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[1] Nonlinear sound propagation in a stressed glass bead
pack is investigated via amplitude measurements of
harmonic generation. We evidence two distinct regimes of
sound-matter interaction: reversible and irreversible, as a
function of the ratio rs between dynamic strain and static
one. In the reversible regime, the higher harmonics
generated agree well with a mean-field model based on the
Hertz contact theory, and the coefficient of nonlinearity b
deduced from the measured amplitude of second-harmonic
is consistent with that deduced from the acoustoelastic
measurement. Beyond a certain threshold (rs > 3%), the
interaction of sound wave with granular matter becomes
irreversible, accompanied by a small compaction of the
medium. Citation: Brunet, T., X. Jia, and P. A. Johnson (2008),

Transitional nonlinear elastic behaviour in dense granular media,

Geophys. Res. Lett., 35, L19308, doi:10.1029/2008GL035264.

1. Introduction

[2] In a dense granular packing (solid volume fraction
fS > 0.57) the salient mechanical properties such as
arching and slow dense flow are determined by the
inhomogeneous internal stress fields [Jaeger et al., 1996].
Small-amplitude sound propagation, coherent and multiply
scattered, provides an efficient and non intrusive probe for
characterizing the structure and viscoelastic properties of
granular materials [Liu and Nagel, 1993; Jia et al., 1999];
however, the nonlinear elastic behaviour of the materials
become progressively more important at high-amplitude
wave excitation. In ordinary elastic media, finite-amplitude
sound propagation has been intensively studied to under-
stand many nonlinear acoustic effects such as cumulative
wave distortion with propagation distance as well as the
concept of the parametric array [Hamilton and Blackstock,
1998]. Similar to rocks [Guyer et al., 1997; Van Den
Abeele et al., 2002] and soils [Lu, 2005; Gilcrist et al.,
2007] non cohesive granular materials exhibit intense
static and dynamic nonlinear behaviours, including strong
acousto-elastic effects, dynamic wave hysteresis and
dynamic modulus softening [Liu and Nagel, 1993; Johnson
and Jia, 2005]. Indeed the contact force network at low
confining effective pressure is fragile and may be reorgan-
ized when subject to high-amplitude sound propagation
[Liu and Nagel, 1993]. However, the physics underlying
these nonlinear behaviours still remains unclear and the
theory deduced from first-principle calculations is not
available for such disordered media. Recently a clapping

model based on the Hertz contact theory was proposed to
describe wave demodulation in granular media [Tournat et
al., 2004]. Such a reversible mechanism of opening and
closing of contacts has been widely employed in fissured
heterogeneous materials, but may be less appropriate in
granular materials where irreversible rearrangements of
beads and their contacts should occur during clapping,
consequently loosening the contacts with neighbours.
[3] In this Letter, we investigate nonlinear wave-amplitude

dynamics in a glass bead pack under external stress by
measuring higher harmonics generated as a function of the
source amplitude. We test the applicability of the Hertz
contact theory to the granular systems at moderate ampli-
tude and determine the coefficient of nonlinearity b both
from higher harmonics generated and from acoustoelastic
measurements. The different regimes of sound-granular
matter interaction are also explored in terms of reversibility.
This work may provide a useful laboratory model for better
understanding the large-scale field experiments such as
nonlinear sediment response during strong ground motion.
[Lu, 2005; Gilcrist et al., 2007].

2. Experiments and Results

[4] Our dry granular media are composed of polydisperse
glass beads of diameter d = 0.6–0.8 mm, confined in a
cylinder of diameter 60 mm and closed by two fitted
pistons (fS � 0.63). We apply a normal load P0 of several
hundred kPa to the medium after one cycle of loading-
unloading. Lengths of the cell L range from 25 mm to
65 mm. A broadband source transducer of diameter 30 mm
and an identical detecting transducer are placed on the axis,
respectively, at the top and bottom of the cell in direct
contact with glass beads. A ten-cycle tone burst excitation
centered at f (= w/2p) = 50 kHz is applied to the source
transducer. At low frequency (l � d) as in this work,
longitudinal waves undergo coherent propagation. By using
an impedance matched power amplifier (ENI), the mea-
sured amplitude of source displacement uin by an optical
interferometer ranges from 2.5 to 62.5 nm.
[5] In Figure 1a, we present the typical transmitted

waveform detected at a distance of 64 mm under the
confining pressure P0 = 720 kPa. The sound velocity is
measured as c0 = 900 m/s by the time of flight, and the source
amplitude is uin � 62.5 nm corresponding to the dynamic
strain ein (= wuin/c0) � 2 10�5. To study the generation of
higher harmonics, we band-pass filtered the output signal
using a temporal numerical filter centred at 50 kHz, 2 �
50 kHz and 3 � 50 kHz, respectively (Figures 1b–1d). The
amplitudes of the fundamental, second harmonic are then
measured as a function of the source amplitude ein. These
data fit well a linear and quadratic power-law dependence
on ein (solid lines) over our experimental range, as illus-
trated on log-scale in Figure 1 (insets). The third harmonic
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is present, but the data is much scattered because of poor
signal/noise ratio (not shown). This test, together with the
attenuation measurements described below (Figure 3),
demonstrates a classic nonlinear behaviour like that
observed in ordinary elastic materials, although much
larger in magnitude, and ensure that the nonlinearity from
the parasite sources (e.g. electrical equipment) is negligible
in our experiments. Over the amplitude range shown in
Figure 1, no amplitude hysteresis is observed when ein is
increased and subsequently decreased, pointing to a revers-
ible process.
[6] We next investigate the nonlinear behaviour evolu-

tion of the granular medium as we decrease the confining
pressure P0. Figure 2 shows that the fundamental and the
second-harmonic amplitudes depart significantly from the
linear or quadratic dependence on ein above a threshold
depending on P0. For P0 = 180 kPa the deviation from the
classical scaling of the power-law (Figures 2a and 2b) is
observed at ein � 7.5 10�6. A small compaction induced of
about 20 mm is also simultaneously detected by a sensor
with 1 mm in resolution above this threshold (Figure 2c).
This observation indicates the irreversible nature of the
nonlinear behaviour in this amplitude range. The same
experiments were conducted for P0 = 90 kPa and P0 =
360 kPa where transition occurs around ein � 4.5 10�6

and 12 10�6, respectively. In terms of the static compres-
sion e0 (�P0

2/3 according to the Hertz elasticity, see
below), the threshold ein corresponds roughly to a dimen-

sionless ratio rs = ein/e0 of about 3%. These results
suggest a possible transition diagram as a function of rs
(Figure 2c, inset) between two distinct regimes of sound-
matter interaction.

3. Analysis and Discussion

[7] In order to interpret the nonlinear behaviour observed
in the reversible regime, we analyze our results with a mean-
field model based on the Hertz contact nonlinearity. Denote
sa and ea as dynamic stress and strain, respectively, the
stress-strain relation can be expressed by

sa ¼ K0ea 1þ bea þ . . .ð Þ þ h
@ea
@t

ð1Þ

where K0 is the linear dynamic modulus related to the
sound velocity c0 =

p
(K0/r0), and b is the coefficient of

nonlinearity also termed as the third-order elastic constant -
the principal measure of the finite-amplitude distortions
associated with the sound propagation. As shown below, b
can be determined by either wave mixing measurements
(e.g., harmonic generation) or acoustoelastic measurements.
As a first approach to account for the internal dissipation in
the granular medium, we add a loss term via h, akin to the
viscosity in fluids, which leads to the Burgers equation -the
most widely used model equation for studying the combined
effects of attenuation and nonlinearity on progressive plane
waves [Hamilton and Blackstock, 1998]:
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¼ 0 ð2ÞFigure 1. (a) Transmitted ultrasonic wave-trains and the

filtered (b) fundamental component V1w, (c) second
harmonic V2w and (d) third harmonic V3w under P0 =
720 kPa. Inset: Amplitudes V1w, V2w vs ein.

Figure 2. (a) Fundamental component V1w and (b) second
harmonic V2w amplitudes vs source amplitude ein under
P0 = 180 kPa, together with (c) the sample height variation
DL. Solid lines correspond to classical nonlinear predictions.
Inset: transition diagram ein vs e0.
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where r0 is the medium density and a is the material
coordinate.
[8] Introducing the Gold’berg number G = lA/lS defined

as the ratio of the attenuation length to the shock distance,
we can obtain the approximate expressions for the dis-
placement fields in the limiting case of weak waves
dominated by the attenuation process (G < 1). Remember
that lA = 1/a where a is the linear coefficient of attenuation
and lS = 1/(bkein) where k is the wave number. If the
distance of propagation a is comparable or larger than lA
(i.e., aa � 1), the displacements of the fundamental,
second and third harmonic components can be further
simplified, as:

u1w a; tð Þ � uine
�aacos ka� wtð Þ ð3aÞ

u2w a; tð Þ � u2in
8

bw2

ac20

� �
e�2aacos2 ka� wtð Þ ð3bÞ

u3w a; tð Þ � u3in
48

bw2

ac20

� �2

e�3aacos3 ka� wtð Þ ð3cÞ

with a = hw2/(2r0c0
3). Notice that the approximate expres-

sions given in equation (3) would have a more general use
which is not limited by the specific loss model in equation (1)
[McCall, 1994], provided thata is determined independently,
e.g., by measurements.
[9] To this end, we measure the amplitudes of the

transmitted signals (V1w) as a function of distance a at
small-amplitude input for different frequency f. As shown
in Figure 3 (inset), the amplitude dependences are linear in
the semi-logarithmic scale and the slopes of the straight
lines provide the linear attenuation coefficients a(f). The
same measurements of a are conducted in the nonlinear
regime with the second and third harmonics, respectively.
Several results are given in Figure 3 (table). The observa-
tion that a2*50kHz 6¼ a100kHz and a3*50kHz 6¼ a150kHz

confirms that the harmonic generation observed in our

experiments arises within the granular medium and not
from the parasite sources originating at the input level.
Moreover, the data show that a2*50kHz � 2a50kHz and
a3*50kHz � 3a50kHz, which is reasonably in agreement with
the predictions of equations (3) and consequently supports
the validity of the present model. For f = 50 kHz the
attenuation length lA is about 45 mm; the observation of
second-harmonic growth occurring principally within a <
10 mm is difficult, if not impossible, with our granular
samples for a/d is only about 15 (Figure 3, inset). Note that
the understanding of the internal dissipation mechanism in
the granular medium still remains incomplete; it most likely
depends on the interplay between frictional, viscoelastic
and scattering losses [Brunet et al., 2008], implying a
complex behaviour of a(f ) (Figure 3).
[10] With the attenuation a measured in the granular

packing under P0 = 720 kPa, we can deduce the coefficient
of nonlinearity b from the ratio of measured second-harmon-
ic amplitude to fundamental one shown in Figures 1b and 1c
(insets), V2w/V1w (=u2w/u1w) according to equations (3a) and
(3b). The difficulty of the wave mixing method is that an
independent measurement of uin is required. If the displace-
ment of the source transducer measured at its free surface is
considered, we obtain bWM� 3000. This gives a shock wave
distance lS of about few meters much larger than lA, verifying
the condition G < 1 assumed.
[11] The most commonly used and the most precise

method for determining b is based on the acoustoelastic
effect, namely velocity measurement, in which the appli-
cation of a static stress P0 change the velocity c0 of
small-amplitude sound waves as bAE = (r0/2)(dc0

2/dP0).
Figure 4 displays the sound velocity measured by a time-of-
flight method as a function of the applied stress. The
power-law scaling c0 � P0

0.15 agrees well with the predic-
tion by the Hertz theory c0 � P0

1/6 [Jia et al., 1999]. The
coefficient of nonlinearity bAE is then deduced by differ-
entiating the sound velocity. The results shown in Figure 4
reveal a reasonably good agreement between measured bAE
and the predicted bHertz = 1/(4e0) [Norris and Johnson,
1997], thus confirming the primary role of the Hertz
nonlinearity in the granular nonlinear elasticity. Further-

Figure 3. Linear attenuation coefficient a vs f. Inset:
fundamental amplitudes V1w vs distance a for different
frequency f, measured underP0 = 720 kPa with uin = 62.5 nm.
Solid lines correspond to linear fits. Table: Attenuation
coefficient measured in both linear and nonlinear regimes.

f
Figure 4. Solid squares are sound velocity c0 measured vs
P0, and open circles are bAE deduced from velocity
measurements. Solid lines correspond to power law fits
and dashed line refers to calculated values bHertz from the
Hertz contact model.
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more bAE � 350 measured at P0 = 720 kPa gives bWM �
8bAE. The discrepancy between b values obtained by the
two methods is also reported in sedimentary rocks
[D’Angelo et al., 2004].
[12] Let us finally examine the irreversible regime lower

confining pressure. In Figure 5, the fundamental component
and second harmonics demonstrate non-classical behav-
iours, i.e. amplitude hysteresis and the important deviation
of the source-amplitude ein dependence from the classical
scaling laws illustrated in Figure 1. The scaling with ein in
our experiments is not determinate and depends strongly on
the confining pressure and the sample preparation proce-
dure. The observation of such amplitude dynamics is similar
to those in previous experiments [Liu and Nagel, 1993], and
clearly reveals that there is no evidence for a scaling law
such as ein

3/2 for the second harmonic generation, predicted
by the clapping model [Tournat et al., 2004]. In fact, the
reversible nature of such a mechanism is inconsistent with
the observed hysteretic behaviour and the irreversible com-
paction induced in this regime. Notice, however, the char-
acteristic length scale associated with this small plastic
deformation is different from that observed in a tapping
experiment [Nowak et al., 1998]. Instead, it is probably
related to frictional dynamics at the grain contact level,
leading to the onset of the micro-arrangement of asperities
between rough spheres and resulting in a softening of elastic
modulus and a change in the morphology of the contact
networks (to be detailed elsewhere). This picture is consis-
tent with the observed small threshold value rs of a few
percent. We believe that our work bridges the nonlinear
sound-matter interaction described here and the recent
concept of effective granular temperature (energy injected
by vibration) proposed in the jamming transition process.

4. Conclusions

[13] In summary, we have identified two regimes of
nonlinear elastic behaviour in a confined granular medium
stemming from the nonlinear dynamics at the grain contacts.

At moderate amplitudes we find a reversible process of the
sound-material interaction where the second and third
harmonic generation agree with the granular elasticity
predicted by the Hertz contact theory. In this regime, sound
speed measurements allow us to determine the coefficient of
nonlinearity b in agreement with the model. Beyond thresh-
old amplitude corresponding to rs about a few percent, the
irreversible process of sound-matter interaction commences
and the pure Hertz model is no longer valid. Our experi-
ments show that interpretations based only on the Hertzian
nonlinear elasticity are incomplete for describing the gran-
ular nonlinear dynamics, and the frictional dynamics at the
grain contact level should be included [Nihei et al., 2000].
In studies of strong ground motion, it is clear that these
hysteretic behaviours may play an important role; however,
the effects of grain’s shape and size dispersion as well as
lower confining pressure condition should be considered in
the future work.
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Figure 5. (a) Fundamental and (b) second-harmonic
amplitudes vs source amplitude ein under P0 = 90 kPa.
The curves correspond to increasing ein (solid symbols) and
subsequently decreasing ein (open symbols).
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