z is the RIR, R the residual, y the atom (here, the

direct sound), ¢ the dictionary of atoms 7, and xg%m) the
reconstructed signal.

In theory, any signal xz can be perfectly decomposed
in a set of atoms for an infinity of iterations. In practice,
this number must be finite and a stopping criterium has
to be set. The authors propose to use the signal/residual
ratio (SRR) in dB of the norm of = over the residual (R).



3.2 Stopping criterium -Finding an appro-
priate value

The quality of the decomposition of z in atoms depends
on the value of SRR, that is, the stopping criterium. On
the one hand, for a too low SRR, the residual has an
energy level too high and the rebuilt signal :an) is an
impoverished approximation of . On the other hand, a
too high SRR leads to a high number of iterations. In
that case, it is not necessary to perform more iterations
beyond a certain threshold of accuracy.

Room acoustics quality is evaluated using a set of objective
parameters. Among all these acoustical indices proposed
in standards [18], we refer to only four, selected because of
their wide use in room acoustics. Let x(t) be the impulse
response of the hall.

e Reverberation time (RT') mesures the energy decay,
and is probably the most widely used index. It is
measured using the Schroeder integrated impulse re-
sponse technique [19], and linear regression between
—5 and —25dB, and between —5 and —35dB, for
RT59 and RT3, respectively.

e Early Decay Time (EDTig), proposed by Jordan
[20], is measured by the same method as RT, be-
tween 0 and 10dB.

e Central Time, proposed by [5] and [21], expressed in
seconds, is a measure of the centre of gravity of the
impulse response energy:

IS ta?(t)dt
Jo© a2(t)dt

Comparing previous acoustical indices calculated on x

to those calculated on xg%m) for different values of a SRR
allows to set the stopping criterium on a physical back-
ground. Figure 3 shows the variations in percent between
indices calculated on z and those calculated on arg-z,n) for
different values of SRR, for an impulse response, in which
the visual identification of the direct sound is obvious (Fig-
ure 2). This RIR presents the particularity that the direct
sound (pistol shot) is immediatly followed by the first re-
flection. This way, the identification of temporal bound-
aries of the direct sound; in order to consitute the dictio-
nary ¢ for that particular RIR, is facilitated.
According to [22], acceptable variations of acoustical in-
dices are 5% and below. Thus, Figure 3 indicates that a
convenient SRR would be 20dB. Reasons of variations
of acoustical indices can depend upon several factors [22]:
the lack of reproducibility of the sound source, the mi-
crophone directivity and positioning, software parameters,
and also the estimation of the onset of the RIR [23]. Fig-
ure 4 shows a RIR and the linear set of coefficients.

Te (7)

3.3 Detection of the direct sound

The determination of the exact temporal boundaries of
the direct sound is of importance for a perfect match,
as seen in the Introduction. Moreover, the knowledge of
the direct sound provides useful information on the sound
source itself, and allows to whiten the RIR. This study, by
presenting a method for detecting the direct sound, con-
tributes to the characterization of some frequently used
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Figure 2: Experimental RIR for which determining the
direct sound is obvious. Plain line: direct sound.
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Figure 3: Variations in % of EDTyg, RT2g, RT3p and T
versus SRR in dB.

sound sources in room acoustics measurements [8] [24] [25],
such as balloon bursts or pistol shots. For RIR measure-
ments carried out with these latter sources, it becomes
difficult to clearly identify temporal boundaries when the
sound source is not recorded in the near field, or in an ane-
choic chamber. Moreover, the visual identification of these
boundaries may vary from expert to expert [26] (Fig.5).
The impulse duration is assumed to be inferior to 5ms,
defining the atom ~. The time index ¢y f the maximum of
the atom is detected. A dictionary of atoms ¢ is consti-
tuted of atoms with temporal boundaries that are varying
(with step of 0.1ms) from Oms to tg and from ¢y to 5.0ms,
for the first and last indices respectively. For each cou-
ple of [first index:last index], MP is ran. The temopral
boundaries that are thought to be the best correspond to
the lowest number of iterations. Impulses durations are
estimated running MP onto experimental RIRs, with a
stopping criteria of SRR = 20dB to reach. For further
details, please refer to [8].

4 Detection of arrivals

4.1 Validity of Matching Pursuit on a model
of RIRs

This section aims at testing Matching Pursuit on a given
reference set of arrivals synthesized by a model of RIR
presented and detailed in [9]. This model has been val-
idated on a set of 8 americain concert halls for which a
set of room acoustical indices were recovered [27]. In this
model, arrivals are distributed in time according to a Pois-
son process, with a parameter which is time dependent.
The cumulative number of arrivals(CN A) is a cubic func-
tion of time (Fig.6). Using input parameters, such as the
reverberation time (RT30), the mean absorption (&), and
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Figure 4: Matching Pursuit ran on an experimental RIR
(SRR = 20dB). -(top): Experimental RIR -(bottom):
Linear set of coefficients, which correspond to the arrivals.
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Figure 5: Detail of an experimental RIR for which deter-
mining the direct sound is not obvious.

the volume (V') of the hall, the set of time arrivals, and
their respective amplitude, are generated. Room impulse
responses of a considered hall (Salle Pleyel: V' = 19000m?,
RT30 = 1.9s, @ = 30%) are synthesized and convolved by
a pistol shot. Then, the linear set of arrivals is estimated
by MP.

4.2 Towards a validation of the statistical
theory

The presented results are derived from RIRs measured in
Salle Pleyel carried out with pistol shots [28], for 21 differ-
ent source-receiver positions. Therefore 21 experimental
RIRs are under consideration. Based on section 4.1, the
linear set of coefficients (Fig.4), derived from Matching
Pursuit run on experimental RIRs, are assumed to repre-
sent the temporal distribution of arrivals.

10000
80001
< 60001

Q 4000+

20001

. el . . . I .
(JO 0.1 02 03 04 05 0.6 0.7 08 09 1

Figure 6: Cumulative numbers of the arrivals (CN A) gen-
erated by the stochastical model of RIR (without compen-
sation of energy decay). -dashed: model -plain: the atom
is a pistol shot -bold: the atom is a dirac.
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Figure 7: CDF, for an experimental RIR (without com-
pensation of the energy decay). Dashed line: a kink in
the distribution of arrivals is noticeable. The encapsuled
grpahic is a zoom on the early times of the CDF'.
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Figure 8: plain: Logarithm of (1 — CDF') of the arrivals
of 21 experimental RIRs (without compensation of the en-
ergy decay) -dashed: mean logarithmic decay of the RIRs.

4.2.1 Without compensating for the energy decay

The C'N A normalized by the total number of arrivals rep-
resents an estimate of the Cumulative Distribution Func-
tion (CDF), plotted in Fig. 7. In other words, the CDF
describes the time evolution of the probability to detect
arrivals in the RIR.

Figure 7 underlines the decreasing of probability to de-

tect arrivals at the end of the RIR. Mallat et al. 7] states
that Matching Pursuit is not suitable for non-stationary
signals. Indeed, as MP selects the maximum of correla-
tion at each iteration, it becomes obvious that it has a
high probability to be found at the beginning of the RIR
(Fig.4). Thus, the probability to detect arrivals is directly
linked to the local energy of the signal. As this latter de-
creases exponentially, one can expect the probability to
decrease exponentially too.
By calculating the logarithm of 1 — C'DF for the 21 RIRs
(Fig.8), the mean reverberation decay of the room (RT =~
2.0s) is recovered in comparison to what has been calcu-
lated in [28]. This observation highlights that the CDF is
linked to the energy of the signal.

4.2.2 Compensating for the energy decay

As seen in section 4.2.1, arrivals have a higher probabil-
ity to be found in the beginning of the RIR, than in the
tail. Energy compensation, by making the signal station-
ary and ergodic, ensures equal weight to all parts of the
RIR and thus equiprobability of detecting arrivals. This is
observed in Figure 9, where it corresponds to the almost
constant slope of the CDF. Note that the energy com-
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Figure 9: CDFs. -dash: theoretical CDF (= t3) -plain:
Average of CDF for 21 RIRs (with compensation of the
energy decay). The encapsuled graphic is a detail of the
early part of the CDF.

pensation is achieved by applying an inverse exponential,
whose argument is proportional to the reverberation time
and to the mean absorption [5].

However, the beginning of the RIR presents a different be-
haviour, in agreement with theory, which predicts a lower
number of arrivals after the direct sound than for the dif-
fuse sound field. This difference of behaviour allows to de-
fine the mixing time (7)) as the time where this difference
occurs. Indeed, mixing precisely expresses the equiprob-
ability of arrivals, as defined by Krylov [2]. The mixing
time is then defined as the time at which the process be-
comes ergodic, taking into account the time propagation
from the source position to the receiver position.
Moreover, the estimation of arrivals, and thus of mixing
time, depends on the atom, that is, on the temporal and
spectral properties of the direct sound (Fig.10), as it is
explained in Section 5.
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Figure 10: CNA of a theoretical RIR. -dash: theoretical
CNA -plain: estimated CN A (the atom is a pistol shot)
-bold: estimated CNA (the atom is a dirac) (with com-
pensation of the energy decay).

Matching Pursuit is ran on 21 RIRs measured in Salle
Pleyel [28], compensating the energy decay. CDF's all
show a breaking point (Fig.9) which divides the curve into
two parts:

e t < Ty afew arrivals are detected after the direct
sound. A cubic fit (Fig.11) of this part of the curve
permits to verify that the number of arrivals is a
function of 3, as seen in Eq. (1). The goodness of
fit is attested by the correlation coefficient 7 > 0.90.

e t > Ths: the number of arrivals increases at a con-
stant rate with time. Furthermore, the evolution of

the number of arrivals as a function of time is almost
constant all over the room (Fig.12).

0 0.1 03 05 0.7 09 1.1
Time (s)

Figure 11: Detail of a cubic (¢t < Ths) and a linear (¢ >
Thr) fits made on a CN A. Plain bold line: CNA. Dashed
bold line: cubic fit. Dashed line: linear fit. Square: mixing
time.
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Figure 12: Circles: Slope coefficients of the linear fits made
on the 21 CNAs (mean = 1140 arrivals/second, std =
7.7%). Plain line: mean slope coefficients. Dashed lines:
standard deviation.

5 Estimation of the mixing time

According to the theory of room acoustics, for ¢ > Ty
arrivals overlap. We observe that MP detects only one
arrival instead of two when the time delay between them
is inferior or equal to the equivalent duration d of the im-
pulse (i.e. the direct sound). The equivalent duration is
related to the equivalent statisitical bandwidth of the im-
pulse, defined by [29].

The satistical time is then defined as the time at which
two successive arrivals are delayed one from the other of
the equivalent duration of the impulse At < d. Figures
13-14 show statisitcal times detected in the set of arrivals
estimated by MP from an experimental and a synthesized
RIR, respectively.

Statistical times do mark the beginning of the linear part
of the CN As (Fig.11-14), where the RIR can be defined
with a statistical behavior, rather than with a determin-
istic behavior. In that sense, statistical times are then re-
lated to Krylov’s definition of mixing time (Section 4.2.2).
Consequently, in the following, the estimation of the mix-
ing time is carried out by detecting the statistical time of
RIRs from the set of arrivals.
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Figure 14: a): Mixing time (circle) detected on a CDF
(bold line) for a synthesized RIR convolved with a pisol
shot and the set of estimated arrivals (SRR = 5dB). Plot
(b) details the beginning of plot (a).
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Figure 15: Mixing times estimated on experimental RIRs
using different values of SRR (dB) (compensating the en-
ergy decay).
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versus the SRR in dB (compensating the energy decay).

null for SRR > 10dB.
The choice of a SRR is guided by the mean variations
of the usual acoustical indices, which are calculated be-

tween the original signal x and the synthesized one ,’Egn),

5.1 Dependence upon the stopping criteriums in Section 3.2, for the 21 RIRs. From these results

value (SRR)

The energy compensation leads to set the SRR differently.
First, as the exponential decay is compensated, the de-
crease of energy along the signal is approximated more
accuratly by MP than without compensation (see Section
4.2.2). As a consequence, reverberation times and energet-
ical indices of the synthesized signal (xg%m)) are expected
to be close to the original signal for a smaller SRR than
in Section 3.2. Second, as studied in [30] some selected
atoms may exist in some regions where the original signal
does not possess any energy. These terms are part of the
estimation of the original signal by MP and interfere with
each other, creating before and after arrivals small coef-
ficients for which the interpretation is not obvious. This
point is discussed in Section 6. Therefore, one may expect
a strong dependency of the accuracy of the estimation of
the mixing time upon the SRR, since the bigger SRR the
larger the number of arrivals is.

Figure 15 shows mixing times estimated from 21 exper-
imental RIRs for different values of SRR. On the one
hand, for a too low SRR (SRR < 4dB), mixing times
do not always exist, and present a large spreading. On
the other hand, mixing times present smaller variations
for 4 < SRR < 5dB. Futhermore, one may notice that
mixing times are consistent for 5 < SRR < 7dB. Finally,
mixing times are close to zero for 7 < SRR < 10dB and

(Fig.16), and according to [22], an acceptable SRR is of
5dB, since variations lie below 5%.

In the following, mixing times of experimental and syn-
thesized RIRs (from the stochastical model presented in
Section 4.1) are estimated by detecting statistical times for
a SRR = 5dB. The relationship between mixing time and
the distance source/receiver is investigated in each case.

5.2 Experimental RIRs

For each of the 21 experimental RIRs, the equivalent du-
ration of the impulse (d) is calculated, according to [29],
since the direct sound is estimated by learning the dictio-
nary of atoms (Section 3.3). Mixing times are estimated
from the sets of arrivals (Fig.13), as described in Section
5.1. Results are given as a function of the distance with
and without the time propagation between the source and
the receiver positions taken into account (Fig.17).

The mean value of estimated mixing times (with time
propagation) is about 85ms (the median value is 92ms),
while the standard deviation is of 30%. Large variations
of mixing times are in contradiction with the theory of
ergodic rooms, which predicts that the mixing occurs at
the same time in the whole room. Surprisingly, mixing
time can rather be well described by an increasing linear
function of the distance source/receiver (Fig.18), which is



not predicted by the theory (Eq.2). The relationship is
given by:

Ty =

T =

0.0026.d + 0.026
0.82

(8)
(9)
where Ths is the mixing time in second, d is the distance

source/receiver in meter, and r is the correlation coeffi-
cient.
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Figure 17: Estimated mixing times as a function of dis-
tance (without (triangles) and with (circles) time propa-
gation between the source and the receiver).
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Figure 18: Estimated mixing times (dots) as a function of
distance (with time propagation between the source and
the receiver). Dashed line: linear regression.

5.3 Synthesized RIRs

This section aims at estimating statisitical times on the set
of arrivals, obtained with MP, from RIRs synthesized with
the model presented in Section 4.1. This is achieved by
synthesizing a large number of times RIRs for the same
input parameters. This is inspired by the Monte Carlo
methods, oftenly used when simulating physical and math-
ematical systems [31].

In practice, twenty RIRs are synthesized (in one dimen-
sion) at 23 different distances (from lm to 45m, by step
of 2m). Therefore, a total of 460 RIRs is under consid-
eration. Parameters of the model are still those of Salle
Pleyel (Section 4.1). MP is run on the model of RIRs con-
volved by a pistol shot (compensating the energy decay,
and using SRR = 5dB). Estimated arrivals are identical
to those of the model until a certain time, the statistical
time. Figure 14 shows the statistical time detected into a
set of coefficients of MP. Figure 19 shows statistical times
estimated for each synthesized RIR, taking into account

the distance source/receiver.

On the one hand, considering the mean statistical times,
one may notice that they are approximately constant for
d < 25m (the average equals 101ms; the standard de via-
tion equals 20%) and are an increasing linear function of
distance, for d > 25m, according to:

Ts =

T =

0.0017.d 4+ 0.057
0.97

where Ty is the statistical time in second, d is the dis-
tance source/receiver in meter, and r is the correlation
coefficient.

On the other hand, considering the minima statistical
times, it is noticeable that they are approximately con-
stant for d < 19m and are an increasing linear function of
distance for d > 19m. The relationship between the sta-
tistical time of the model and the distance source/receiver
is given by:

Ts =

T =

0.0029.d
0.98

where Tg is the statistical time in second, d is the dis-
tance source/receiver in meter, and r is the correlation
coefficient.

Furthermore, if a = 0.0029 is the slope (Eq.12), then
1/a =1/0.0029 = 340m.s~! ~ co. Hence, statistical times
and distance are clearly linked. This is obvious, since the
mixing can only occur once the direct sound has reached
the receiver position.
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Figure 19: Mixing times (dots) detected for 20 RIRs syn-
thesized at different distances (the time of propagation
is taken into account) (SRR = 5dB). Triangles: mean
times. Dashed line: linear fit on the minima mixing times
(for d > 19m). Plain line: linear fit on the mean mixing
times (for d > 25m).

6 Difference between data from the
experiment and the model

In Salle Pleyel, the volume is V = 19000m?> and the the-
oretical value of the mixing time equals Ths,, = 137ms,
according to Eq.(2.) Mean mixing times estimated from
experimental RIRs (Th; = 85ms) on the one hand, and
from synthesized RIRs (TS = 101ms) on the other hand,
recover the theoretical assumption that states that Ths,, ~
vV (ms) is an upper value of mixing time (Section 2).



If the mean mixing times of experimental and synthesized
RIRs are not equal strictly, one may notice that the rela-
tionships that link the mixing time to the distance are very
similar (Fig.20-21). Actually, the diffusion phenomenum
(which is related to mixing -see Section 2) is assumed to
explain the difference between the model and the experi-
ments (Fig.21).

On the one hand, as seen previously in Section 5, mixing
time is a function of distance, as is the Initial Time Delay
Gap (ITDG: time delay between the direct sound and the
first arrival of the RIR) [4]. The ITDG is a decreasing
linear function of distance, that is, for short distances, the
first arrival occurs later after the direct sound than for
long distances. Diffusion occurs after the first reflection,
which can in practice arrive at a much shorter time, af-
ter the direct sound than the mean statistical delay of the
model. Remember that all measurements are taken near
a boundary, a particular situation that may significantly
differ from the statistical average of the model.

Tm = 0.0026.d + 0.026
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Figure 20: Mean mixing times of the model (triangles)
and of the experiments (squares). Dashed line: linear re-
gression made on the model. Plain line: linear regression
of experimental RIRs.

On the other hand, the number of arrivals estimated
by MP is a function of the SRR (Section 5.1). As a conse-
quence, MP estimates arrivals and also diffusion in exper-
imental RIRs. Sturm et al. present, in [30], an artefact of
MP: constructive and destructive interferences. When MP
finds a correlation between an atom and the signal, it sub-
stracts the contribution of this atom from the signal. But
in the case of experimental RIRs, the mother atom (the
direct sound) can only accuratly be found at the beginning
of the RIR and not after, since the RIR is a succession of
delayed and filtered versions of the mother atom. Hence,
MP, by substracting the contribution of the mother atom
to the signal, creates residuals -or interferences- that may
be compensated (by finding some other correlations) in
further iterations. In other words, MP creates more coef-
ficients than arrivals.

As the model does not take into account either diffusion
or the filtering of the walls of the room, the number of ar-
rivals is larger in the experiment than in the model. Con-
sequently, the probability that 2 successive arrivals are
separated by At < d is larger for short times with exper-
imental RIRs than with synthesized RIRs. This is why
experimental mixing times are smaller than those of the
model for small distances, specially for d < 27m, which is
the mean free path of Salle Pleyel.

Differences between the model and the experiment corre-
spond to the hatched area of the Figure 21.
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Figure 21: Mean mixing times from the model (triangles)
and from the experiments (squares). Dashed lines: linear
regressions made on the model (for d > 25m). Plain line:
linear regression of experimental RIRs. Hatched part:
missing contribution of diffusion and room filtering in the
model.

7 Discussion

Studying the distribution of arrivals is not a new idea in
room acoustics. As early as 1958, Schodder [32] published
an extensive survey of more than 1000 RIRs measured in
more than 15 different halls. Schodder study presents two
shortcomings that impair direct comparison: his photo-
graphic techniques did not allow for decay compensation;
he did not include time propagation between the source
and the receiver. As a consequence, his mean distribu-
tion of arrival times cannot directly be compared to our
results. Yet, on some of them, a change of slope on the
distribution of arrival times can be observed, similar to
what can be observed around 50ms in Figure 7.

As seen previously, the stopping criterium is impor-
tant, since its value specifies the approximation of the
original signal and the accuracy of the estimation of the
mixing time. However, the interference issue described in
the last section raises the question of the physical inter-
pretation of small coefficients. Further, future work should
investigate, on other concert halls, the relevance of setting
the SRR = 5dB.

Furthermore, an analysis on octave bands is thought to
be an original manner to discriminate the phenomenum of
diffusion at high frequencies, on the one hand, and also to
give information about the filtering of the room, on the
other hand.

Finally, first tests show that the mixing time depends on
the atom, that is, on the temporal and spectral properties
of the direct sound (Fig.10). But this goes beyond the
scope of the present paper.

The good agreement between mixing times of the model
and of the experiment is in favor of this mixing time esti-
mator based on MP, and of the model, which has already
been through a first validation based on comparisons of
acoustical indices between real and synthesized RIRs [27].
However, a future work would consist in adding diffusion
to the model and in comparing the obtained mixing times
to the experimental ones.



8 Conclusions

This study uses a well documented technique, Matching
Pursuit, to determine the time of arrivals in RIRs. This
leads to first set an appropriate stopping criteria, and sec-
ond to define as precisely as possible the temporal bound-
aries of the direct sound, which is used as the mother
atom of the dictionary. The stopping criterium is choosen
by minimizing the difference between the acoustical in-
dices of the original RIR and the synthesized one. Further
studies should evaluate, using listening tests, the relevance
of such a stopping criteria, but also by estimating the mix-
ing time of other concert halls. This would lead to choose
either another value, or another stopping criteria.
Temporal boundaries of the direct sound are estimated by
looking at the speed of convergence of Matching Pursuit.
In other words, the lowest the number of iterations, the
best are the temporal boundaries of the direct sound. This
seems to be an efficient method to characterize frequently
used sound sources in Room Acoustics, and has been used
in [8].

Matching Pursuit provides another vision of RIRs.
deed, the linear set of coefficients obtained are seen as the
arrivals of the RIR. The exponential decrease of energy
necessitates a compensation, in order to obtain a station-
ary signal. The mixing time is then defined as the time at
which the signal becomes stationary. The number of ar-
rivals is a cubic function of time, before the mixing time.
After the mixing time, the number of arrivals grows with
a constant rate in the whole room. However, mixing times
are found to be a function of the distance source/receiver.
The stochastical model used in this paper confirms this
latter point. This constitutes a hint in the favor of the
robustness of the model, which needs to be supplemented
by integrating diffusion. The relationship between mix-
ing times and distance should be investigated in a future
work that would consist in measuring RIRs in a mixing
hall, with very close receiver positions.

It remains to generalize this estimator to other rooms, us-
ing some different atoms. Moreover, more investigation
should be made with filtering the RIR and using thresh-
old on the linear set of coefficients, derived from Matching
Pursuit.
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