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Abstract. Acoustic waves are used for detection, localization and sometimes de-
struction of passive targets. In most fields of acoustics, arrays of transmitters and
arrays of receivers are available, and if not synthetic aperture techniques can be
used. With such arrays, a great amount of data can be collected, and the general
problem is to extract the relevant information from these data to detect (or to form
an image of) a scattering object. This problem ; appears in applications ranging from
medical imaging to underwater acoustics and even in seismology. The D.O.R.T.
method is a new approach to active detection and focusing of acoustic waves using
arrays of transmitters ‘and receivers. Tlus method was derived from the theoretical
study of iterative time-reversal mirrors. It consists essentially of the constructlon
of the invariants in the time-reversal process. After explaining the ba.sxc theory of
the D.O.R.T. method, several experimental results are shown: (a) detection and
selective focusing through an inhomogeneous medium; (b) detection and focusing
in a water waveguide, where high resolution is achleved by ta.kmg adva.ntage of the
multiple paths in the guide; (c) an analysxs of scattemng by a thin hollow cylmder,
where the various components of the elastic waves cxrcumnawgatmg in the shell are
separated; and (d) in some cases the eigenvectors obtained at different frequenmes
can be combined to obtain the time-domain Green's function of each scatterer.

1 Introduction

In various domains, such as medicine, nondestructive evaluatlon (NDE), un-
derwater science and seismology, acoustic waves are used for detection, lo-
calization and sometimes destruction of passive targets. In most fields of -
acoustics, arrays of transmitters and arrays of receivers are available, and 1f
not synthetic aperture techniques can be used.

The D.O.R.T. method provides a new approach to active detection and
focusing of acoustic waves using an array of transmitters and an array of re-
ceivers. It is an analysis technique of pulse—echo measurements (or reflection
data) that may be interesting for applications ranging from medical imaging,
where arrays of transmit-receive transducers are currently used, to under-
water acoustics and even seismology, where an ensemble of seisms can be
considered as an array of transmitters and an ensemble of stations as an
array of receivers. :
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With multiple sources and multiple receivers, a large amount of scatte
ing data can be collected which correspond to different acoustic paths in
medium under study. The general problem is to extract the relevant ‘inform:
tion from these data to detect (or to form an image of) a scattering ob‘]fv
in the medium... :

For typical length scales, the low velomty of a.coustlc waves allows
mation coming from different parts of the studied medium ‘to be sep!
However, the detection sensitivity as well as the quality of the i image of scat-
tering objects depend on the ability to focus energy in the medium elthe"
in transmission or in reception. This focusing is also crucial for destruction
techniques like ‘lithotripsy. The presence of an aberrating medium between
the object and the arrays can detrimentally alter the beam profiles. _

In NDE, cracks and defects can be found within materials of various
shapes. The samples to be evaluated are usually immersed in a pool, and; o
the interface shape between the samples and the coupling liquid currently
limits the detectability of small defects. In medical imaging, ong looks for . -
organ walls, calcification, tumors, kldney or gallbladder stones. A fat la.y,,
varying thickness, bone tissue, or some muscular tissues may greatly degrade -
focusing. In underwater a,coustlcs, one looks for mines, submarines, or obJects '
buried under sediments. Refraction by the oceanic structure ranging in s
from centimeters to tens of kilometers is an important source of distort ;
In seismology, detection of dlscontmultles such as local changes i in reﬂectmty .
at the core-mantle interface can be achieved by inversion of reflection data. L
However, the poor knowledge of the a.coustlc propertles of the medium renders‘ I
this problem rather difficult. e .

During the past 10 years, Fink and | ;s team have developed tlme-reversa.l ;
techniques in order to achieve optl‘ ' focusmg through distorting medla, =
(this volume) [1,2]. They have shown through several ultrasonic experiments
that high-quality focusing can be obtamed wn;h acoustic time-reversal mir- -
rors. In echographic mode, this self-focusing technique is effective in the pres-
ence of a single scatterer in the medium. When this medium contains several
scattering centers, the time-reversal operatlon need to be iterated in order
to select one of them. In general, after some Iteratlons, the process conver
and produces a wave front that focuses on the most reflective scatterer [3

In some situations, it is mterestmg tolearn how to focus on weaker scatt;
ing centers. The D.O.R.T. method provides a solution to this problem [4, 5»6]\
This method was derived from the theoretical study of iterative tune—reversal
mirrors and consists essentially of the construction of the signal patterns that-
are invariants under a time-reversal process. Those invariants appear as the
eigenvectors of a matrix called the time-reversal operator which describes = -
the time-reversal process. The eigenvectors are calculated offline after the
measurement of the response function of the array in the presence. of the
scattering medium. It is not a real-time procedure; however, it can still be
applied in many experimental situations. The D.O.R.T. method shares some
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of the pnnc1ples of eigenvector decomposition techmques that are used in
passive source detection [7,8,9]. However the latter assume sta,tlstlcally un-
correlated sources, while the D.O.R. T. method is active and deterministic;
thus they should not be conmdered as competing techmques

The basic theory of the D.O.R.T. method is explained in Sect 2; exper-
imental illustrations follow. An example of detection and selective focusing
through an inhomogeneous medium is shown in Sect. 3. Examples of detec-
tion and focusing in a water wavegmde are presented in Sect. 4. The method
can also take advantage of the matched-filter property of the waveguide in
order to separate the echoes from different scatterers with high resolution.

Sect. 5 is devoted to the analysis of the scattering by a thin hollow cylin-
der. It is shown how the D.O.R.T. method separates the various ‘componerts
of the elastic waves circumnavigating in the shell. In Sects 3 to 5 the pulse-
echo measurements are analysed frequency by frequency. In general, it is not
possible to get back to the time domain; however, in Sect. 6, we show that
in some cases the eigenvectors obtained in the whole frequency band of the
transducers can be combined to obtain the tlme—domam Green 3 functlon of
each scatterer.

2 Basic Principle of the D.O.R.T. Method

The D.O.R.T. method has been presented in several pa.pers [4 5 6] It con-
sists of determining the transmitted waveforms that are invariant under the
time-reversal process. We show that for a set ‘of well-resolved scatterers the
focusing on one of them is invariant in this manner. ’I‘he analy51s is based
on a matrix formalism that describes the transnut—recelve process. To be-
gin, we introduce the transfer matrix of the system and the correspondmg‘
time-reversal operator. :

2.1 The Transfer Matrix

An array of N transmitters (array No. 1) msomfymg a scattermg medium and
an array of receivers (array No. 2) are considered. This system is assumed to .
be a linear and time-invariant system of N inputs and L outputs ‘Thus it is
characterized by N x L inter-element impulse response functions. Let hy (t)
be the signal delivered by receiver ! when a temporal delta, function 8(t)
is applied on the transmitter number m. These N x L functions provide a
complete description of the transmit~receive process. Indeed, if en(t),1 <
m < N are the transmltted signals, then the received signals are glven by
the equation

=3 hin®@ent). W

m=1




s used in both transmit and receive modes In the case where the transnntte
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These L equations simplify in the frequency domain in a matrix for
transmit-receive opération is described with a complex transfer Lx N i mat
K(w) by the equation:

R(w) = K(w)E(w),

where w is the frequency, E(w) is the transmitted vector of N compon:
R(w) is the received vector of L components and K(w) is the L: X N transfe
-matnx of the system.

2.2 Invariants of the Time-Reversal Process and Decompos;tlon‘,
of the Transfer Matrix ‘

' In mos’c tlme-reversal experiments shown by Fink and his team, a single arr

and the receiver arrays are distinct, the t1me~reversal experiment can onk:
be an hypothetical experiment: one can imagine a time-reversal operatio
between the two arrays, assuming that array No. 1 becomes the receiver and
array No. 2 becomes the transmitter. Neglecting the impulse responses 0.
the transmltter and receivers, the reciprocity prmcnple guaranties that the
response from element number ! of array No. 2 to element number n of a,rray
No. 1 is equal to the response from element number 7 to element number m.
Consequently, the transfer matrix from array No. 2 to array No. 1 is tK(w) ,

A time-reversal operation ¢ — —t is equivalent to a phase conjugation in’
the frequency domain. Thus, in a time-reversal process, if Fo(w) is the first
transmitted signal (applied on array No. 1) of a tune—reversal process, then
the second transmitted signal (applied on array No. 2) is the phase conjugate
of the received signal:

By (w) = K* () B{(). 3)
After transmission of Ez(w), the signal received on array No. 1 is
R(w) = K@K W)Eiw). 4)

_Thls signal is linked to the first transmitted signal through a phase conjuga-
tion, and the product by the matrix *K* (w)K(w) ‘Thus, this matrix allows
any time-reversal process to be described and is called the time-reversal op-
erator. Note that this approach is more general than the one presented m
[4 5]. Indeed, in these papers, the same array acts as transmitter and recelver
In this case, the reciprocity principle insures that the transfer matrix K is
symmetrical and the time reversal operator is simply K* (w)K(w). In the ex-
periments that will be shown in the following sections, a single array is used.
However, the theory presented here as well as in [6] is more general and broad-
ens the field of application of the D.O.R.T. method. The important property
of the time-reversal operator is that it is hermitic with positive eigenvalues.
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_ Let the first transmitted signal be V'(w); an eigenvector-of *K* (w)K(w) asso-
ciated to the eigenvalue A\(w), then after a time-reversal process the received
signal is A(w)V*(w), which is proportional to the conjugate of V(w). Con-
sequently one can say that the eigenvectors of *K*(w) K (w) correspond to
waveforms that are invariants of the time-reversal process.’

In fact, from a mathematical point of view, the diagonalization of
¢K*(w)K(w) is equivalent to the singular value decomposition (SVD) of the
transfer matrix K(w). Indeed, the SVD is K(w) = U(w)A(w)V*(w), where
A (w) is a real diagonal matrix of the singular values and U (w) and V (w)
are unitary matrices, The eigenvalues of *K*(w)K(w) are the squares of the
singular values of K(w); its eigenvectors are the columns of V(w). We shall
use this decomposition in the following. Note that when & column of V(w)
is transmitted on the first array, the signal received on the second array is
proportional to a column of U (w). '

2.3 Transfer Matrix for Point-Like Scatterers

In the case of point-like scatterers the transfer matrix can be derived eas-
ily. We assume that the medium contains d point-like (Rayleigh) scatterers
with complex frequency-dependent reflectivity coefficients Cy(w), C2(w), - -,
Ca(w). Then the transfer matrix can be written as the product of three ma-
trices: (a) a propagation matrix that describes the transmission and the prop-
agation from the transducers to the scatterers, (b) a scattering matrix which
is diagonal in the case of a single scattering process, and (c) the back propa-
gation matrix. S _

Let hy,i(t) be the diffraction impulse response function of the transducer
number [ of array 1 to the scatterer number ¢ with Fourier transform Hya(w).
Let ao(t) and a,(t) be the transducer acousto-electrical response in emission
and in reception, with Fourier transforms Ae(w) and A;(w). If the input signal
at each element [ is e;(t), then the pressure at the scatterer ¢ is

N :
p() = Y hal) 9a) @al). ®)
=1 ; ) .

This equation is written in the frequency domain as

N .
Pi=A.y HiuEy. (6)

=1
The expression is simplified using matrix notation:
P=AME, ™
where F is the input vector signal, P is the vector represent'mg‘the pressure

received by the d scatterers and H; is a matrix of dimensions N x d called
the diffraction matrix.
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In the case of single scattering, the pressure reflected by scatterer number i
is C;P;. Therefore, the vector of reflected pressures is the matrix CP where
Cisa diagonal matrix of coefficients Cij = 6;;C; for all 4,j in 1,...,d.

- According to the reciprocity principle, the propagation from the sca,tterer
number i to the transducer number n of array 2 is hgn(t), so that the
back-propagation matrix is the transpose of the propagation matrix tHg
Consequently, the output signal R at array number 2is

R= AA'H,CH,E (8)

The expression of the transfer matrix is then

K= A.A'H,CH, . 9)

2.4 Decomposition of K for Well-Resolved Scatterers

The iterative time-reversal process allows selective focusing on the most re-
flective of a set of scatterers. In some cases it might be interesting to learn how
to focus on the other scatterers. For example, this is the case in lithotripsy
when several lithiases exist. The theoretical analysis of the iterative time-
reversal process has provided a solution to this problem.

‘We now propose to compute the SVD of the transfer matrix in a scattering
medium containing D point-like scatterers. According to Sect. 2. 3,if H; (Hy)
‘is the matrix of size D x N (D x L) that describes the propagation from array

~No. 1 (array No. 2) to the D scatterers and C the diagonal matrix of size
" D x D that describes single scattering, and if the responses of the transmitter
and receivers are assumed to be temporal delta functions, then

K = ‘H,CH,. (10)

We can say that the targets are ideally resolved if the time-reversal focusing
on one of them does not produce energy on the others. From a mathematical
point of view, it means that the columns of the propagation matrix H; are
orthogonal. If this property is satisfied for both arrays and if the “appar-
ent reflectivities” (this phrase will be discussed further) of each target are
different, the eigenvectors of the time-reversal operator can be ana.lytlcally
determined. We note that Hji = (1, 2) is the matrix whose rows are the nor-
malized rows of H;. We can then write H; = A ;H; where A; is a diagonal
~ matrix of coefficients the norms of the column of H;. The following equation
is deduced:

K = ‘H;A,CAH; (11)

This decomposition is the SVD of K. Indeed, as H;i = (1,2) are normalized,
they satisfy the equations *HjH; = I and *H,H3 = I; they are unitary
matrices.
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The matrix A2CA is real diagonal, with terms equal to

N N :
X =Cin| Y 1Hyinl*A| D 1Hoinl*  for 1<i<D. (12)
n=1 n=1

); is precisely what we call the apparent reflectivity of scatterer number 3.

It is proportional to its reflectivity C; and to a term that depends on the

diffraction pattern of both the transmitter and receiver arrays.
Consequently, the eigenvectors of *K*K are the complex con_]ugate of the

first columns of Hy:

Hl,i
Zn*‘l 'Hl m|

According to the reciprocity theorem, each of them is precisely the time-
reversed form of the signal that would be received on array No. 1 if target
number i was acting as a point-like acoustic source.

Finally, for well-resolved point-like scatterers the number of nonzero eigen-
values is equal to the number of scatterers. Furthermore, if the scatterers have
different apparent reflectivities (\;), each eigenvector is associated with one
scatterer; the phase and amplitude of the elgenvector should be applied to
each transducer in the array in order to focus on that particula,r scatterer.

If the scatterers have equal apparent reﬂect1v1t1es, or are not resolved, the
problem is more complicated and beyond the scope of this paper However,
some results in this regard can be found in [5].

for1<i<D. (13)

2.5 The D.O.R.T. Method in Practice

The first step is the measurement of the inter-element impulse responses of
the system. Since the reception system operates in parallel, this measure-
ment requires N transmit-receive operations for an array of N transducers.
The first transducer of the array is excited with -a signal e(t), and the sig-
nals received on the N channels are stored. This operation is repeated for
all the transducers of the array with the same transmitted signal e(t). The
components of the transfer matrix K(w) are obtained by a Fourier transform .
of each signal. This measurement could also be done with any multiplexed
system by N 2 transmit-receive operations.

The second step is the SVD of the transfer matrix K(w) at a chosen
frequency. The singular value distribution contains valuable information as
the number of secondary sources in the scattering medium,

The third step is to back-propagate each eigenvector. This can be done
either numerically or experimentally. This is useful to focus through an aber-
rating medium selectively on each scatterer.

Detection consists of the following steps: First, the inter-element impulse
response functions ki, (t) are measured. Second, the transfer matrix is cal-
culated at one chosen frequency (iore often the central frequency of the
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‘transducers). Last, the SVD of the transfer. matrix ~is‘calcula,ted:fK‘(u))‘
U (w) A (w) VT (w), where A(w) is a real diagonal matrix of the singul
values and U(w) and V(w) are unitary matrices.

3 Selective Focusing Through an Inhomogeneous
Medium with the D.O.R.T. Method

The first application of this method is to learn how to focus selectively
through an inhomogeneous layer. A simple example is now presented. A sin-
gle linear array of 128 transducers is used for transmission and reception. The |
array pitch is 0.4 mm, and the central frequency is 3MHz with 60% band-
width. The sampling frequency of received signals is 20 MHz. The scatterers
are two wires placed at 90 mm perpendicular to the array. A rubber layer of
varying thickness is placed between the array and the wires (Fig. 1).

First, cylindrical time delay laws are applied to the transducers in order
to focus on the wires as if there was no aberration. The pressure pattern
is measured with a hydrophone in the plane of the wires: the layer induces
severe defocusing (Fig. 2). Now the question is: how can we obtain a good
focusing without any information on the acoustic properties of the layer.

The inter-element impulse response functions of all the elements of the
array were measured. The responses of element 64 to the 128 elements of the
array are shown in Fig. 3: the wavefronts correspondmg to the echo of the
two wires can easily be seen.

The transfer matrix K was computed at the frequency of 3 MHz. Note
that the Fourier transforms of the signals displayed in Fig. 3 provide column
64 of K.

The SVD of K reveals 2 significant singular values among 128 (Fig. 4),
which mdlcates the presence of two scattering centers. The phase laws of the
‘correspondmg elgenvectors (Fig. 5) are unwrapped to form time-delay laws
(Flg 6). Each time delay law is well defined and corresponds to one of the
wires. To confirm this, the time-delay laws are used to focus through the

w
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i ® wire 1

8
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w ® wire 2
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3 t
N
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Needle probe

Fig. 1. Geometry of the experiment
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Fig. 2. Echo of the two wires after illumination by the center element of the array
(horizontal axis: time in ps, vertical axis: array element)
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Fig. 3. Pressure pattern obtained by cylindrical focusing ﬁhro;igh the rubber layer
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Fig: 4. Singular values of the transfer matrix




116  Claire Prada

phase of V1

4 nghly Resolved Detection and Selectlve Focusmg
in a Wavegulde .

The problem of optlmum signal transmission and source location in a wave-
gulde has been the subject of many theoretical and experimental works. The
propagatlon of an acoustic pulse inside a Wavegulde is a complex phenomenon.
This complexxty renders the detection and imaging process very difficult.
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Fig. 7. Pressure patterns measured at the position of the wires after transmission
of the first and second eigenvectors

Because of multiple-path effects, the Green’s function that is used in matched-
field processing is nontrivial, and its calculation requires accurate knowledge
of the medium. However, several studies have shown how to take advantage
of this complexity.

In waveguide transmlssu)n, the guide can be con51dered as a linear filter.
Parvulescu et al. [10] reported a matched-filter expenment in the ocean be-
tween a source and a receiver. They recorded the reception of an 1mpulswe
transmission and replayed the time-reversed sxgnal through the source. They
obtained a high temporal compression, which was explained by the coher-
ent recombination of the energy received over the different multiple paths.
They also showed the high sensitivity to small dxspla.cements of the source,
suggesting that this property should be used to locate the source. As pro-
posed by Clay [11] and L [12], the combination of array-matched filter and
time-domain-matched signal techniques improve the accuracy in source local-
ization. In these papers, the focusing is explained in terms of matched signal:
the waveguide plays the role of a correlator.

The possibility of taking advantage of the invariance of the acoustic wave
equation under time reversal in order to achieve hlghly resolved spatial and
temporal focusing in a waveguide arose afterward. In 1991, Jackson et al. [13]
provided a theoretical analysis of the time-reversal process in a water channel. '
Focusing experiments inside a water waveguide with a time-reversal mirror
were made by Rouz etal. [14]; then Kuperman and his team implemented a
time-reversal mirror in the Mediterranean Sea [15,16 ;17). They demonstrated
how to refocus an incident acoustic field back to its origin and to achieve high
temporal and spatial compression by time reversal of the wave field.

In the above-mentioned papers, only transmission from sources to re-
ceivers is considered. A natural question is how to use this super focusing
property in echographic mode to detect and separate scatterers. In echo-
graphic mode, the signal reflected from a scatterer is extremely complex
because it has undergone a double path through the guide. The D.O.R.T.
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method was applied to this problem [18]: the separation and selective focus-
ing on two scatterers and then the detection of a scatterer placed near
interface of the guide are shown in the following.

Finally, in a steel-water-air waveguide, the consequences of surface waves
produced at the water-air interface on the performance of the D.O.R.T
method are studied.

4.1 Selective Highly Resolved Focusing in a Waveguide

The experiment is performed in a 2-dimensional water waveguide, delimited
by two water—steel plane interfaces. The water layer is 35mm thick. The
array consists of 60 transducers with a central frequency of 1.5 MHz; it spans
the whole height of the guide. The array pitch is equal to 0.58 mm. The
scatterers are two wires of diameters 0.1 mm and 0.2 mm, spaced 2 mm, and
placed perpendicular to the array axis at a distance of 400 mm (Fig. 8). As the
average wavelength is 1 mm, both wires behave almost like point scatterers.

“For this range and this frequency, the free-space diffraction focal width is
12mm, so the two wires are not resolved by the system.

The echographic signals recorded after a pulse is applied to one transducer
of the array are very complex with a low signal-to-noise ratio. The inter-
element response kagso(t) is & typical example (Fig. 9). After approximately
5 reflections at the interfaces the signal can no longer be distinguished from
noise. The echoes of the two wires are superimposed and cannot be separated
ina sxmple manner.

" The 60 x 60 impulse response functions are measured, and the transfer
matrlx is calculated at a frequency of 1.5 MHz. The decomposition reveals
two smgular values that are separated from the 58 “noise” singular values
(Fig. 10). The “noise” singular values are partly explained by electronic and

" quantification noises. However, different second-order acoustical phenomena
not taken into account in the model probably contribute to these singular
values; these include the defects of the interfaces, the elastic responses of the
wires, the multiple echoes between the wires, and also coupling between the
transducers.

The eigenvectors V3 and V, have a complicated phase and amphtude
distribution, and it is impossible to tell to which scatterer each of them
corresponds. These distributions are applied to the array of transducers.
Namely, if Vi = (A;e'¥?, Agel¥2, ..., Aei¥n) is the first eigenvector, then
the signal s,(t) = A, cos(wt — ¢p) is applied to transducer number p. The

arrayof60| 35 mm S 2mmI? wires

transducers]

400 mm
Fig. 8. Geometry of the experiment
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Fig. 10. Singular values of the transfer matrix calculated at 1.5 MHz

so-produced pressure field is measured across the guide at the range of the
wires (Fig. 11). For each eigenvector, the wave is focused at the position of )
one wire. In both cases the residual level is lower than —18 dB and the —6 dB
focal width is 1.4 mm. In fact, the width is overestimated because the width
of the probe is 0.5 mm; the real focal width is probably around 1.2 mm, which
is 9 times thinner than the theoretical free space focal width.

For comparison, the same experiment was performed after removing the
guide. In this case the wires are not resolved, and only the first singular
value is significant. The pressure pattern is measured for transmission of the
first eigenvector; the focal width is 13 mm (Fig. 11). Consequently, the guide
allows a focusing at least 10 times thinner than in free space to be achieved.
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Fig. 11. Pressure pattern measured across the guide at the range of the wires after

transmission of the eigenvectors. Solid and dotted lines first and second eigenvectors,
respectively, obtamed with the guide; first gray line elgenvector without the guide

- The angular directivity of each transducer limits the number of reflections
at the gulde interfaces that can be recorded. This induces an apodization of
the virtual array made of the set of images of the real one. Taking this
phenomenon into account, the focal width roughly corresponds to a virtual
aperture consisting of 8 pairs of images of the array.

.

4.2 Detécﬁibn Near the Interface

In many cases, the detection of a defect near an interface is difficult, especially
if the reflectivity coefficient of the interface is close to —1, which is the case
for the water—air interface. Indeed, in this situation, the virtual image of the
_defect with respect to the interface behaves as a source in opposite phase to
the defect. The real source and the virtual source interfere in a destructive .
way so that the reflected signal is very low. The ability of the D.O.R.T.
method to detect a wire that is close to a water—air interface was analyzed.
The experiment was doneé in a water waveguide of 35 mm width limited by
air at the surface and steel at the bottom. A wire of 0.2-mm didmeter is
placed inside the guide 400 mm from the array. The wire is moved step by
step from the bottom to the surface, and for each position the transfer matrix
is measured and decomposed. The two first singular values are display versus
distance to the surface in Fig. 12. The first singular value represents the signal
level, and the second the noise level. When the wire reaches the bottom,
the singular value increases rapidly by a factor of two. The echoes from
the scatterer and from its image add constructively. Conversely, when the
wire gets to the surface, the singular value decreases rapidly. It remains well
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separated, from the noise singular values until the distance between the wire

and the interface reaches \/5. This result shows that the distance under which
the scatterer is no longer detectable is less than A/5 at a range of 400).
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Fig. 12. Dependence of the singular values of the transfer matrix on the distance
to the surface

4.3 Detection in a Nonstationary Waveguide

The efficiency of the method in a nonstationary guide with surface waves at
the water-air interface is now studied. A vertical plate with horizontal oscil-
lations at 6 Hz produces surface waves with a typical wavelength of 30 mm.
The height of the waves is varied using a diaphragm (Fig. 13). The root-
mean-square (rms) height of the waves khims is varied from 0 to 1.7 mm,

SOV NN \\\(

SR

csgos

&7 '
Fig. 13. Experimental setup to produce surface waves
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which:corresponds to 0 < khrms < 10. The array-of transducers is the sam
as before. Two wires are placed 500 mm from the array and spaced 5 mm

For each value of khms, the transfer matrix is measured and decomposed
While khyms is lower than 1.5, the two higher singular values are well sep
rated from noise singular values. The corresponding eigenvectors focus at the
position of the wires; however, the main lobes are approximately 1.6 times
larger and the residual lever 2 times higher than in the absence of waves
(Fig. 14). .

For high waves (khrms = 10), the signal singular values are not separated
from noise with a single measurement of K. However, the average of 10 re-
alizations of the transfer matrix reduces the noise singular values enough to
separate the wires. Then it is possible to obtain a selective focusing with a
resolution almost 3 times thinner than in free space (Fig. 15).

1
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' Depth (mm )

Fig. 14. Pressure field measured for transmission of eigenvectors 1 and 2 calculated
with an unave;aged transfer matrix obtained with surface waves of hrms == 0.23 mm

5 Inverse-Scattering Analysis and Target Resonance:

The preceding experiments illustrate the efficiency of the D.O.R.T. method
to focus selectively on different scatterers through complex media. More gen-
erally this method isolates and classifies the scattering centers or secondary
sources in the medium and can be used to analyse the scattering from ex-
tended objects. In particular, this method applies to scattering by a thin
hollow cylinder. Time-reversal techniques with short ultrasonic signals have
been applied to such scattering experiment by Thomasetal. [9]. They are
efficient when the contributions of the various waves can be selected by a
-time window. It is now shown that even if the waves interfere in time it is
possible to separate them using the D.O.R.T. method [20,21].
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Fig. 15. Pressure field measured for transmission of eigenvectors 1 and 2 calculated
from an average of ten realizations of the transfer matrix

5.1 Experiment

The array is linear and made of 96 rectangular transducers similar to those
used in Sect. 3. A hollow steel cylinder with a diameter of 20mm and a
thickness of approximately 0.6 mm is placed perpendicular to the array of
transducers at a distance of 80 mm symmetrically with respect to the array
axis (Fig. 16). For an incident plane wave, a Lamb wave is generated at a
given angle of incidence, 6, with respect to the normal to the surface. This
angle satisfies the relation sin(f) = g—g—, where C) is the sound velocity in
water and Cy is the phase velocity of the Lamb wave. -
Consequently, two Lamb waves are generated at points A and B, sym-
metrical with respect to the incident direction (Fig. 17). While propagating
around the cylinder, those two waves radiate backward from the same points,
A and B, which behave as secondary sources. The distance dap between those

y

>

A
Y

\/

Fig. 16. Experimental setup
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of the cyhnder is recorded on the 96 elements (Flg 19). The ﬁrst Wave.
. corresponds to the strong specular echo. The signal observed later
elastic part of the echo. Between 15ms and 25ms, two pairs of Wave

with mterference fringes can be distinguished. Those wavefronts corresp
10 the radiation of two pairs of cucumferentla,l waves after one tufn arou
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Fig. 18. Dispersion curves of Lamb waves for a steel plate
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¢ 5 10 15 20 % 30 ke

Fig. 19. Echo of the shell received by the 128 transducers-after transmission of a
short pulse from the center element of the array. The first: wavefront is the spec-

ular echo, the second the contribution of the So Lamb wave and the third the
contribution of the Ap Lamb wave

the shell. The first one is identified as the Sy Lamb mode, and the second
as the Ag Lamb mode. Interfering with those well-defined wavefronts i is the
contribution of the highly dispersive A; wave.

5.2 Invariants of the Time-Reversal Process

The two circumferential waves generated at points A and B (Fig. 17) are
linked by reciprocity. The first one can be obtained by time reversal of the
second one. Both waves are invariant under two successive time-reversal pro-
cesses; consequently they should be associated to eigenvectors of the time-
reversal operator. In fact, due to the symmetry of the problem, they are both
associated with the same two eigenvectors: one corresponding to the genera-
tion in phase with the two waves, and the other to the generation in opposite
phase, .
To separate these contributions we now apply the D.O.R.T. method. Af-
ter the measurement of the 96 x 96 inter-element impulse responses, the whole
process remains numerical. Only the elastic part of the signal is used to calcu-
late the time-reversal operator (between 15 ms and 25 ms). At 3.05 MHz, the
diagonalization of the time-reversal operator has six dominant eigenvalues.
The modulus of the components of each eigenvector (1 to 6) is represented
versus array element in Fig. 20. The interference fringes are easily observed.
They are the equivalent at one frequency of the interference pattern observed
on the echoes. As in the experiment with two wires (1.4), this means that an
eigenvector corresponds to the interference of two coherent point sources.
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First and second eigenvectors

transducer number

Fig. 20. Modulus of the components of the 6 eigenvectors

The numerical back-propagation of each eigenvector allows the distanc
between the sources to be determined (Fig. 21). Each pair of sources corre-
sponds to one particular Lamb wave. At this frequency, the first and second
eigenvectors are associated with the wave Sp, the third and fourth with the
wave A; and the fifth and sixth with the wave Ay.

Fig. 21. Directivity patterns obtained by numerical propa,gatlon of elgenvectors 1,
3and 5
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“The same calculation is done at several frequencies from 2.2 MHz to
4MHz, so that the dispersion curves for the three waves can be plotted
(Fig. 22). These curves are very close to the theoretical curves obtained for
a steel plate of thickness of 0.6 mm. In partlcular, the determination of the

cutoff frequency of the wave A; allows the thickness of the shell to be found.

One hmltatlon of thls method is that the generatmn points of the circum-
ferential waves need to be spatlally resolved In the case of two waves of close
phase velocities, the separatlon may not be posmble As the phase velocity
increases, the two genera.t1 n points get closer and are no longer resolved by

- the system. This pa.rtly explains the reason why the velocity of the wave A;
,»could not be measured closer to the cutoff frequency

20 +
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2 b e i
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24 7 28 0 32 3.6 4

Frequency (MHz)

Fig. 22.. Dispersion curves: theory and experiment

5.3 Resonance Frequencies of the Shell

The eigenvalue associated with one particular wave depends on the frequency;
it is proportional to the level of contribution of the wave to the scattered .
field. Beside the reponses of the transducers, the generation and radiation
coefficients of the wave are responsible for these variations. Moreover if the
dynamics and duration of the recorded signals allow several turns of the wave
around the shell to be detected, a fast modulation of the corresponding eigen-
value versus frequency is induced, the maxima corresponding to the resonance
frequencies of the shell. In the experiment, the wave Ay is attenuated so fast '
that only one turn can be observed. But several turns of 4; and Sp contribute
to the scattered field. To take into account these multiple turns, the time-
reversal operator was calculated using 40 ms of signal. Then the eigenvalues
of the time-reversal operator were calculated from 2.2 MHz to 3.8 MHz. The
first six eigenvalues are represented versus frequency in Fig. 23. The two
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Fig. 23. Eigenvalues of the time-reversal operator versus frequency

curves \;(w) and: A (w) correspond to the wave Sp. Their maxima occur at

. the resonance frequencies of the shell corresponding to this wave. The width

- of the peaks is mainly due to the length and dynamic of the recorded signals,

which allow only:three turns of Sp wave around the shell to be seen. Simi-
lar observations can be made for the wave A;. This wave is associated with
the eigenvalues A3(w) and Ag(w) around their corresponding resonance fre-
quencies and with As(w) and A¢(w) near their corresponding anti-resonance
frequencies. The resonance peaks are well defined although the contribution
of the wave A; is weaker than that of Sp.

The D.O.R.T method provides the resonance frequencies due to the waves

S and Aj, with the significant advantage that close resonance frequencies
“can be distinguished.

6 The D.O.R.T. Method in the Time Domain

In the precedmg sections, analysis of the transfer function is done frequency
by frequency. Only a small part of the information contained in the inter-
element impulse response functions is used. In fact, the decomposmon of the
time-reversal operator can be done at any frequency In order to get temporal

~ signals, it would be natural to calculate the eigenvectors in the whole band of

the transducers and to perform an inverse Fourier transform of the eigenvector
function of the frequency. However, this operation is nontrivial. The main
reason is that the scatterers’ reflectivity generally depends on frequency; so
that at one frequency the first eigenvector can be associated to one scatterer, -
while it is associated to another one at another frequency. However, if the
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strengths of the scatterers are sufficiently different, then the first eigenvector
may correspond to the same scatterer in the whole frequency band of the
transducers. In this case, it is possible to build temporal signals from the
eigenvectors. If the first eigenvector corresponds to one point-like scatterer,
then the temporal signal will provide the impulse Green’s function connecting

the scatterer with the array.

6.1 Construction of the Temporal Green’s Functions
The above-mentioned conditions are satisfied in the following example. The
array of transducers and the waveguide are the same as in Sect. 1. The range
of the scatterers is 400mm; the distance between the scatterers is 2mm,
and their reflectivities differ by a factor of three in the frequency band of the
transducers. The SVD of the transfer matrix is calculated at each frequency of
the discrete spectrum from 0.8 to 2.2 MHz. The singular values, distribution
versus frequency is shown Fig. 24: two singular values are apart from the
58 noise singular values and well separated from each other.

~ The impulse response function from the strong scatterer to the array can
be reconstructed from the eigenvectors 1/A1(w)V1(w). Assuming the reflec-
tivity of the scatterer is independent of the frequency, this response is the
temporal Green’s function connecting the scatterer to the array convoluted
by the acousto-electrical response of the transducer (Fig. 25, top). The same
procedure applied to 1/A2(w)V2(w) provides the impulse Green’s function
from the second scatterer to the array (Fig. 25, bottom). This result is of
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Fig. 24. Singular values of the transfer matrix versus frequency
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Second eigenvector

0o Time : 165 ps

Fig. 25. Signals reconstructed from (a) the first eigenvector and (b) the sec

eigenvector. These signals correspond to the impulse response from each wire
the array ’

particular interest in a complex propagating medium such as a waveguid
Indeed, the low signal-to-noise ratio due to the length of the multiple pat
and the complexity of the echographic response of scatterer due to the dou le
paths along the guide render the determination of the impulse responses of
the scatterers very difficult. L

S
N

Time (ps)

Fig. 26. Time-domain compression: signal received at the position of the first wifé
after transmission of the first temporal eigenvector ’
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Fig. 27. Maximum of the pressure field measured at the depth of the wires across
the guide after transmission of eigenvectors 1 and 2

6.2 Selective Focusing in the Pulse Mode

These signals are then transmitted from the array and the so-produced field

is recorded along a line at the initial depth of the wires. One can observe
an excellent temporal compression at the position of the wires: the signal
received at the wire position is a pulse 3-ms long, ‘while the transmitted
signals are 165-ms long (Fig. 26).

first eigenvector

second eigenvector.

range (cm)

-2 -1 0 -2 -1 0
depth (cm) depth (cm)

Fig. 28. Two-dimensional map of the maximum of the pressure field measured after
transmission of the first and second eigenvectors -
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The transverse peak pressure pattern of the first and second eigenvectors -
at the depth of the wire (Fig. 27) can be compared with the one obtained

_in monochromatic transmission (Fig. 11). The improvement in spatial fo-

cusing is undeniable. The secondary lobes decrease to —~30dB, while in the
monochromatic transmission they remained around —18dB. Furthermore,
the focusing is also excellent in range (Fig. 28)

7. Conclusion

In brief, the D.O.R.T. method is a generalization of the principle of iterative
time-reversal mirrors. It allows the different waves contributing to the scat- -

“tered field to be sorted and provides information on the scattering medium

that up to now has not been available. It is a powerful tool for detection and

focusmg in heterogeneous and multiple target media and more generally for
“inverse scattering analysis.

The various experimental results shown opened several axies of research
that are now under study. The detection of microcalcification in the breast
is probably one of the most interesting applications in medical imaging.

 The D.O.R.T. method can be applied to nondestructive testing in solid

waveguides. This is of particular interest for finding defects that are close

~ to the interfaces. The results presented in a nonstationary guide are promis-
. ing and have motivated further studies of underwater applications such as

mine countermeasures. The time-domain D.O.R.T. method could be used in

A ,detectlon to reduce sidelobe effects such as problems of false location.

References

‘1. M. Fink, C. Prada, F. Wu, Self focusing in inhomogeneous media with time
- reversal acoustic mirrors, Proc. IEEE Ultrason. Symp. 2, 681-686 (1989)
2. M. Fink, Time Reversal Mn‘rors, J. Phys. D 26, 1333-1350 (1993)
3.:C. Prada, J.-L. Thomas, M. Fink, The iterative time reversal process: analysis
. of the convergence, J. Acoust. Soc. Am. 97, 62-71' (1995)
4. C. Prada, M. Fink, Eigenmodes of the time reversal operator: a solution.to
- selective focusing in multiple target media, Wave Motion 20, 151-163 (1994)

-5, C. Prada, S. Manneville, D. Spoliansky, M. Fink, Decomposition of the time

reversal operator: detection and selective focusing on two scatterers, J. Acoust.
Soc. Am. 99, 2067-2076 (1996)

. 6 C. Prada, M. Tanter, M. Fink, Flaw detection in: solid with the D. O.R.T.

‘method, Proc. IEEE Ultrason. Symp. 2, 681-686 (1989)

; 7. G. Bienvenu, L. Kopp, Optimality of high resolution array processing using the

eigensystem approach, IEEE Trans. Acoust. Speech Sig. Proc. 81 (1983)

. 8 R.O. Schmidt, Multiple Emitter Location and Signal Parameter Estimation,

- IEEE Trans. Ant. and Prop. AP-34, 276-281 (1986)

98B, Baggeroer, W. A. Kuperman, P. N. Mikhalevsky, An overview of matched

field methods in ocean acoustics, IEEE J. Ocean. Eng. 18, 401-424 (1993)




10.
11.

12.
13,
14,
15.

16.

17,
18,

19. J.-L. Thomas, P. Roux, M. ka Inverse scattering analysis with an acoustic

20.

21.

Detection and Imaging in Complex Media with the D.O.R.T. Method 133

Parvulescu, Matched — s‘ignal (‘MESS?) processing by the ocean, J. Acoust.

Soc. Am. 98, 943-960 (1995)

C. S. Clay, Optimum time domain signal transmission and source location in a
waveguide, J. Acoust. Soc. Am. 81, 660-664 (1987)

S.Li, C. S. Clay, Optunum time domain signal transmission and source location
in a waveguide: Experiments in an ideal wedge waveguide, J. Acoust. Soc.
Am. 82, 1409-1417 (1987)

D. R. Jackson, D. R. Dowling, Phase comugatxon m underwater acoustics,
J. Acoust. Soc. Am. 89, 171-181 (1991)

P. Roux, B. Roman, M. Fink, Time:reversal in an ultrasonic waveguide, Appl.
Phys. Lett. 70, 18111813 (1997) o

W. A. Kuperman; W. S. Hodgkiss,”H.'C. Song, T. Akal, C. Ferla, D. R. Jackson,
Phase conjugation in the ocean: Experimental demonstration of an acoustic
time-reversal mirror, J. Acoust. Soc. Am. 103, 25-40 (1998)

H. C. Song, W. A. Kuperman, W. S. Hodgkiss, Iterative time reversal in the
ocean, J. Acoust. Soc. Am. 105, 3176-3184 (1999)

W. S. Hodgkiss, H. C. Song, W. A. Kuperman, A long-range and variable focus
phase-conjugation éxperiment in shallow water, J. Acoust. Soc. Am. 105, 1597-
1602 (1999)

N. Mordant, C. Prada, M. Fink, Highly resolved detection and selective focusing
in & waveguide using the D.O.R.T, method, J. Acoust. Soc. Am. 105, 2634
2642 (1999)

time-reversal mirror, Phys. Rev. Lett. 72, 637-640 (1994)

C. Prada, J.-L. Thomas, P. Roux, M. Fink, Acoustic time reversal and inverse
scattering, Proc. Int, Symp. Inv. Prob. (1994) 309-316

C. Prada, M. Fink, Separation of interfering acoustic scattered signals using
the invariant of the time-reversal operator. Application to Lamb waves charac-
terization, J. Acoust. Soc. Am. 104, 801-807 (1998)




