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Elastic weakening of a dense granular pack by acoustic fluidization: Slipping, compaction, and aging
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Sound velocity measurements in dense glass bead packs reveal significant softening effect at large amplitudes,
due to the frictional nonlinearity at the grain contacts. Beyond a certain amplitude, the sound-matter interaction
becomes irreversible, leaving the medium in a weakened and slightly compacted state. A slow recovery of the
initial elastic modulus is observed after acoustic perturbation, revealing the plastic creep growth of microcontacts.
The cross-correlation function of configuration-specific acoustic speckles highlights the relationship between the
macroscopic elastic weakening and the local change of the contact networks, induced by strong sound vibration,
in the absence of appreciable grain motion.
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I. INTRODUCTION

A granular medium is an assembly of discrete macroscopic
solid grains that interact with each other by dissipative contact
forces. Unlike the ordinary solids and liquids, a dense granular
medium exhibits multiple metastable configurations and may
undergo a transition between solid state to liquid state when a
large enough mechanical force is applied by shear or vibration
[1–4].

A shaking experiment allows investigation of the com-
plex behavior of driven, athermal granular systems such
as compaction, segregation, and pattern formation [1]. In
a granular system fluidized by continuous strong vibration
where collisions dominate (acceleration normalized with the
gravity �>1), it has been shown [3] that an effective viscosity
and effective temperature can be defined in such a granular
liquid. By decreasing the amplitude of vibration � < 1, the
driven granular medium evolves into an amorphous state [3].

On the opposite side of the liquid-to-solid transition, the
jammed granular state is determined by the inhomogeneous
contact force networks [1]. A granular solid exhibits very
nonlinear dynamics during shearing, accompanied by strong
spatial and temporal variations in the contact distribution. In a
weakly vibrated granular column, large force variations have
been observed on the bottom boundary in the absence of
appreciable grain motion, indicating a strong nonlinear and
glassy dynamics of the force network [4].

Sound waves propagating through the contact force network
provide a natural way to probe accurately and nondestructively
the viscoelastic properties of a jammed granular state [5–10].
At large amplitude of vibration, sound waves may serve as
controlled perturbation to explore the glassy dynamics of a
granular solid [6,7]. Liu and Nagel found previously that
sound transmission at � ∼ 1 in a glass bead pack under
gravity exhibits large temporal fluctuations [6]. Unlike the
shaking experiment, such structural relaxation, referred to here
as “acoustic fluidization [11],” occurs nevertheless surprisingly
where no visible rearrangement of the beads was observed. At
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moderate vibration (� < 0.1), both a strong hysteretic behavior
on the amplitude measurement [6] and a significant modulus
softening in the resonance experiment [12] were also observed,
but the underlying physics responsible for these nonlinear
dynamics still remains unclear on the level of the contacts.

In this paper, we examine quantitatively the hysteretic
characteristics of the sound velocity in jammed granular media
via pulsed ultrasonic waves. We focus our attention on the
irreversible sound-matter interaction in a regime where the
grain motion is visibly absent. The resultant rearrangement of
the force network is, however, evidenced by the configuration-
specific scattered waves. Compared to the previous resonance
method (∼150 s), the velocity measurement reported here
(∼10 s) is much faster, thus providing an adequate method
for highlighting the slow dynamic behavior. All combined
measurements, including the packing density, reveal the
crucial role of frictional nonlinearity at the grain contact in
the elastic weakening and the structural change induced by the
acoustic fluidization, and would be helpful for understanding
the unjamming or landsliding triggering process [12].

II. EXPERIMENTS

Our granular materials consist of dry polydisperse glass
beads of diameter d = 0.6–0.8 mm confined in a oedometer
cell of 60 mm diam which is filled to a height H = 20 mm,
with a packing density ≈ 0.61. This type of apparatus allows
us to apply a constant uniaxial load P0 on the bead pack
from 85 to 340 kPa. A large longitudinal transducer of
30 mm diam is used as a plane-wave source, transmitting a
ten-cycle tone burst centered at low frequency, 50 kHz. The
corresponding wavelength λ is ≈ 15 mm, which is much larger
than the bead size d, and the coherent wave propagation is
detected by another large transducer at the bottom (inset of
Fig. 1). To examine the nonlinear response, we vary the input
voltage Vinput from 10 to 250 V, corresponding to a vibration
displacement U ≈ 2–50 nm.

Figure 1(a) shows typical ultrasound transmissions through
the bead pack under P0 = 340 kPa for increasing input
amplitudes. The absolute value of sound speed c0 can be
measured by the time-of-flight T0 as c0 ≈ 770 m/s. As
the input amplitude is increased, we observe that the total
transmitted ultrasound is delayed progressively up to ∼2%
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FIG. 1. (Color online) (a) Transmitted ultrasonic wave trains
through a glass bead pack under P0 = 340 kPa excited by increasing
Vinput. (b) Progressive delay (closeup). Inset: experimental setup
including the source transducer and probes of coherent (LF) and
scattered (HF) waves.

[Fig. 1(b)]. Such softening effect of sound velocity appears
basically different from the usual waveform distortion caused
by anharmonicity.

The main investigation is focused on the reversibility of
the sound-matter interaction for increasing sound amplitude
(Fig. 2); we check if there is any change in the material
property and structure after the sound transmission. To do so,
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FIG. 2. (Color online) Reversible and irreversible interactions
between sound waves and granular packs under P0 = 340 kPa (left)
and P0 = 85 kPa (right) versus sound amplitude. (a) Excitation
protocol; (b) sound velocity change; (c) packing height variation;
(d) resemblance parameter between two successive acoustic speckles.
Inset of (d) shows a typical acoustic speckle.

measurements of the wave velocity and the packing density
are carried out repeatedly at the lowest input amplitude
(Vinput = 10 V) as a nondisturbing probe, before going up
to the next increased amplitude [Figs. 2(a)–2(c)]. In order
to monitor the possibly induced rearrangements inside the
force networks, we also employ low-amplitude (Vinput =
30 V), high-frequency (f = 500 kHz), multiply scattered waves
probed by a pinducer [insets of Figs. 1 and 2(d)]. The structure
changes may be evaluated by these configuration-specific
acoustic speckles, via the resemblance parameter �i,i+1 =
Ci,i+1(τ = 0)/[Ci,i(0)Ci+1,i+1(0)]1/2 that was used previously
[13]. Here Ci,i+1(τ ) with the time lag τ is the cross-correlation
function between two successive speckle signals Si(t) and
Si+1(t) recorded every 30 s, before and after the high-amplitude
sound transient at low frequency (f = 50 kHz).

Roughly, we identify two regimes of fast nonlinear dynam-
ics versus Vinput. In the first regime, the interaction between
sound wave and granular medium is reversible: There is
neither velocity change nor sample density variation after
the wave passage and the force network remains nearly
unchanged, i.e., �i,i+1 ≈ 1, except for a few rare events.
In the second regime, however, beyond a certain amplitude
threshold depending on the applied load, the sound-matter
interaction becomes irreversible. Indeed, the wave velocity
and corresponding elastic modulus remain weakened after the
wave transient, and slight plastic deformation is also observed
corresponding to a compaction of ∼0.5 μm for one bead layer
[Fig. 2(c)]. This characteristic scale associated with our sample
compaction is negligibly small compared to those observed
in shaking experiments where the rearrangement occurs on
the length scale of the grain size d (≈ 0.7 mm). However, the
resemblance parameter shows a significant intermittent change
in the force networks induced by high-amplitude sound waves,
which become much more pronounced and frequent under
lower confining pressure [Fig. 2(d)] in conjunction with a
more important velocity softening and material compaction
[Figs. 2(b)–2(c)]. This finding highlights the relationship
between the macroscopic elastic weakening and the local
change of the contact network, induced by strong sound
vibration in the absence of visible grain motion.

Moreover, we find that there exists a slow dynamics (i.e.,
aging) in the granular medium, left in a weakened state by
the irreversible interaction. The sound velocity slowly returns
to its initial value over a number of hours after strong sound
transmission [Fig. 2(b)]. This slow recovery, roughly following
a logarithmic law, is analogous to the stress relaxation in
sheared and compressed granular systems [2] and the aging
effect of load-bearing asperities between two rough solids [14]
(see next section). During this aging process, the resemblance
parameter is close to �i,i+1 ≈ 1, implying that the contact
force network remains almost unchanged.

III. MODELING AND DISCUSSION

Let us interpret the sound velocity softening within the
framework of the effective medium approach based on contact
mechanics. For small-amplitude sound waves propagating
in elastic sphere packs under isotropic compression, both
compressional and shear velocities cp and cs can be derived
from the incremental normal and tangential stiffness Dn and
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Dt , cp ∝ [Z(Dn+2Dt/3)]1/2 and cs ∝ [Z(Dn+3Dt/2)]1/2 with
Z the coordination number [15]. For large-amplitude sound
propagation in the reversible regime Ft < μF0, where F0 and
Ft are the normal and tangential forces at the contact and μ the
coefficient of friction, two distinct kinds of nonlinear elasticity
may come into play between two spheres at large-amplitude
vibration [16].

We first consider the nonlinear effects related to the normal
force-displacement response. If an oscillating force Fn is
applied to two spheres of diameter d initially compressed
by a static force F0, the oscillating displacement Un can be
related to Fn by Fn ≈ DnUn(1 + βUn + δU 2

n + · · ·). Here Dn

is the previously mentioned linear stiffness, β = −1/(4U0)
(>0) and δ = −1/(24U 2

0 ) (< 0) correspond to the quadratic and
cubic nonlinear terms determined by the static compression
U0 ∼ F

2/3
0 (U0< 0) [12,17]. Accordingly, at large amplitude,

we have an associated normal stiffness over one cycle of
oscillation DNL

n ≈ Dn(1 + δU 2
n ) and a resultant softening of

sound velocity �c/c ∼ �Dn/Dn ∼ δU 2
n . Under a pressure

P0( = 4F0/πd2) ≈ 100 kPa, the static compression is
U0 ≈ –120 nm (the static strain ε0 ∼ U0/d ≈ –2×10−4) and
δ ≈ –3 ×10−6 nm−2. For a sound wave of Un ≈ 6 nm (the
acoustic strain εa ∼ Un/d ≈ 10−5), the velocity softening due
to the Hertz nonlinearity would be only �c/c ∼ –0.01%. This
mechanism, suggested previously [12], is thus not responsible
for the experimental finding (∼–2%).

Let us now examine another mechanism of nonlinearity
at the contact, i.e., the hysteretic friction. For two identical
spheres, compressed by a constant normal force F0, an
analytical relationship can be derived between the tangential
displacement Ut and force Ft , before the sliding threshold (i.e.,
the Mindlin model) [16]. As depicted in Fig. 3(a), OA and OC
represent, respectively, the normalized loading curves for small
and large amplitude (U ∗

t ) of the transverse displacement; AB-
BA and CD-DC correspond to the cyclic unloading-reloading
curves. For large amplitude of vibration, unloading (U−

t ) and
reloading (U+

t ) displacements form a significant hysteresis
loop versus Ft (of amplitudeF ∗

t ), implying both the dissipative
and the nonlinear elastic features of solid friction. The average
stiffness DNL

t corresponds to the slope of the line connecting
the end points C and D: DNL

t < Dt when increasing the
amplitude U ∗

t .
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FIG. 3. (Color online) (a) Tangential loading-displacement hys-
teresis loop: Ft and Ut are normalized by μF0 and Ut obtained at
Ft = μF0, respectively. (b) Comparison between measurements and
predictions (solid line).

Such softening effect can also be deduced from the elastic
response (UE

t ) and the dissipative counterpart (UH
t ) of the

hysteretic behavior Ut (Ft ) = UE
t (Ft ) + SUH

t (Ft ), as in rocks
[18]. Here UE

t = (U+
t + U−

t )/2, UH
t = (U+

t − U−
t )/2, and S

is a sign function, S = 1 (–1) for Ft increasing (decreasing).
ForF ∗

t � μF0, we may derive from the Mindlin model (i.e.,
unloading-reloading) [16],

UE
t (Ft ) ≈ (2U0/3)

(
1 + F ∗

t /6μF0
)

(Ft/μF0), (1a)

UH
t (Ft ) ≈ (U0/18)[(Ft/μF0)2 − (F ∗

t /μF0)2]. (1b)

In this work, we are only concerned with the elastic
response [Eq. (1a)]; the tangential stiffness is obtained
by DNL

t = (dUE
t /dFt )−1 ≈ Dt (1 − F ∗

t /6μF0) and conse-
quently �c/c ∼ �Dt/Dt ≈ −F ∗

t /6μF0 ≈ −kU ∗
t ∼ −εa/ε0.

Here k = [2Ga/3(2 − ν)μF0]; G and ν are the shear modulus
and Poisson ratio of the spheres and a is the radius of the
contact area. The experimental data obtained under P0 =
340 kPa in the reversible regime agree well with such linear
decrease of sound velocity [Fig. 3(b)]. Extracting k by the
fit and considering the glass bead constants (G = 28 GPa,
ν = 0.25) allows us to obtain a friction coefficient μ ≈ 1.1,
consistent with the previous measurement [10].

To understand the sound-matter interaction in the irre-
versible regime, we propose the following scenario. At a very
large amplitude of vibration, the spheres may slide over each
other at the contact when Ft >μF0. In a disordered bead pack,
such a process is accompanied by the loss of grain contacts,
producing the grain rearrangement and significant compaction
as in shaking experiments. Our findings on the elastic weak-
ening [Fig. 2(b)] suggest that the irreversible interaction of
sound with the granular pack can also take place on a much
smaller length scale without the appreciable motion of grains.
Indeed, the tiny compaction of tens of microns excludes the
rearrangements on the scale of the bead size d. As illustrated
in the inset of Fig. 4, the mechanism of sliding between two
smooth spheres previously described may take place between
the asperities via slipping at large amplitude. For the random
height distribution of microasperities [14,16], such slipping
may produce the rearrangements of the unstable contacts on
the micrometric scale. This picture is consistent with the
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FIG. 4. (a) Slow recovery of sound velocity versus run (waiting)
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recorded at two run times indicated in (a). Inset: squeezed asperities
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observed logarithmic recovery of sound velocity [Fig. 4(a)].
Indeed, as the stiffness D is proportional to the radius ā of
the real contact area (�r ∼ πā2), the plastic creep growth
of the microcontact �r (t) = �r0[1 + m ln(1 + t/t0)] (with m
an effective strain-rate sensitivity and t0 a time constant),
weakened or broken by strong vibration, would exhibit a slow
recovery of the elastic modulus. The characteristic values m
≈ 4k2 ∼ 10−2 obtained by fit, are consistent with those found
in the literature between rough solid contacts [14]. During
this aging or healing regime, the multiply scattered sound
waves undergo little modification [Fig. 4(b)], indicating that
the spatial distribution of the force chains remains unchanged
except for a global enhancement of contacts resulting in the
sound velocity increase.

IV. CONCLUSION

We have measured an important softening of sound velocity
at large vibration amplitude in jammed granular media (1%–
10%). It stems from the nonlinear hysteretic friction at the grain
contacts. The sound-matter interaction becomes irreversible

beyond a certain amplitude which is stress dependant, weak-
ening the granular medium and causing a tiny compaction.
This acoustic fluidization presumably originates from the
vibration-induced slipping on the scale of microasperities.
Probing simultaneously the contact network changes with
the acoustic speckles allows us to evidence a relationship
between the global elastic weakening and the local structure
relaxation. In addition, we show that during the aging process
of the force network, the logarithmic recovery of the elastic
modulus is related to the plastic creep growth of broken or
weakened contacts but without configuration changes. Our
findings might be helpful to highlight the underlying physics
of effective granular temperature and particularly the role of
noise in the rheology of dense granular flow due to the elastic
wave signals propagating away from flips or rearrangement
events [19,20].
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for helpful discussions.

[1] H. M. Jaeger et al., Rev. Mod. Phys. 68, 1259 (1996).
[2] R. R. Hartley and R. P. Behringer, Nature 421, 928 (2003).
[3] G. D’Anna, P. Mayor, A. Barrat, V. Loreto, and F. Nori, Nature

424, 909 (2003); G. D’Anna and G. Gremaud, Nature (London)
413, 407 (2001).

[4] P. Umbanhowar and M. van Hecke, Phys. Rev. E 72, 030301
(2005).

[5] J. D. Goddard, Proc. R. Soc. London, Ser. A 430, 105
(1990).

[6] C. H. Liu and S. R. Nagel, Phys. Rev. Lett. 68, 2301 (1992);
Phys. Rev. B 48, 15646 (1993).

[7] S. Sen et al., Phys. Rep. 462, 21 (2008); S. R. Hostler and C. E.
Brennen, Phys. Rev. E 72, 031303 (2005).

[8] X. Jia, C. Caroli, and B. Velicky, Phys. Rev. Lett. 82, 1863
(1999); X. Jia, ibid 93, 154303 (2004).

[9] H. A. Makse, N. Gland, D. L. Johnson, and L. Schwartz, Phys.
Rev. E 70, 061302 (2004); L. Bonneau, B. Andreotti, and E.
Clement, ibid. 75, 016602 (2007).

[10] Th. Brunet, X. Jia, and P. Mills, Phys. Rev. Lett. 101, 138001
(2008).

[11] H. J. Melosh, Nature 379, 601 (1996).
[12] P. Johnson and X. Jia, Nature 437, 871 (2005).
[13] X. Jia and P. Mills, in Powders and Grains (Balkema, Rotterdam,

2001), p. 105; V. Tournat and V. E. Gusev, Phys. Rev. E 80,
011306 (2009).

[14] T. Baumberger and C. Caroli, Adv. Phys. 55, 279 (2006).
[15] K. W. Winkler, Geophys. Res. Lett. 10, 1073 (1983).
[16] K. L. Johnson, Contact Mechanics (Cambridge University Press,

Cambridge, 1985).
[17] A. N. Norris and D. L. Johnson, J. Appl. Mech. 64, 39

(1997).
[18] R. A. Guyer, J. TenCate, and P. Johnson, Phys. Rev. Lett. 82,

3280 (1999).
[19] K. Nichol, A. Zanin, R. Bastien, E. Wandersman, and

M. van Hecke, Phys. Rev. Lett. 104, 078302 (2010).
[20] A. Lemaı̂tre and C. Caroli, Phys. Rev. Lett. 103, 065501 (2009).

020301-4

http://dx.doi.org/10.1103/RevModPhys.68.1259
http://dx.doi.org/10.1038/nature01394
http://dx.doi.org/10.1038/nature01867
http://dx.doi.org/10.1038/nature01867
http://dx.doi.org/10.1038/35096540
http://dx.doi.org/10.1038/35096540
http://dx.doi.org/10.1103/PhysRevE.72.030301
http://dx.doi.org/10.1103/PhysRevE.72.030301
http://dx.doi.org/10.1098/rspa.1990.0083
http://dx.doi.org/10.1098/rspa.1990.0083
http://dx.doi.org/10.1103/PhysRevLett.68.2301
http://dx.doi.org/10.1103/PhysRevB.48.15646
http://dx.doi.org/10.1016/j.physrep.2007.10.007
http://dx.doi.org/10.1103/PhysRevE.72.031303
http://dx.doi.org/10.1103/PhysRevLett.82.1863
http://dx.doi.org/10.1103/PhysRevLett.82.1863
http://dx.doi.org/10.1103/PhysRevLett.93.154303
http://dx.doi.org/10.1103/PhysRevE.70.061302
http://dx.doi.org/10.1103/PhysRevE.70.061302
http://dx.doi.org/10.1103/PhysRevE.75.016602
http://dx.doi.org/10.1103/PhysRevLett.101.138001
http://dx.doi.org/10.1103/PhysRevLett.101.138001
http://dx.doi.org/10.1038/379601a0
http://dx.doi.org/10.1038/nature04015
http://dx.doi.org/10.1103/PhysRevE.80.011306
http://dx.doi.org/10.1103/PhysRevE.80.011306
http://dx.doi.org/10.1080/00018730600732186
http://dx.doi.org/10.1029/GL010i011p01073
http://dx.doi.org/10.1115/1.2787292
http://dx.doi.org/10.1115/1.2787292
http://dx.doi.org/10.1103/PhysRevLett.82.3280
http://dx.doi.org/10.1103/PhysRevLett.82.3280
http://dx.doi.org/10.1103/PhysRevLett.104.078302
http://dx.doi.org/10.1103/PhysRevLett.103.065501

