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Abstract—Sparse atomic decomposition algorithms, such as
matching pursuit, attempt to find an efficient estimation of
a signal using terms (atoms) selected from an overcomplete
dictionary. In some cases, atoms can be selected that have energy
in regions of the signal that have no energy. Other atoms are
then used to destructively interfere with these terms in order to
preserve the original waveform. Because some terms may even
“disappear” in the reconstruction, we refer to the destructive and
constructive interference between the atoms of a sparse atomic
estimation as “dark energy.” In this paper, we formally define
dark energy for matching pursuit, explore its properties, and
present empirical results for decompositions of audio signals.
This work demonstrates that dark energy is a useful measure of
the interference between the terms of a sparse atomic estimation,
and might provide information for the decomposition process.

Index Terms—Sparse overcomplete methods, signal estimation,
matching pursuit. EDICS: AUD-ANSY

I. INTRODUCTION

A SPARSE atomic estimation of a signal is a linear
combination of functions with finite support called atoms

chosen from an overcomplete dictionary. Sparse overcomplete
methods include basis pursuit [1], matching pursuit (MP)
[2], orthogonal MP [3], high resolution MP [4], [5], and
psychoacoustically weighted MP [6]. These methods attempt
to estimate a signal in a way that is sparse, efficient, and
robust, as well as meaningful. Sparse overcomplete methods
have been used in many applications, such as compression and
coding of audio [7], speech [8], images [9], and video [10];
analysis of multimodal signals [11]; blind source separation
[12]; and modification of audio signals [13].

Sparse decomposition algorithms like MP iteratively build
a signal model using atoms selected in a nonlinear and
locally greedy manner. Some terms in the estimation, however,
arise as a result of this greediness. In the extreme case,
some selected atoms may exist in regions where the original
signal possesses no energy. These terms remain a part of the
estimation but destructively interfere and “disappear” in the
reconstruction. Although other atoms may not disappear, they
may still exist to “correct” other atoms through constructive
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and destructive interference to preserve the waveform of the
original signal. Because of the disappearance of atoms in the
extreme case, we refer to interference between the terms of a
sparse atomic estimation as dark energy (DE).

Several researchers have noted the tendency of MP to
correct itself using terms that interfere with each other [1],
[4], [5], [13], [14]. For example, when using a dictionary
of symmetric atoms to decompose an audio signal, MP has
a propensity to place atoms preceding transients. A simple
example of this is seen in Fig. 1. This behavior affects the
efficiency and usefulness of a sparse estimation because some
terms may not be real features of a signal [1], [4], [5], and
may result in detrimental artifacts [13], [14]. Thus, minimizing
the number of these terms or the extent of their corrections
should benefit an estimation.

Various methods have been proposed to diminish this be-
havior, such as using a particular dictionary [14], or instead
by selecting atoms in a different manner than MP [1], [4],
[5]. There is much evidence that with a dictionary “tuned” to
the types of structures expected in a signal, such as a union
of short-scale wavelets and large-scale windowed cosines for
musical audio signals [15], or even learning the dictionary
from a set of test signals [16], that the resulting estimations are
much more sparse, efficient, robust, and meaningful. However,
these estimations may still not be free of interfering terms
since they are built from overcomplete sets of functions.
Instead of attempting to mitigate DE, we are here interested in
quantifying its existence in a sparse atomic estimation to learn
about the signal, the dictionary, the estimation algorithm, and
the quality of the results. The ultimate goal of this work is to
use DE to improve the sparse atomic estimation of signals.

The rest of this paper is organized as follows. Section II
provides an overview of a sparse signal model and briefly
reviews MP. In Section III, we present a formal measure of
DE and discuss its significance. Section IV presents some
empirical results for a set of real audio signals. Finally,
conclusions of this work and an outline for future directions
are provided in Section V.

II. SPARSE SIGNAL MODEL AND MATCHING PURSUIT

A sparse signal model uses a set of pre-defined functions
drawn from an overcomplete dictionary. A signal vector x in
a real K-dimensional subspace X ∈ RK is modeled by an
nth-order linear combination of these functions

x = x̃(n) + r(n) = G(n)a(n) + r(n) (1)

where G(n) ∆= [g0 | · · · |gn−1] is a K × n matrix whose
columns are functions (atoms) {gi ∈ X :

∣∣∣∣gi∣∣∣∣ = 1} selected
from a larger real K ×N matrix D (dictionary) with rank K
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Fig. 1. A transient signal (gray) is decomposed by MP over a dictionary of
Gabor atoms (envelopes in black). Several terms of the decomposition exist
prior to the signal onset and remove the error introduced by the first selected
term (labeled).

(generally N � K), and a(n) ∆= [a0, . . . , an−1]T is a vector
of the expansion coefficients. The residual is r(n) ∆= x− x̃(n)
(with r(0) ≡ x and x̃(0) = 0), the approximation is x̃(n),
and the estimation is {G(n),a(n)}, all for the nth-order.
We emphasize that n is the order of the estimation or the
decomposition iteration, and is not a time index of the original
signal (for which we use k).

MP is an iterative descent algorithm that offers a tractable
method for finding a good solution to (1), though suboptimal
in the L2 sense [2]. It estimates x by iteratively selecting atoms
from a dictionary D using the following criterion:

gn = arg max
g∈D
|gT r(n)|. (2)

At step n once gn is found, the estimate is updated by
appending the atom and the expansion coefficient to the
previous estimate: G(n + 1) = [G(n) |gn] and a(n + 1) =
[aT (n), an]T . When the new expansion coefficient is given by

an = gTn r(n), (3)

the energy of the new residual
∣∣∣∣r(n)

∣∣∣∣2 =
∣∣∣∣x − x̃(n)

∣∣∣∣2
is minimized [2]. The decomposition can be stopped after a
specified number of steps, or after ||r(n)||2 ≤ ε for some
ε > 0.

Modeling the variety of structures found in real signals by
using orthogonal functions is often disadvantageous [2]. Thus,
an important advantage of sparse overcomplete methods is the
freedom to choose the structure of D without an orthogonality
restriction. Obviously, this has a significant impact on the
performance and properties of a decomposition algorithm,
as well as the estimations. An overcomplete dictionary that
is well-correlated with the expected structures in a class of
signals can result in significantly sparser and more efficient
and meaningful estimations than can be obtained by using an
orthonormal basis [1], [2], [4], [9], [15], [16].

In the computer simulations presented later, we use dictio-
naries designed from three different types of atoms: Gabor
atoms, damped oscillators, and damped sinusoids. Each atom
has the same form:

g(k;u, s, ω, φ) = Aw(k − u; s) cos[ω(k − u)T + φ] (4)
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Fig. 2. A portion of speech (top) is decomposed over a dictionary of
Gabor atoms. The wivigram (bottom) displays the distribution of energy of
the estimation in the time-frequency plane. The dashed region shows instances
of dark energy.

where 0 ≤ k < K is a time index, 0 ≤ ω ≤ π is a normalized
frequency, 0 ≤ u < K − s/2 is a translation in samples,
1 ≤ s ≤ K is a scale in samples, T is the sampling period,
0 ≤ φ < 2π is a phase offset, and the scalar A is set such that∑
k |g(·)|2 = 1. The (k + 1)st element of the atom vector g

is g(k;u, s, ω, φ). The function w(k; s) is a window. A Gabor
atom uses a truncated and sampled Gaussian window:

w(k; s) =

{
exp
(
− (k−s/2)2

2(αs)2

)
, k = 0, . . . , s− 1

0, k = s, . . . ,K − 1
(5)

where α > 0 controls the variance. A damped oscillator has a
truncated exponential window:

w(k; s) =

{
exp
(
−βk/s

)
, k = 0, . . . , s− 1

0, k = s, . . . ,K − 1
(6)

where β > 0 controls the decay. A damped sinusoid is a
damped oscillator with the restriction that φ = −π/2 in (4).

III. DARK ENERGY

The signal shown at the top of Fig. 2 is decomposed by MP
over a dictionary of Gabor atoms. The lower image shows the
superposition of the Wigner-Ville distribution of each atom
[2] in the estimation, which we refer to as a wivigram. The
dashed region contains several atoms where the original signal
has little energy and few atoms are expected in the estimation.
These atoms, or parts thereof, destructively interfere and
disappear in the approximation. The energy in this time-
frequency region can be found by a double integration over the
wivigram (which is phase-invariant) over all frequencies and
the given time limits. Similarly, one may find the energy of the
approximation in this region by summing the corresponding
squared sample values of x̃(n). Figure 3 shows how the energy
in the wivigram and of the approximation change as functions
of the estimation order n for two different time regions in
Fig. 2.

Although MP is nonlinear, energy is conserved at each step
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Fig. 3. For the estimation shown in Fig. 2, we plot the energies of the approximation x̃(n) (thin line), the actual signal (dashed line) x, and in the wivigram
(thick gray line) over two different time regions. (a) 1.15 ≤ t ≤ 1.25 s. (b) 1.0 ≤ t ≤ 1.4 s.

as in a linear expansion over an orthogonal basis [2], i.e.,∣∣∣∣x∣∣∣∣2 =
∣∣∣∣a(n)

∣∣∣∣2 +
∣∣∣∣r(n)

∣∣∣∣2, n = 0, 1, . . . (7)

Observe, however, that in some time regions, as shown in
Fig. 3(a), the energy in the wivigram actually grows larger
than that of the original signal and the approximation. Over
a longer time range of the signal, the energy in the wivigram
asymptotically approaches that of the original signal from
below. This local discrepancy is due to atoms in the estimation
that destructively and constructively interfere with other atoms.
It is this behavior of an overcomplete signal decomposition
that we wish to characterize. Next, we propose a measure
of the interference within a sparse atomic estimation found
using MP. This will provide information about how well a
dictionary and the decomposition estimate the original signal
both globally and locally, as an alternative to the global mean-
square error.

A. Definition of Dark Energy in Matching Pursuit

Consider the signal model in (1) where the atoms are
selected using (2), and the expansion coefficients are given by
(3). At step n we would like to measure the effect of adding
the new atom gn−1 to the current approximation x̃(n− 1) to
generate the new approximation x̃(n) = x̃(n−1)+an−1gn−1.
Although this atom removes the most residual energy, it is not
obvious how it changes the energy of the approximation.

Consider the difference between the energy of the new
approximation and the energy that would result if the new
atom is orthogonal to the current approximation:

∆(n) ∆=
∣∣∣∣x̃(n)

∣∣∣∣2 − (
∣∣∣∣x̃(n− 1)

∣∣∣∣2 + |an−1|2) (8)

= 2an−1gTn−1x̃(n− 1), n = 1, 2, . . . (9)

where (1) and (3) have been substituted. This quantity de-
scribes how much energy the new atom “imparts” to the
current approximation. If the atoms in the dictionary are
orthogonal, then ∆(n) = 0 for all n, and each atom will
impart all of its energy. In other words, the difference in
the energy between subsequent approximations will always

be equal to the energy of the new scaled atom. This is not the
case for an overcomplete (and thus non-orthogonal) dictionary
because the terms can interfere with each other. The amount
of this interference is measured by the correlation-like relation
in (9). An example realization of ∆(n) is shown in Fig. 4(a).
When ∆(n) < 0, the nth selected atom destructively interferes
with the current approximation, i.e., the energy of the new
approximation is less than that of the current approximation
summed with that of the scaled atom. Conversely, ∆(n) > 0
signifies that the new atom constructively interferes with the
approximation.

Although ∆(n) has units of energy, its interpretation as such
is difficult because it can be negative. As a result, we define
the DE associated with the addition of gn−1 to the current
approximation as the magnitude of ∆(n):

Ξ(n) ∆= |∆(n)| = 2
∣∣an−1gTn−1x̃(n− 1)

∣∣. (10)

DE is thus proportional to the magnitude of the correlation of
the selected atom with the current approximation of x, i.e.,
it is a measure of the extent to which the selected atom is
already represented in x̃(n − 1). When the DE is nonzero,
then gn−1 does not contain entirely new “information” with
respect to x̃(n−1), even though, via (2), that atom is the most
correlated with the residual r(n− 1) of all atoms in D. Note
that unlike (9), DE does not discriminate between constructive
and destructive interference; it is a measure of either type of
interference for the atom as a whole.

B. Cumulative Interference and Dark Energy

The quantities in (9) and (10) can summed to provide
cumulative measures of the interference between terms in an
nth-order estimation. These sums are defined as

∆Σ(n) ∆=
n∑

m=1

∆(m) (11)

ΞΣ(n) ∆=
n∑

m=1

Ξ(m) (12)
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Fig. 4. Interference and DE trajectories for the signal shown in Fig. 2. (a)
∆(n). (b) ∆Σ(n). (c) ΞΣ(n).

where ∆Σ(n) (which can be positive or negative) is the cumu-
lative interference in the nth-order estimation, and ΞΣ(n) ≥ 0
is the corresponding cumulative DE (CDE). Examples of these
for the signal in Fig. 2 are shown in Fig. 4(b) and Fig.
4(c), respectively. Observe in Fig. 4(b) that significant positive
interference occurs in the first hundred iterations. The CDE
shown in Fig. 4(c) grows most rapidly over these iterations,
but is asymptotically convergent.

C. Convergence of Dark Energy

Assuming that the dictionary D is complete for some finite-
dimensional subspace X ∈ RK , we now show that DE is
bounded above by a decaying exponential and converges to
zero. Using the Cauchy-Schwartz inequality, we can write

Ξ(n+ 1) = 2|angTn x̃(n)| ≤ 2|an|
∣∣∣∣x̃(n)

∣∣∣∣ (13)

since each atom has unit norm. Because D is assumed to be
complete, limn→∞

∣∣∣∣x̃(n)
∣∣∣∣ =

∣∣∣∣x∣∣∣∣, and thus

lim
n→∞

Ξ(n+ 1) ≤ 2
∣∣∣∣x∣∣∣∣ lim

n→∞
|an|, (14)

which demonstrates that DE is bounded from above by the
expansion coefficients. It is shown in [2] that the magnitude
of the expansion coefficients is bounded from above by a
decaying exponential, which we reproduce in part below.

Consider the following “correlation ratio” [2]:

λ(x) ∆= max
g∈D

∣∣gTx
∣∣∣∣∣∣x∣∣∣∣ . (15)

Clearly, λ(x) ≤ 1; equality is achieved when D contains
x/
∣∣∣∣x∣∣∣∣. From (2) and Lemma 1 in [2],

inf
x∈X

λ(x) ∆= I(λ) > 0. (16)

This implies that for {x ∈ X :
∣∣∣∣x∣∣∣∣ 6= 0}, the minimum of

the maximum magnitude correlation with any g ∈ D is > 0.
Lemma 2 in [2] relates I(λ) to the norm residual as follows:∣∣∣∣r(n)

∣∣∣∣∣∣∣∣x∣∣∣∣ ≤ [1− I2(λ)
]n/2 ∆= Λn. (17)

Thus, the norm of the residual decays exponentially at a rate
proportional to Λ ∆=

√
1− I2(λ). Note that 0 ≤ Λ < 1, and is

strictly < 1 because of (16).
Since in MP the expansion coefficients are found using (3),

we can write using the Cauchy-Schwartz inequality

|an| = |gTn r(n)| ≤
∣∣∣∣gn∣∣∣∣ ∣∣∣∣r(n)

∣∣∣∣ =
∣∣∣∣r(n)

∣∣∣∣. (18)

Finally, by substituting (17) into (14), we see that

lim
n→∞

Ξ(n+ 1) ≤ 2
∣∣∣∣x∣∣∣∣ lim

n→∞

∣∣∣∣r(n)
∣∣∣∣

≤ 2
∣∣∣∣x∣∣∣∣2 lim

n→∞
Λn = 0. (19)

This proves that for x ∈ X decomposed over D, the DE in
the estimation converges exponentially to zero. This behavior
is seen in Fig. 4(a).

D. Balance of Positive and Negative Interference

Next, we show that for x ∈ X the cumulative interference
∆Σ(n) in (11) converges to zero. This means that in a
convergent estimation, there must be equal constructive and
destructive interference. We can rewrite (11) as follows:

1
2

∆Σ(n) =
n−1∑
m=0

amgTm
[
x− r(m)

]
=

n−1∑
m=0

amgTmx−
n−1∑
m=0

a2
m (20)

= xT
n−1∑
m=0

amgm −
∣∣∣∣a(n)

∣∣∣∣2
= xT x̃(n)−

∣∣∣∣a(n)
∣∣∣∣2 (21)
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where (3) has been substituted in (20). Using (7) yields

1
2

∆Σ(n) = xT x̃(n)−
(∣∣∣∣x∣∣∣∣2 − ∣∣∣∣r(n)

∣∣∣∣2). (22)

In the limit as x̃(n)→ x, the norm of the residual converges
to zero and thus

lim
n→∞

1
2

∆Σ(n) =
∣∣∣∣x∣∣∣∣2 − (

∣∣∣∣x∣∣∣∣2 − 0) = 0. (23)

This result shows that, as expected, there are equal amounts
of constructive and destructive interference in a convergent
estimation. The plot ∆Σ(n) in Fig. 4(b) hints at this result.

E. Upper Bound for the Cumulative Dark Energy

Since DE converges exponentially to zero, it necessarily
follows that the CDE (12) is also bounded and convergent.
We now find an upper bound. From (17) and (18), we can
write ∣∣an∣∣ =

∣∣gTn r(n)
∣∣ ≤ ∣∣∣∣r(n)

∣∣∣∣ ≤ ∣∣∣∣x∣∣∣∣Λn. (24)

Substituting this result into (10) yields

Ξ(n+ 1) = 2
∣∣an∣∣ ∣∣gTn x̃(n)

∣∣ (25)

≤ 2Λn
∣∣∣∣x∣∣∣∣ ∣∣gTnG(n)a(n)

∣∣. (26)

Using the Cauchy-Schwartz inequality on the last term
on the right-hand side, we have that

∣∣gTnG(n)a(n)
∣∣ ≤∣∣∣∣gTnG(n)

∣∣∣∣ ∣∣∣∣a(n)
∣∣∣∣. From the energy conservation prop-

erty in (7), it is easy to see that
∣∣∣∣a(n)

∣∣∣∣ ≤ ∣∣∣∣x∣∣∣∣. Also,∣∣∣∣gTnG(n)
∣∣∣∣ <

√
n; the upper bound occurs when G(n)

contains n columns of gn, but this is prohibited by the
selection criterion of MP. Combining these results gives

Ξ(n+ 1) < 2
√
nΛn

∣∣∣∣x∣∣∣∣, (27)

which after substituting into (12), yields the following upper
bound for the CDE:

ΞΣ(n) < 2
∣∣∣∣x∣∣∣∣ n−1∑

m=0

√
mΛm. (28)

Since 0 ≤ Λ < 1 the CDE necessarily converges for x ∈ X .
The value at convergence depends upon a complex relationship
between the dictionary and the signal, as expressed in (15).

IV. EMPIRICAL RESULTS AND DISCUSSION

In the following computer simulations, ten audio signals
(sampled at 44.1 kHz) were decomposed by MP implemented
using the Matching Pursuit Toolkit [17]. Each signal was
decomposed over one of three dictionaries to a maximum
signal-to-residual ratio (SRR) of 20 log10(||x||/||r(n)||) = 60
dB. Each dictionary consists of atoms with scales that are
powers of two, ranging from 22 to 214 = 16, 384 samples,
corresponding to the range [0.1, 370] ms. Each atom has a
translation in samples that is an integer multiple of one quarter
of its scale. For example, atoms with a scale of 32 samples
have translations that are integer multiples of 8 samples.
Furthermore, each translated atom of scale s has modulation
frequency ωi = i2π/s, i = 0, 1, . . . , s/2. In the dictionaries
of damped oscillators and damped sinusoids, we set α = 0.1
and β = 10 in (5) and (6), respectively.
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Fig. 5. Convergence of the CDE ratio ΞΣ(n)/||x||2 as a function of SRR
for several audio test signals. (a) Flute, Soprano, Violin, Glockenspiel, and
Sine. (b) Drums, Harpsichord, Speech, Ecological, and White Gaussian Noise.

Figure 5 shows the ratio of the CDE and the signal energy
ΞΣ(n)/||x||2 as a function of the SRR for the decomposition
of each signal over a dictionary of Gabor atoms. Note that
Ecological is a field recording of birds; Drums includes
cymbals, snare, and bass drums; Harpsichord is polyphonic;
and Sine is a sine wave. The estimation of Sine has the lowest
CDE ratio in the range [0, 17] dB SRR, and that of Drums
has the highest in the range [5, 15] dB SRR. This result is
intuitive because the residual of Sine is similar to a Gabor
atom until most of the energy is represented, and MP begins
selecting interfering atoms to preserve the constant envelope
of the original waveform. For Drums, since the signal energy
is spread widely across the spectrum, many Gabor atoms are
needed because each one represents essentially one frequency
with a small time support. As a result, there will be more
atoms initially interfering with each other than for any of the
other signals considered, except perhaps the white Gaussian
noise (WGN).

Table I summarizes some statistics of the signals and their
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TABLE I
STATISTICS OF THE SIGNALS AND ESTIMATIONS AT ITERATION n FOR SRR = 60 dB USING THREE DICTIONARIES. MINIMUM VALUES ACROSS

DICTIONARIES ARE DENOTED BY ?.

Signal (s) Order n MAS CDE Ratio Signal (s) Order n MAS CDE Ratio

G

Flute (5.8) 76,742 13,271 0.387 ? Sine (4.0) 795 199 ? 0.417
Soprano (11.1) 91,547 8,249 ? 0.417 Speech (8.1) 107,786 13,243 0.422
Violin (13.9) 163,763 11,805 0.363 Ecological (14.7) 238,092 16,249 0.433
Glock (8.8) 41,292 4,678 ? 0.449 Harpsichord (8.1) 153,834 18,904 0.478
Drums (5.3) 103,355 19,524 0.455 WGN (4.0) 178,174 44,548 0.503

G
∪

O

Flute (5.8) 80,488 13,919 0.400 Sine (4.0) 846 212 0.407 ?
Soprano (11.1) 96,467 8,692 0.416 Speech (8.1) 116,582 14,323 0.413 ?
Violin (13.9) 169,723 12,235 0.373 Ecological (14.7) 253,092 17,273 0.441
Glock (8.8) 43,603 4,939 0.501 Harpsichord (8.1) 162,401 19,957 0.484
Drums (5.3) 110,407 20,856 0.444 WGN (4.0) 191,606 47,902 0.490 ?

G
∪

S

Flute (5.8) 76,332 13,200 ? 0.408 Sine (4.0) 817 204 0.415
Soprano (11.1 ) 92,007 8,290 0.412 ? Speech (8.1) 107,582 13,218 ? 0.421

Violin (13.9) 163,293 11,771 ? 0.359 ? Ecological (14.7) 235,914 16,101 ? 0.431 ?
Glock (8.8) 41,604 4,713 0.441 ? Harpsichord (8.1) 152,828 18,780 ? 0.476 ?
Drums (5.3) 102,957 19,448 ? 0.436 ? WGN (4.0) 176,292 44,073 ? 0.505

estimations using three different dictionaries, with each signal
decomposed to order n such that its SRR = 60 dB. These
statistics are the signal duration, the estimation order n, the
mean number of atoms per second of sound (MAS), and the
CDE ratio ΞΣ(n)/||x||2. Each dictionary has atoms with the
scales and translations stated above. G consists only of Gabor
atoms, G ∪O is a union of G and a set of damped oscillators
O, and G ∪ S is a union of G and a set of damped sinusoids
S. For example, the estimation of Flute (which has a duration
of about 5.8 s) using G requires 76,742 atoms, corresponding
to a MAS of 13,271 atoms/s, and a CDE ratio of 0.387.

Since WGN, Drums, and Harpsichord are all wideband
signals, their estimates should exhibit a large MAS for each
dictionary because each atom is modulated by a single fre-
quency. On the other hand, Sine, Glock, and Soprano have
relatively few frequency components, and so it is expected that
they exhibit low MAS values. All MAS values increase when
using G∪O instead of G. And all but two MAS values decrease
when using G ∪ S instead of G. The CDE ratio provides a
measure of the degree to which an estimation interferes with
itself in the signal reconstruction. We expect that signals with
soft attacks and symmetric or periodic waveform structures
will be more similar to Gabor atoms, and thus will yield less
interference. This is verified by the low CDE ratios for the
estimations of Flute, Violin, and Soprano using G. Though
Sine is periodic and its estimation has the smallest MAS
using G, it still has a high CDE ratio because of envelope
corrections. The estimation of Glock using G has a low MAS,
but we believe that its high CDE ratio is caused by errors
created when adapting smooth and symmetric Gabor atoms
to the high-energy asymmetric transients. To investigate this,
we examined the time positions of the atoms associated with
the highest DE. Figure 6 compares these to the times of the
transients seen in the wide-band short-time Fourier transform
of the signal. This clearly shows that interference in the
estimation is concentrated around the transients.

The estimation statistics for these signals change when using
different dictionaries. Decomposing over G ∪ O instead of G
increases the MAS for every signal, while in only five cases
does the CDE ratio decrease. And when using G∪S instead of
G the MAS increases for only three signals (Glock, Soprano,
Sine), while the CDE ratio increases for only two signals
(Flute, WGN) compared with G. This suggests that when using
a dictionary that is a union of Gabor and damped sinusoid
atoms, sparse estimations of these audio signals exhibit less
interference than when using just Gabor atoms. For only Sine,
Speech, and WGN do the estimations found using G ∪ O
result in the smallest CDE ratio; G ∪ S performs the best in
this respect. One physical reason why G ∪ O is not a good
dictionary for these signals is that the waveform of a damped
oscillator can have a very sharp and unnatural discontinuity
due to the free phase term.

V. CONCLUSION AND FUTURE WORK

For overcomplete methods, the fact that nonorthogonal sets
of functions are used means that the terms of a signal estima-
tion might constructively and destructively interfere. This is
observed in sparse atomic decomposition algorithms, such as
matching pursuit (MP), where localized greediness can result
in the selection of atoms that “correct” for atoms selected in
earlier iterations. In the most extreme case, an atom present in
the estimation will completely disappear in the reconstruction
– which is the motivation for using the term “dark energy”
(DE) to describe the interference between atoms. The existence
of these terms negatively affect the efficiency and usefulness
of the resulting estimations.

In the literature thus far, most efforts have attempted to
mitigate the necessity of such correction terms. In our work,
we instead seek to quantify the extent to which a sparse atomic
estimation exhibits constructive and destructive interference in
order to gauge the efficiency of an estimation, the effectiveness
of the algorithm, and the fit between the signal and that of
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Fig. 6. The wide-band short-time Fourier transform (top) of a music signal (Glock) reveals the locations of transients. The signal waveform (bottom) is
superimposed on lines showing the locations of the Gabor atoms in the estimation that interfere the most. The darkness of each line is scaled by the DE of
the atom.

the dictionary. In this paper, we have defined the concept of
DE for sparse atomic estimations of signals found specifically
using MP, proposed a measure for it, and have analytically
and empirically investigated its properties.

Future work will explore the utility of DE to improve the
efficiency and usefulness of sparse overcomplete methods. For
example, DE could provide an intuitive way of controlling
the greediness of MP and making better atom selections. The
existence of DE in a signal estimation also points to locations
of structures in the signal that may not be well-representable
by the dictionary. This information could be used to segment
the signal into regions that do and do not correlate well
with the dictionary. Once the decomposition algorithm has
represented those signal aspects that “make sense” with respect
to the dictionary, the residual can then be decomposed using
a different dictionary, or be modeled differently altogether.
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