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Analysis of optical interferometric measurements of guided acoustic waves 
in transparent solid media 

X. Jia,‘) Ch. Mattei’, and G. Quentin 
Groupe de Physique des Solides, Universit& Paris 7 et Paris 6, Unite’ Associke au CNRS No. 17, Tour 23, 
2 place Jussieu, 75251 Paris Cedex 05, France 

(Received 20 May 1994; accepted for publication 4 February 1995) 

Guided acoustic waves propagating in transparent and isotropic solids are studied by optical 
interferometry via the photoelastic effect. Unlike the photoelastic technique, the interferometric 
method permits the measurement of the phase shift rather than the polarization change of the light 
passing through an acoustic field. By analyzing the acoustically induced change in the index 
ellipsoid of refraction, it is demonstrated that the optical phase shift is proportional to the dilatation 
or the relative change in volume of the material. The dilatation fields of the symmetric and 
antisymmetric Lamb modes S, and AO, as well as that of the Rayleigh wave, were calculated. 
Experiments performed in fused quartz by the interferometric method are in good agreement with 
theoretical predictions. Compared to the conventional photoelastic technique, the interferometric 
measurement of acoustic wave is phase sensitive and quantitative. 0 1995 American Znstitute of 
Physics. 

I. INTRODUCTION 

Since the first experiments made by Lucas and Biquard’ 
in France and Debye and Sears’ in the U.S.A., acousto-optic 
effects have found wide interests for applications such as 
acousto-optic devices for light beam deflection, modulation, 
and signal processing.s-5 In addition, the acousto-optic inter- 
action affords a convenient way of optically probing the 
acoustic field inside a transparent medium. Unlike acoustic 
transducers, the optical detection does not disturb the acous- 
tic fields under investigation. Many applications have been 
found in medical diagnosis and nondestructive 
evaluation.4+s 

Acousto-optic modulation of the light traveling through 
an acoustic beam arises from refractive index variations as- 
sociated with the strain fluctuations due to the acoustic 
waves. Since the acoustic wave interacts with the optical 
wave along the whole light path, optical techniques based on 
the acousto-optic interaction are usually limited to probing 
two-dimensional (2D) acoustic fields uniform along the 
propagation direction of the light. Among various optical 
techniques, two types are basically distinguished: optical dif- 
fraction and beam deflection. The first is referred to situa- 
tions in which the optical beam is much wider than the 
acoustic wavelength. The acoustic wave acts as a moving 
phase grating, diffracting the light into different orders in the 
far optical field (Raman-Nath diffraction).” Schlieren visu- 
alization derived from this mechanism has extensively been 
used to study the propagation of acoustic waves in fluids.“.” 
The second method deals with the deflection of the light 
beam caused by the gradient of refractive index (mirage ef- 
fect) when acoustic waves propagate in the medium.‘2*‘3 
Contrary to the preceding situation, the light beam is nar- 
rower than the acoustic wavelength here. Optical deflection 
techniques have also been widely used in photoacoustic and 
photothermal measurements in fluids.14 

‘)Electronic mail: jia@gps.jussieu.fr 

In solids the acousto-optic interaction becomes more 
complex than in fluids because the propagation of acoustic 
waves can additionally induce the optical birefringence. 
Generally speaking, the transmitted light exhibits both phase 
and polarization changes. The usual method, referred to as 
the photoelastic technique, is based on measurements of the 
polarization change of the light? Like the Schlieren visual- 
ization the conventional photoelastic technique is sensitive 
only to acoustic intensities. Recently, we proposed an optical 
interferometric method for measuring bulk acoustic waves 
both in fluids and solids.t5*t6 Unlike the usual displacement 
or velocity measurements at the vibrating surfaces,‘73’8 the 
optical interferometry was arranged to measure acoustic 
pressures or strains inside transparent media. Different from 
the photoelastic technique, the interferometric method per- 
mits a quantitative measurement of the additional phase shift 
of the light induced by acoustic waves. The main advantage 
lies in its sensitivity to not only the magnitude but also the 
phase of acoustic signals. 

In this paper, we present an extension of this interfero- 
metric method to the study of guided surface acoustic waves 
such as Lamb, Rayleigh, and Stoneley waves propagating in 
an isotropic solid. It is well known that these surface waves 
are of major importance in material characterization and 
acoustoelectric processing.‘g-21 However, because of the an- 
isotropic nature of the acousto-optic effect and the combined 
mechanical motions of the longitudinal and shear waves, the 
interaction of an optical wave with a surface acoustic wave is 
much more complicated than that with a bulk wave.22-24 In 
Sec. II we will first analyze this problem, starting from the 
refractive index ellipsoid. The principles of the photoelastic 
and interferometric methods are illustrated using Jones for- 
malism. The theoretical strain fields of the Lamb modes So 
and A0 as well as those of the Rayleigh wave are given in 
Sec. III. We then compare these results with the experimental 
data in Sec. IV. 
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FIG. I. Schematic diagram of the interaction between a light wave and a 
guided acoustic wave. 

II. ANALYSIS OF THE ACOUSTO-OPTIC 
INTERACTION WITH SURFACE ACOUSTIC WAVES 

A. Photoelastic effect 

The interaction of the light with a guided acoustic wave 
is schematically illustrated in Fig. 1. The transparent solid is 
at rest optically isotropic. Without loss of generality the 
propagation direction of the acoustic wave can be taken as 
the x1 axis, thus defining the plane x1x2 as the sagittal plane. 
The light travels in the direction x3 perpendicular to the 
propagation direction of the acoustic wave. Because of the 
acoustic perturbations the solid medium becomes optically 
anisotropic. The resulting changes in the components of the 
dielectric tensor are3-5 

AEij= A( lln*)ij= - ~*pijklSkl) (1) 

where E is the dielectric constant of the isotropic solid and 
pijkl (i,j,k,l= 1,2,3) is the photoelastic tensor. The strain ten- 
sor Sk. is symmetric, and related to the particle displacement 
uk by 

(2) 

Here the diagonal components Sii , S2*, and S33 are the lon- 
gitudinal strains corresponding to the extension of a cube 
along the axes x1, x2, and x3, whereas the off-diagonal com- 
ponents are associated with shear strains that do not contrib- 
ute to volume change. In the present analysis, we consider 
only a “plane” guided acoustic wave, defined as a wave 
where no dependence of particle displacement on the direc- 
tion x2 perpendicular to the propagation direction xi is ob- 
served, i.e., a usual 2D acousto-optic configuration. In an 
isotropic guide there exist, in general, two independent 
acoustic wave solutions.‘g’20 One is the Rayleigh type of 
wave with displacement components only in the sagittal 
plane (ut and z~~#O), as is the case for Rayleigh, Lamb, and 
Stoneley waves. The second is the SH type of wave exhib- 
iting transversely polarized displacements perpendicular to 
the sagittal plane (only u~#O), such as SH bulk waves and 
Love waves. The SH type of waves will not be considered in 
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this work, because there is no acousto-optic effect on the 
light traveling along the direction parallel to the polarization 
of acoustic displacements.3”6 

We are primarily concerned with the Rayleigh type of 
wave. According to Eq. (2), the associated strain tensor Ski 
has three nonzero components: St,, S,,, and St,. Using the 
standard reduced notation,“‘20 the strain tensor can be writ- 
ten in the form of a column matrix S, (n = 1,2,...,6) in which 
Si=Stt, S2=S2*, and S6=2St2. Substituting the strain 
components into Eq. (l), the variations of the dielectric ten- 
sor Aeij in Eq. (1) can be expressed by a symmetric matrix in 
reduced notation: 

(A+( i;: :;: I). 
with 

(3) 

AE,= - E~(PIIS, +~,2s2L 

Here pmn is a 6X6 photoelastic tensor written in terms of 
reduced subscripts. It may be noted that the acoustic strains 
transform the initial refractive index sphere into an ellipsoid, 
having its principal axes x,y no longer parallel to the geo- 
metrical axes xi ,x2, due to the off-diagonal component Aes. 
The presence of AC, is generally associated with the Ray- 
leigh type of wave because p1 i fp,, in solid media.3-5 Un- 
der these circumstances, the isotropic solid becomes opti- 
cally biaxial. Polarized light passing through such a medium 
undergoes a phase shift and also a polarization rotation. 

By diagonalizing the refractive index matrix in Eq. (3), 
its eigenvalues can be found, leading to the refractive index 
for eigenmode propagation.’ With respect to the principal 
coordinates xyz, the ellipsoid equation may be written in a 
simple form 

(4) 

with the major axes parallel to the principal directions x, y, 
and z. The respective lengths of these axes are 2n,, 2n,, and 
2n,. In the approximation of weak perturbation (Angn), 
the new principal refractive indices, defined as nx,Y,Z 
=JKiare 

n,=n-(n3/2) 2 1 i 
(Pll+Pl*) (s +S,) 

(Pll -p12) +- 
2 &TqT2g , 1 (5) 
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FIG. 2. The index sphere (S) of an isotropic solid becomes an ellipsoid (E) 
in the presence of acoustic strains. 
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n,~n-(r23/4)P12(S,+S2). 

The new principal axes xyz are obtained by rotating the geo- 
metrical axes x1, x2 around the x3 axis by angle 1//, as illus- 
trated in Fig. 2: 

63 

For the simple example of longitudinal motion along the 
direction x t , the only nonzero strain component is defined by 
Sl=duldxl [Eq. (2)]. In this case, we have 

An,=-(1/2)n3pllS1, 

An,,=An,= -(1/2)n3pt2S1, 

$=O, 

which implies that the solid becomes uniaxial with the new 
principal axes still parallel to the geometrical axes. On the 
other hand, a plane shear wave, in which the particle dis- 
placement is only in the direction x2 (SV shear wave), is 
defined by the relations St =S2=0, S6=du2/dxi, yielding 

An,=-An,=-(1/2)n3(p11-p12)S6r 

An,=O, and $=45”. 

The new principal axes are now rotated by 45” around the x3 
axis.16 

B. Photoelastic and interferometric measurements of 
surface acoustic waves 

It is seen in the preceding discussion that the propaga- 
tion of a guided acoustic wave transforms, in general, the 
solid into an optically biaxial medium. Consider now a light 
beam traveling in this solid along the direction -x3 (Fig. 1). 
The electric field E of the incident light is expressed, using 
the Jones formulation, in matrix form, by 

(7) 

For simplicity in the analysis, the propagation term 
exp i(wt-/ck~~) will be neglected in the following discus- 
sion. To determine how the light propagates in an optically 
birefringent medium, it is useful to decompose the light into 
a linear combination of two eigenmodes in which the electric 
fields are parallel to the principal axes x,y. This can done by 
the coordinate transformation 

Here R(e) is the rotation matrix which allows the matrix 
representation of the E fields to be transformed from the 
geometrical axes to the principal ones. Let n, and nY be the 
refractive indices of the eigenmodes E, (E,, 0) and E2 (0, 
E,), respectively. The polarization state of the light E’ 
emerging from the acoustic beam is written in the principal 
coordinates x,y as follows: 

exp( - in,wZlc) 0 
0 exp( - in,wllc) 3 (9) 

where I is the thickness along the 3~s direction of the acoustic 
beam inside the solid and o the frequency of light. As the 
light propagates in the crystal, the polarization state of the 
emerging light is changed5 because of the difference in phase 
shift between the “slow mode” E, and the “fast mode” E2. 

Introducing two parameters I? and 4, defined as 

and 

+ $ (n,+nJ c, (11) 

the emerging light given in Eq. (9) is rewritten in terms of I? 
and I$: 

(;) =,i+( exp(ir’2) exp(yTil)) (2) 
Ex =WE. ( i Y 

It can be noticed that l? is the phase retardation measuring 
the relative phase change between the eigemnodes, that is, 
the optical birefringence induced by acoustic waves, and 4 is 
the mean absolute phase shift of the light transmitted through 
the medium. The expression for the emerging light E’ in 
geometrical coordinates x1 ,x2 can be obtained by transform- 
ing back from the principal coordinates x,y. Combining Eqs. 
(8), (9), and (12) the emerging light is related to the incident 
one as follows: 

(13) 

where Wo=R( - $) WR( t,b) is 
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wo+-‘@ ( 
cos(r/2) -i sin(F/2)cos 2* -i sin(r/2)sin2* 

-i sin(r/2)sin 2* i c0s(r/2) + i sin(r/2)cos 2 + . (14) 

Consequently, the propagation of the light across the medium 
is entirely characterized by the Jones matrix W,. 

If the incident light is initially polarized in the x1 direc- 
tion with the help of a polarizer, as shown in Fig. 1, 

1 
E=Eo o , 0 

the emerging light at the output is obtained from Eq. (13): 

1 
E’ = WOE, O 0 

=Eoe3 c0s(r/2) - i sin(l?/2)cos 2$ 
-i sin(r/2)sin 2$ 

=EOe -iq5 

( 

1 
-i(I+/2)sin 2$ i . 06) 

The approximation on the right-hand side of the above equa- 
tion is valid for low intensity acoustic waves. In conven- 
tional photoelastic measurements, the transmission intensity 
of the light is measured. The phase factor exp(-id) in Eq. 
(16) is not observable and usually neglected. If an analyzer 
placed at the output of the system is crossed with respect to 
the polarizer at the input, the component of E’ in the direc- 
tion x2 is selected. Putting Eqs. (5) and (10) into Eq. (16), we 
obtain the transmission intensity I: 

zd?~(sl-s2)2+4s& (17) 

proportional to the square of acoustic strain. This is the basic 
principle of the photoelastic technique.7 According to Eqs. 
(16) and (17), the light intensity diffracted by acoustic waves 
into the direction x2 is much smaller than that of the incident 
light E polarized in the direction x1. Moreover, it is seen 
from Eq. (17) that the acoustic strains or stresses measured 
with the photoelastic method are rather complicated, being 
neither pure longitudinal nor pure shear. 

We describe now the principle of our interferometric 
method, based upon the measurement of the phase shift 4 in 
Eq. (16). Substit u ing Eq. (5) into Eq. (ll), the mean optical t 
phase shift 4 is written as 

Here qho=nwllc is a constant phase shift due to the finite 
thickness I of the acoustic beam, whereas S$ is the addi- 
tional phase shift proportional to the sum St + S2 of longitu- 
dinal strain. In the present 2D or plane acoustic wave prob- 
lem, with S3= du3/dx3=0 for dldx3=0, the sum of 
longitudinal strain St + S2 is nothing else but the dilatation 
or the relative change of material volume A=6V/V.” The 
parameters of surface acoustic waves measured by the inter- 
ferometric method thus find a physical significance as simple 
as the acoustic pressure associated with longitudinal waves 
in fluids.” In order to extract the dilatation A from the opti- 
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cal phase factor 4 in Eq. (16), the component of the emerg- 
ing light in the direction x1 must be filtered. This component 
with an amplitude close to that of the incident light E. is then 
combined interferometrically with a reference light beam, as 
for pressure measurements in fluids.15 As will be shown in 
Sec. IV A, the additional phase shift &$(t) and consequently. 
the acoustic dilatation A(t) associated with the guided wave 
can then be demodulated by a broadband electronic circuit to 
get a temporal linear response of low amplitude sinusoidal as 
well as short pulsed acoustic signals. Compared with the 
photoelastic technique, this interferometric measurement 
preserves not only the magnitude but also the phase informa- 
tion of acoustic waves. 

In the particular case of pure shear waves with 
S, = S2 =O, the interferometric measurement becomes deli- 
cate, since the additional phase shift S+ of the light in Eq. 
(18) is zero. The acoustic information no longer appears in 
the phase shift, but in the magnitude of the light diffracted in 
the direction ‘x2 proportional to Se, according to Eqs. (16) 
and (17). Nevertheless, by mixing the two components of the 
emerging light polarized in the directions x1 and x2 with the 
reference light, the shear strain S6 has been detected linearly 
from the magnitude of the diffracted light.16 

III. CHARACTERISTICS OF LAMB AND RAYLEIGH 
WAVES 

In the preceding section, we have shown that the inter- 
ferometric method can give access to the measurement of 
dilatation induced by guided acoustic waves. As examples, 
two typical guided waves were chosen to check the effi- 
ciency of this detection method: Lamb modes and Rayleigh 
waves propagating in an isotropic plate and substrate, respec- 
tively. The latter may be deduced, as shown below, from the 
former as a limit case when the plate becomes very thick. 
Before calculating the dilatation fields, it is instructive to 
briefly describe the principal characteristics of Lamb and the 
Rayleigh waves, especially the dispersion curves and the as- 
sociated displacements. 

A. Dispersion features for Lamb waves and the 
associated displacement fields 

Lamb waves are modes guided inside an elastic plate 
with the stress-free boundary conditions.‘g,20 The particle 
displacements are located in the sagittal plane formed by the 
direction of propagation and the axis normal to the plate 
plane. The particle displacement in an isotropic solid can be 
written in terms of potential functions: 

u=v@+vxw. (19) 

Here v=(O,O,yr> is the rotational potential and Cp is the sca- 
lar potential, governed, respectively, by the following equa- 
tions: 

V2@+k@=0, V2?+k$?=0, (20) 
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FIG. 3. Dispersion curves of Lamb waves in an isotropic plate of fused 
quartz. 

where k, and k, are the wave numbers of longitudinal and 
shear plane waves. Applying the stress-free boundary condi- 
tions ( Tzz= T,,= 0) at the two surfaces of the plate 
(x2 = 2 d), the characteristic (Rayleigh-Lamb) equations are 
obtained. It is found that, for a given value fd (frequency 
Xplate thickness), there exist, in general, multiple solutions 
for the phase velocity which satisfy the Rayleigh-Lamb 
equations. These correspond to the different Lamb wave 
modes. Figure 3 displays typical dispersion curves of the first 
few of these modes calculated for an isotropic plate (fused 
quartz). It is seen that the phase velocities depend upon the 
frequency for a given plate thickness: the modes are disper- 
sive. 

Lamb modes propagating in an elastic plate can be split 
up into two systems of symmetric (S) and antisymmetric 
(A) modes, respectively, according to the symmetry of par- 
ticle displacements with respect to the middle plane of the 
plate. The symmetric modes have the u i component symmet- 
ric and the u2 component antisymmetric with respect to the 
middle plane. These modes are thus longitudinal in nature. 
Conversely, the antisymmetric modes have u2 symmetric and 
ut antisymmetric so that the plate motions for these modes 
are flexural. The following expressions for the displacement 
components ut and u2 show the symmetry features of these 
modes: lg 

Xsin(k,xt-wt), 

u2= -Aq, 
sinh(qsx2) 2k: sinh(s,x2) 

sinh(q,d/2)- m sinh(s,d/2) 

X cos(k,xl - wt) 

for symmetric modes and 

ul=Bk, 
siNq,x2) 2q2, siW,x2) 

cosh(q,d,) - R cosh(s,d2) 

Xsin(k,xi-ot), (22) 

5532, J. Appl. Phys., Vol. 77, No. 11, 1 June 1995 

(21) 

cosh(q,x2) 2k: cosh(s,x2) -- 
cosh(q,d/2) k;+sz cosh(s,d/2) 

X cost kaxl - wt) 

for antisymmetric modes. Here q = dm, s 
= Jm,A andB are the arbitrary constants, and ks are 
the wave numbers of Lamb modes. 

B. Dilatation fi&ls of Ldmb modes 

Up until now, most of the observations performed on 
Lamb wave fields have been devoted to the individual com- 
ponents of displacement or stress.‘g’2o Owing to the possibil- 
ity offered by the interferometic method of directly measur- 
ing the dilatation (Sec. II B), we can now characterize the 
Lamb waves by the associated dilatation fields. Following 
Eq. (2), we write the dilatation in terms of the divergence of 
the displacement: 

*=q+s2=$+ J5.u. 
1 2 

Substituting Eqs. (21) and (22) into Eq. (23), respectively, 
yields the dilatation 

(24) 

for symmetric modes and 

si@qAx2) 
AA=W:-q:) cosh(qAd,2) COs(k.Gl- @t) (25) 

for antisymmetric modes. 
The dilatations A have very simple forms when com- 

pared with the complete displacements. The field distribu- 
tions across the plate are determined only by the parameter q 
related to the longitudinal acoustic wave, decoupled from the 
shear wave. As a matter of fact, substituting Eq. (19) into Eq. 
(23) yields 

A=Vu=V2@=-k;Q,, (26) 

where the relationship V.(VX9)=0 has been taken into ac- 
count. So the dilatation is proportional to the scalar potential 
?D. Indeed, the dilatation can be deduced more simply from 
the scalar potential QJ rather than from the displacements.lg 
Moreover, the symmetric and antisymmetric properties of 
Lamb modes are clearly demonstrated in Eqs. (24) and (25) 
by the hyperbolic sines and cosines. The dilatation fields 
provide, in addition to the displacements, an instructive and 
alternative vision on the Lamb wave motions. 

Of particular interest in this work are the lowest sym- 
metric So and antisymmetric A0 Lamb modes, which differ 
qualitatively from all other modes. It is seen in Fig. 3 that 
these modes exist for any value of the product fd, while the 
high-order modes have, for a given thickness, a cutoff fre- 
quency below which these modes cannot propagate. In the 
high-frequency or/and thick plate limit fd%-1, the phase ve- 
locities of both modes So and A0 become asymptotic to the 
value of the Rayleigh wave velocity. Figure 4 presents the 
normalized dilatation fields of the fundamental Lamb modes 
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FIG . 4.  Di la ta t ion f ie lds of  the  f u n d a m e n t a l  L a m b  m o d e s  S O  a n d  A,  ca lcu la ted  for  d i f ferent  va lues  of  the  p roduc t  fd ( f requencyXth ickness/Z) .  

S o  a n d  A 0  across the p la te as  a  funct ion of the product  fd. 
W h e n  fd<l,  the di latat ion of the m o d e  S o  rema ins  a lmost  
un i fo rm across the p la te [Fig. 4(a)],  wh i le  the di latat ion as-  
soc ia ted with the m o d e  A 0  tends toward  a  l inear  funct ion of 
x2. T h e  ampl i tude  of di latat ion for the m o d e  A 0  reaches  
m a x i m u m  at the boundar ies  of the p la te ( x2=  + d /2) a n d  
decreases  to zero  at the m idd le  p lane  [Fig. 4(a)].  W h e n  in-  
c reas ing  the product  fd, i.e., at h igh  f requency  o r /and  for a  
thick plate,  the acoust ic  v ibrat ions b e c o m e  m o r e  a n d  m o r e  
conf ined at the boundar ies  of the p la te [Figs. 4(c)  a n d  4(d)],  
app roach ing  sur face w a v e  m o tion. 

F igure  5  presents,  respect ively,  the s u m  a n d  the differ- 
e n c e  of the norma l i zed  di latat ions assoc ia ted with the 
m o d e s  S o  a n d  A 0  at f d = S  M H z  m m . Simi lar  to part ic le 
d isp lacements ,  rg-” the di latat ion combinat ions  of the S o  a n d  
A 0  m o d e s  construct,  in  the limit fdS-1,  sur face acoust ic  m o -  
t ions conf ined o n  the u p p e r  o r  lower  boundar ies  of the plate.  
T h e  di latat ion f ield d e d u c e d  direct ly f rom the Ray le igh  w a v e  

L  
, 

5  
g  

-0.5 ;..‘-:T” . . . . i  . . ..“-........__........ +.. .-  “..“.-.... i  . . . . ...“.. “..I . . . . . . . . ..- 

- - -+--- , ,  I @ so  -  A A O ) / ~  

- 1  I - - -T--“_ _ _ _ _ _ !  - -me-  
0  0 4 5  0 .5  0.75  1.0  

Norma l i zed  di latat ion 

FIG . 5.  Di la ta t ion f ie lds of  sur face  w a v e s  o n  the  u p p e r  a n d  l ower  sur faces  
cons t ruc ted  f rom the  s u m  o r  d i f fe rence of  equa l l y  n o r m a l i z e d  so  a n d  a , ~  
m o d e s  for  f d > S  M H z  mm.  
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PIG. 6. Schematic diagram of the experimental arrangement. 

solution,24 shown below, confirms these results: 

AR=AO exp(-qRx2)cos(JCRx1-Wt), (27) 

where Ao is the amplitude of dilatation at the surface. The 
axis x2 taken in Eq. (27) originates at the surface and is 
directed towards the medium. Unlike the displacement and 
stress fields,‘9.20 the dilatation of the Rayleigh wave given by 
Eq. (27) decays as a single exponential inside the material. 
Such a monatomic decay picture, often used in reference 
books for illustrating surface wave motions,20 therefore finds 
a physical support when dealing with the (scalar) dilatation 
field. 

a 

IV. EXPERIMENTS 

A. Experimental setup 

The schematic diagram of the experimental setup is 
shown in Fig. 6. A Mach-Zender type of interferometer’6,25 
is used to measure the dilatations associated with the guided 
waves. The light coming from a laser is divided into two 
beams. The reference beam (Y) goes directly to the photodi- 
ode, whereas the probe beam shifted in frequency by a Bragg 
cell vB =70 MHz) crosses twice normally the acoustic beam. 
Assume that the light coming from the laser source is ex- 
pressed by E, exp i(2rfLt), where E. is the amplitude and 
fL is the frequency; the light fields of the reference beam and 
the probe beam interfering on the photodetector are as fol- 
lows: 

ER=Eo exp i(2nfLt), 

Es=Eo exp i[2rr(f,+f,)t+2S~(t)], (28) 

with &b(t) the additional phase shift caused by the acoustic 
dilatation. The phase constants corresponding to the differ- 

PIG. 7. Piezoelectric generation of the Lamb waves by a piezoelectric bar 
bonded (a) at the edge of the plate and (b) by a wedge transducer. 

ence between the two optical paths are neglected here. Inter- 
ference of the probe beam with the reference one results in a 
photocurrent 

i(t)=Z, cos[27rf&+26q5(t)]. (29) 
Contrary to conventional Raman-Nath diffraction methods, 
the probe light beam in these experiments is made small 
compared to the acoustic wavelength, and the photodetector 
is placed in the optical near field to collect the total light 
beam before being diffracted into different orders. If the 
acoustic wavelength is comparable to the light beam, the 
resulted photocurrent i(t) given in Eq. (29) should be aver- 
aged over the finite size of the light beam. More detailed 
discussion on this spatial filtering effect is given elsewhere.26 

In order to extract the phase shift ant) detected at a 
given position in the acoustic field, a broadband electronic 
processing used in acoustic displacement measurements17*25 
is adopted here. As shown at the bottom of Fig. 6, this pro- 
cessing consists in mixing the current signal i(t) with a sig- 
nal I, sin( 2 n-fBt), obtained by narrow-band filtering’ cen- 
tered at fB and phase shifting of the signal i(t) by rr/2. After 
passing through a low-pass filter in which high frequencies 
of the order of 2 fB are eliminated, a signal s(t) proportional 
to sin[ 6&t)] = S&t) (small acoustic signal approximation) 
is retained at the output of the interferometer. This signal is 
then calibrated to give quantitatively, according to Eq. (18), 
the dilatation wave form A(t) in sinusoidal as well as pulsed 
regimes. In this work, the detection bandwidth is 10 kHz-20 
MHz and a sensitivity of 10e7 (for A)/mV is available in 
fused quartz. 

Transparent solids used in our experiments are a plate 
(60X20X2 mm3) and a block (100X30X30 mm3) of fused 
quartz. Two piezoelectric methods were employed to gener- 
ate the Lamb waves. In the first one, we bonded a piezoelec- 
tric bar at the end of the plate [Fig. 7(a)]. The dimensions of 
the bar are 15 mm in length, 1.8 mm in width, and 2 mm in 
thickness. If the bar is placed symmetrically with respect to 
the middle plane of the plate, the end of the plate is forced to 
vibrate uniformly in the length direction. This method is well 
suited for generating the symmetric mode So at small values 
of fd, for which the mode So is found to be predominately a 
longitudinal motion [Fig. 4(a), left]. The other method used a 
piezoelectric transducer and a water wedge deposited on the 
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FIG. 8. Dilatation pulses of the Lamb mode S, in a 2 mm thick plate of 
fused quartz. 

plate surface [Fi g. 7(b)]. If the incidence angle of the plane 
wave in water is 9, Lamb waves will be generated according 
to c=c&in 8. Here c is the phase velocity of Lamb waves 
and co is the sound velocity in water, By varying the angle 8 
and the frequency of the incident acoustic wave, different 
Lamb modes can be generated according to the dispersion 
curves given in Fig. 3.i9 Taking into account the asymmetric 
configuration of the excitation, the wedge transducer is pref- 
erably used to generate the antisymmetric mode A, and the 
Rayleigh wave. The laser probe is placed about 2 cm away 
from the transducers. The probe beam is focused onto a spot 
of about 80 ,um in diameter and moved along the thickness 
of the plate or block (Fig. 7). 

B. Results and discussions 

The dilatation pulses for the mode So generated in a 2 
mm thick plate are shown in Fig. 8. They are measured at 
x2= +0.4, 0, -0.4 mm, respectively. The propagation veloc- 
ity was measured as 5880 m/s close to the predicted value 
5790 m/s (Fig. 3), for an actual value of fd- 1.7 MHz mm. It 
is seen that the amplitudes and the phases of the pulses re- 
main almost unchanged across the plate, which agrees with 
the theoretical dilatation fields of the mode So predicted for 
small fd (Fig. 4). Figure 9 presents the dilatation pulses of 
the mode A0 measured at different depths x2= -0.8, -0.4, 0, 
+0.4, +0.8 mm in the plate. As predicted by the calculation 
displayed in Fig. 4, the dilatation of the mode A0 attains its 
maximum at the boundaries of the plate and changes sign 
from one side to the other, passing through a minimum at the 
middle of the plate. The comparison between the experimen- 
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FIG. 9. Dilatation pulses of the Lamb mode A, in a fused quartz plate of 2 
mm thickness. 
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FIG. 10. Comparison between the dilatation of the mode ao calculated at 
fd=2.36 MHz mm and the experimental results. 
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FIG. 11. n-phase change for the mode A, between the two measurements 
performed at x2= kO.8 mm. 

tal results and the theoretical curve calculated at fd =2.36 
MHz mm is shown in Fig. 10. The agreement is quite good. 
In Fig. 11 a r-phase change is clearly observed between the 
dilatation signals obtained at opposite sides of the middle 
plane (x,=+0.8 mm). This result clearly demonstrates the 
good phase sensitivity of the interferometric method. In pre- 
vious experiments, the photoelastic technique7 and the opti- 
cal diffraction method”-31 were also used to study the 
propagation of Lamb and Rayleigh waves. However, as men- 
tioned in Sec. II A, the parameters measured by the photo- 
elastic technique are physically not so simple and meaning- 
ful as those obtained by the interferometric method. In 
addition, the interferometric method is phase sensitive, 
which provides additional elements for characterizing wave 
propagation. 

We now present measurements performed with a Ray- 
leigh wave propagating on a block of fused quartz. A tone 
burst instead of a pulsed electric signal is used for wave 
excitation. The dilatation pulses of the Rayleigh wave are 
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FIG. 12. Dilatation tone bursts of Rayleigh wave measured at 0.1 and 0.6 
mm away from the surface of fused-quartz block. 
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FIG. 13. Comparison between measured Rayleigh wave dilatations and 
theoretical prediction in terms of the ratio depth/wavelength. 

shown in Fig. 12. They are measured, respectively, at depths 
of 0.1 ‘and 0.6 mm from the surface. For a central frequency 
of 1 MHz, the wavelength of the Rayleigh wave is about 3.4 
mm. Figure 13 shows the decay of the Rayleigh wave dila- 
tation in terms of the ratio depth/wavelength. The agreement 
between the theoretical curve and the experimental data is 
very satisfactory. The slight discrepancy investigated at large 
depths inside the substrate arises probably from the pertur- 
bation by leaky bulk waves coming from the wedge 
transducer. 

V. CONCLUSION 

We have presented an interferometric method for mea- 
suring surface acoustic waves inside a transparent solid. 
Starting from the refractive index ellipsoid perturbed by the 
acoustic strains, the principles of the photoelastic and inter- 
ferometric measurements of acoustic waves were analyzed in 
a unified formalism. In contrast with the conventional pho- 
toelastic technique, the interferometric method is acoustic 
phase sensitive and gives access to the measurement of a 
meaningful physical parameter, i.e., the dilatation or the rela- 
tive change in material volume. The Lamb modes Se and A, 
and the Rayleigh wave have been studied in detail in order to 
verify the present interferometric method. Compared to the 
displacement patterns, the dilatation field patterns of these 
waves are physically simple and instructive. The experiments 
performed in fused quartz are in agreement with theoretical 
predictions. We believe that, in addition to the full field vi- 
sualization obtained with the photoelastic technique, the 
present interferometric method provides an interesting and 
alternative way to study guided acoustic waves. It may be 
helpful in nondestructive evaluation where the acoustic wave 
phase information is sometimes required. 
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