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Probing the shear-band formation in granular media with sound waves
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We investigate the mechanical responses of dense granular materials, using a direct shear box combined with
simultaneous acoustic measurements. Measured shear wave speeds evidence the structural change of the material
under shear, from the jammed state to the flowing state. There is a clear acoustic signature when the shear band
is formed. Subjected to cyclic shear, both shear stress and wave speed show the strong hysteretic dependence on
the shear strain, likely associated with the geometry change in the packing structure. Moreover, the correlation
function of configuration-specific multiply scattered waves reveals an intermittent behavior before the failure of
material.
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I. INTRODUCTION

Granular materials are ubiquitous in everyday life, ranging
from industrial applications to geophysical processes (e.g.,
fault core dynamics). If the steady-state granular flow is
reasonably well understood [1,2], the transition from the
jammed state to the flowing state still remains elusive,
including stick-slip behavior and precursor events before
failure [3–6].

Many works on numerical simulations in two-dimensional
(2D) or three-dimensional (3D) granular media have been
performed to examine the evolution of the structure and the
mechanical properties of a granular medium at micro- and
mesoscales during the jamming transition and/or shear-band
formation [7–9]. Meanwhile, only a few experiments are
available, via photoelastic visualization [10] in 2D and x-ray
[11,12] and magnetic resonance imaging (MRI) tomography
in 3D granular models [1], to investigate their microstructure
changes and the particle velocity fields during slow flow.
However, the application of these experimental methods to
real 3D opaque granular materials appears difficult.

Sound waves provide a unique and sensitive probe for
investigating the contact force networks in real granular
media [13–17]. Speed measurements of long-wavelength
sound waves allow one to determine the nonlinear elasticity
and anisotropic effects of the granular material [14–16], while
short-wavelength multiply scattered sound waves enable one to
detect tiny changes of the contact network configuration at the
grain level [17]. Sound waves also provide useful information
about the nonlinear dynamics of granular materials under slow
shear flow [18] and during granular avalanche [19]. However,
is there any specific acoustic signature of the shear-band
formation obtainable via shear sound reflection or transmission
[20]? Probing with the shear wave might allow inferring
the specific behavior of the shear modulus near unjamming
transition [21].

In this work, we show that the sound speed measurements
in transmission and particularly of the shear wave provide an
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assessment of changes in the granular structure of a glass bead
packing under shear loading. Our data reveal a clear acoustic
signature when the shear band is formed inside the medium.
Special attention will be paid to the hysteretic behavior of
the mechanical responses and the shear wave speed evolutions
under cyclic shear loading with ramped strain amplitude. We
will also investigate the irreversible rearrangements of the
contact networks under shear by multiply scattered sound
waves in both dense and loose granular packings.

II. APPARATUS

To create the localization zones of shear strain away from
the wall boundaries, we utilize here a direct shear apparatus
shown in Fig. 1(a). It consists of a metal box of square cross
section 40 × 40 mm2 separated into two parts and each has a
height of 15 mm (with a filling height H = 30 mm). The shear
loading is applied horizontally to the lower part of the box
at the constant velocity Vdrive = 0.6 μm/s, while the upper
part is kept fixed. The shear force T required to maintain
the upper part immobile is measured by a load cell of stiffness
k = 107 N/m. The constant normal load N = 330 N is applied
to a piston on the top of the granular sample, corresponding to
a normal stress of P = 206 kPa. A position sensor records the
relative horizontal displacement between the two parts of the
shear box. A second one measures the vertical displacement of
the piston to determine the dilatancy of the material induced
by shear.

Spherical glass beads of diameter d = 700 ± 20 μm are
used. The material constants of the glass beads are ρ =
2500 kg/m for the bulk density, G = 25 GPa for the shear
modulus, and ν = 0.2 for the Poisson ratio. To investigate the
influence of the packing density on the unjamming transition
in sheared granular materials, two different packing protocols
are performed. For the “rainfall” packing preparation, the
beads are poured into the box through two spaced grids. This
packing protocol creates the dense packing with a solid volume
fraction of φ = 0.641 ± 0.002. For the decompaction packing
protocol, we slowly remove an inner horizontal grid through
the packing. This preparation method gives a loose packing
with φ = 0.600 ± 0.002. Note that these two preparation
methods also produce different granular fabrics [16].
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FIG. 1. (Color online) (a) Direct shear apparatus combined with
acoustic measurements where E and R are the acoustic source and
receiver. (b) Typical transmitted ultrasonic signals obtained before
shear loading (dashed line) and at the peak shear force (solid line).
(c) Evolution under shear of force ratio T/N and (d) dilatancy in

the loose ( ), dense ( ), and stratified packings (Δ, reloading in the
same direction; ◊ , reloading in the reverse direction).

Combined ultrasonic measurements are conducted simul-
taneously with the shear experiments. One is the speed
measurement of coherent shear waves and the other is the
detection of multiply scattered waves. As shown in Fig. 1(a),
a large shear transducer of diameter 30 mm is placed on the
lower part of the shear box. For the speed measurement, this
source transducer of broadband, centered at 250 kHz, is excited
by a short pulse of 4 μs and coherent shear pulses with central
frequencies around 40 kHz are measured by the same large
transducer placed in the upper piston at various shear loading
[Fig. 1(b)]. The low-frequency spectra of these coherent waves
are basically due to scattering attenuation [14]; no dispersion
of sound speed is observed here. To avoid the interference
between the compressional signals and the dominant shear
pulses caused by the small size of the shear box [16], we
measure the shear wave speed VS via the time of flight of the
pulses maxima (the real value of VS is thus underestimated).
The relative change of the shear wave speed �VS/VS due to
shearing shown in Fig. 1(b) is about 22%, 24%, or 27% if one

follows the evolution of the maxima, first, or second minima,
respectively; these results are consistent showing thus fairly
accurate measurements of �VS/VS . For monitoring the local
rearrangement by the acoustic speckles, the multiply scattered
waves are generated by a ten-cycle burst centered at 250 KHz
and are detected by a small transducer of 2 mm placed at the
top.

III. MECHANICAL RESPONSES

We first examine the mechanical response of a granular
medium under shear. Figures 1(c) and 1(d) show typical
evolutions of the force ratio T/N and the dilatancy as a
function of the relative horizontal displacement U between
the two parts of the shear box. We observe the classical
behavior of sheared granular media, undergoing the transition
from the jammed state to the flowing state. For the densely
packed sample, the shear force T rises rapidly with the shear
displacement in the early stage before reaching a peak value
and then decreases and tends to a stationary value when the
flow is fully developed. For the loosely packed sample, the
behavior is similar except that there is no peak force. In both
cases, there are small compressions of the media at the initial
stage preceding the dilatations [Fig. 1(d)].

Note that the steady-state flowing is characterized by a
constant value of T/N , referred to as the residual strength; it
is independent of the initial sample density and the fabric
anisotropy [22]. It has been shown that when a granular
medium is sheared to the steady state in a direct shear box, the
shear strain is essentially localized in a narrow zone located at
the midheight of the box where a shear band is formed. Such
a shear localization zone exhibits distinct features compared
to the rest of the medium, including extremely large voids
and the presence of a highly anisotropic network of force
chains [7,9,12].

We then wonder what may be the mechanical behavior of
a granular medium comprising a preexisting shear band when
applying a shear force. Figure 1(c) (insets) displays the shear
force displacement response of such a sample, sheared either
in the same or the reverse direction as the first shearing. In
such stratified medium possessing a shear band at the middle,
the peak force disappears and the medium reaches closely the
same steady flowing state. When the reloading is performed in
the same direction as the prior shear direction, we observe a
similar mechanical behavior to that in a loosely packed sample.
As mentioned previously, when all the samples are driven to the
steady-state flow, the shear strain is localized in the shear band.
The same stationary value of the ratio T/N implies that a fully
developed shear band has the same properties, independent of
the sample history.

IV. ACOUSTIC RESPONSES

We now examine the evolution of shear wave speed VS

through the granular samples during the first shear loading
before the strain localization. As shown in Fig. 2, significant
decreases of shear wave speed VS up to 20% are observed
in both densely and loosely packed samples, displaying a
comparable overall acoustic response under shear. For large
shear displacement, the steady-state flow is characterized by
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FIG. 2. (Color online) Evolutions of the shear wave speed under
shear in the dense samples (a) and loose samples (b). and ,

first loading; Δ, reloading in the same direction; ◊ , reloading
in the reverse direction. Inset in (a): decrease of the compression
wave speed during shear. Inset in (b): illustration of the evolution
of the coordination number obtained in 3D discrete element model
simulation in [8] with the polar distribution evolution of contact
normal force inspired from [9].

a constant wave speed. As a comparison, we note that the
decrease of the compression wave speed VP during shear [inset
of Fig. 2(a)], measured with longitudinal transducers, is about
two times less than that of VS .

To account for our speed measurements during the tran-
sition from the jammed state to the flowing one, we may
compare qualitatively the experiments with the predictions by
the effective medium theory (EMT) [15,23]. In the limit of long
wavelength as in our experiments, i.e., λ ∼ 10 mm much larger
than the bead size d ∼ 0.7 mm, the speeds of compression and
shear waves VP and VS are related to the effective bulk and
shear modulus K and G via VP = [(K + 2G/ρ)]1/2 and VS =
(G/ρ)1/2, where ρ = ρ0φ and ρ0 is the glass bead density.
For isotropic compression P , the scaling expression of elastic
moduli K and G yields [15]

VP,S ∼ Z1/3φ−1/6P 1/6, (1)

with Z the coordination number, i.e., the mean number of con-
tact per grain. This simplified expression illustrates a general
relationship between the microstructural parameters and the
macroscopic acoustic properties. The overall speed decreases
of compression and shear waves observed under shear is thus
likely related to the change of the geometric structure (i.e.,
texture) with a decrease of the mean coordination number Z.
The inset of Fig. 2(b) shows 3D numerical simulations of direct
shear test [8] in which the decrease of the coordination number
induced by shearing is clearly evidenced, supporting thus our
interpretation.

Nevertheless, the anisotropy of the stress field induced
by shearing may also affect our measured wave speeds. As
shown previously [16], the scaling relationship in Eq. (1) holds
qualitatively for anisotropic loading if P corresponds to the
stress component along the direction of wave propagation.
Applying a shear load here induces the principal axis rotation
of the stress and the modulus tensor, which reduces effectively
the elastic moduli K and G and consequently, the sound
speeds VP and VS along the vertical direction. This anisotropic
effect could also explain the evolution of wave speed in the
densely packed sample, which passes through a minimum
before reaching the stationary value. Indeed, when the dense
packing reaches the pronounced peak force [Fig. 1(c)], the
principal stress direction is deviated from the vertical direction
significantly reducing the sound speeds. When the medium
attains the flowing state, the principal axis of stress rotates back
to the vertical direction. This behavior has been confirmed by
numerical simulation on the evolution of either the deviator
fabric in 3D simulations [8] or the distribution of normal
contact forces in 2D simulations [9].

The main finding of this work lies in the drastically different
acoustic response in a granular medium where the shear band
is fully developed, e.g., by the first loading. Under further
shearing, whatever the direction of reloading versus that of the
prior shearing, the shear wave speed in such a granular medium
remains nearly constant (Fig. 2). This observation provides a
clear acoustic signature of the irreversible modification inside
the granular structure with the formation of a shear band. We
understand this result as follows. During the first loading, a
shear band is formed which becomes the weakest zone of the
medium. Upon reloading, this weak zone localizes the strain
and yields immediately, driving the medium to the flowing
state. However, the structure away from this narrow shear band
(a few grain size) in the rest of the sample, is little deformed;
hence, the coordination number and the anisotropy of the
medium remains globally unchanged. The different stationary
values of VS between the dense and loose packings reveal a
dependence on the initial packing condition. Note that there is
no detectable acoustic reflection by the shear band [20] in these
experiments probably due to the weak impedance contrast.

Let us now compare quantitatively the shear waves speed
decrease measured during the first shear loading with the
prediction by the heuristic EMT model. Using together with a
decrease of Z by 10% at a global shear strain ε = U/H ∼ 10%
[inset of Fig. 2(b)] and a decrease of a normal stress by 30%
(due to the rotation of the principal stress axis ∼45◦ and the
inhomogeneous repartition of the force network [9]), Eq. (1)
predicts a sound speed decrease by 8%. This estimation is in
agreement with the decrease of VP (∼10%), but only half the
variation of VS observed in experiments. Two possible reasons
might be responsible for such discrepancy. One stems from
the heuristic model which does not account for quantitatively
either the inhomogeneous field of contact forces, inherent
of the direct shear box or the important fabric variation
[8,9]; note that the shear wave speed VS was shown to be
particularly sensitive to the fabric anisotropy [16]. The other,
more fundamentally, originates from the breakdown of the
EMT in sheared media near unjamming transition (i.e., failure)
where the elastic weakening due to relaxation or slippage
of grains especially at low confining pressure might induce
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FIG. 3. (Color online) Evolutions of force ratio (a) and shear
wave speed (b) under cyclic shear. (c) Evolutions of the shear wave
speed during the eighth cyclic loading for different displacement
amplitudes. The left inset illustrates the evolution of force ratio during
the eighth cycle and the right inset illustrates the evolution of the wave
speed variation within the eighth cycle.

a supplementary decrease of VS by 20%–40% [15,17,21].
Indeed, if one considers the distinct properties of the shear
band formed after the failure (with a height h = 5–10d)
compared to the rest of the medium assumed weakly modified,
an increase of 20% of the time of flight in this stratified medium
t = (H − h)/V0 + h/VSH (at ε = 10%) relative to that under
zero shear t0 = H/V0, might reveal a decrease of shear wave
speed VSH inside the shear band up to 45%–70%, not predicted
by the EMT model.

A. Cyclic shear

To better understand the structural changes which lead to the
strain localization, we investigate the response of the medium
subjected to cyclic shear with increasing shear amplitude.
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FIG. 4. (Color online) Correlation between two successive coda
waves before failure in (a) a dense sample; , force ratio; (b) a loose
sample; , force ratio; and (c) zoomed part of Fig. 4(a) as a function
of the experimental time (see text).

In the following, we will focus our attention on the densely
packed samples. At a given shear displacement before reaching
the peak force, we obtain the typical hysteretic loop between
normalized shear force (T/N) and displacement [Fig. 3(a)].
For this small shear displacement, a slight strengthening with
the number of cycling is observed. In contrast, for larger
amplitude we obtain an elastic weakening (not shown). The
evolution of the shear wave speed during this cyclic shear
loading is depicted in Fig. 3(b). The remarkable speed decrease
between the beginning and the end of the first cycle of shear
loading corresponds to some plastic rearrangement and prob-
ably small adaptation of the initial packing. Under subsequent
unloading-reloading cycles, we observe a repeated hysteretic
response of the shear wave speed or elastic modulus as a
function of shear displacement; this is likely associated with
the evolution of the microstructure when the system explores
different metastable configurations via flips events [24]. Such
elastic hysteretic behavior is consistent with the evolution
of fabric anisotropy obtained in 2D simulation during cyclic
tilting of a granular pile below the avalanche angle [25,26].
Indeed, the wave speed varies when the anisotropy and the
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mean coordination number change; the agreement between our
wave speed measurements and numerical simulation confirms
the ability of sound waves for probing the structural evolution
under shear.

Let us now investigate the amplitude effect of the shear
displacement. We present in Fig. 3(c) the variations of the
shear wave speed during the eighth cyclic loading with
different displacement amplitudes [left inset of Fig. 3(c)].
As the amplitude increases, we observe that the maximum
variation of the wave speed �VS within the hysteretic loop
decreases. As shown in [9], for small displacement, there is
no strain localization and the structural change entails the
whole packing. Hence, in this regime, the larger the shear
displacement, the larger the wave speed variation. Beyond a
certain threshold of the shear displacement, the variation of
the wave speed reduces importantly due to the onset of the
strain localization. In that regime, as was stated above, the
packing away from the narrow shear zone does not respond
significantly to the shear loading. VS measured from the time
of flight across the entire packing varies little and becomes
almost constant with the full development of the shear band.

B. Intermittent dynamics before failure

If the residual strength of a granular medium is independent
of the initial state of the granular packing, the peak force and
the prepeak behavior such as creep and plastic deformation
depend strongly on the packing density and the fabric.
Several works have shown that significant precursor events
or irreversible rearrangement of grains occur before the peak
force, i.e., failure [3–6].

To investigate the precursor behavior, we use the
configuration-specific specklelike scattered waves to monitor
the granular packings under shear, from the jammed state
to the flowing state. More specifically, we define the degree
resemblance �i,j between two successive acoustic speckles
Si(t) and Sj (t) (inset of Fig. 4) [17]:

�i,j (τ = 0) = Cij (τ = 0)/
√

Cii(0)Cjj (0) (2)

where Cij (τ ) is the cross-correlation function between Si(t)
and Sj (t) and τ is the time lag. Figure 4 illustrates �i,i+1

deduced from two successive scattered acoustic signals
recorded at a rate of 1 Hz in dense and loose bead packings,

respectively. This correlation function reveals basically a slight
global decorrelation lasting over the experimental range, su-
perposed by the very large pulselike components which occur
intermittently. These spikes likely correspond to the major
irreversible rearrangements in granular packings evidenced by
the intermittent events in the force measurement [Fig. 1(b)].
For closer examination, we plot in Fig. 4(c) a zoomed part
of Fig. 4(a) (around U = 2400 μm) as a function of the
experimental time. Here the abrupt force drops clearly coincide
with the important decorrelation of acoustic speckles �i,i+1.
We note that the significant decorrelation may also occur due
to the force network change but without visible motions of
grains [17]. Furthermore, the intermittent events detected in
�i,i+1 appears more pronounced in the loose packing than in
the dense packing, before the failure (i.e., peak force). In the
following state when the strain is localized, �i,i+1 displays the
similar intermittent responses in the two packings, showing
that the rheological behavior is henceforth dominated by the
shear band.

V. CONCLUSION

The evolutions of the structure and the mechanical prop-
erties of glass bead packings under shear are investigated by
acoustic measurements, during the transition from the jammed
state to the flowing state. Measurements of the shear wave
speed clearly evidence the breaking of contacts or decrease
of the coordination number in sheared granular media; they
also provide the acoustic signature when the shear bands are
formed. The hysteretic responses under cyclic shear reveal flips
or collective rearrangement events. Moreover, the correlation
functions of specklelike scattered sound waves evidence the
specific intermittent dynamics of the contact force networks.
Our results obtained in the laboratory experiments, both for
the shear-band formation and the precursor events, may have
important implications on large-scale field experiments for
remote probing of the fault core dynamics [4,18].
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