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Abstract—Indexing audio signals directly in the transform
domain can potentially save a significant amount of computation
when working on a large database of signals stored in a
lossy compression format, without having to fully decode the
signals. Here, we show that the representations used in standard
transform-based audio codecs (e.g. MDCT for AAC, or hybrid
PQF/MDCT for MP3) have a sufficient time resolution for
some rhythmic features, but a poor frequency resolution, which
prevents their use in tonality-related applications. Alternatively,
a recently developed audio codec based on a sparse multi-
scale MDCT transform has a good resolution both for time-
and frequency-domain features. We show that this new audio
codec allows efficient transform-domain audio indexing for 3
different applications, namely beat tracking, chord recognition
and musical genre classification. We compare results obtained
with this new audio codec and the two standard MP3 and AAC
codecs, in terms of performance and computation time.

Index Terms—Audio indexing - Time-frequency representa-
tions - Audio coding - Transform-domain indexing.

I. INTRODUCTION

Digital audio has progressively replaced analog audio since
the 80s and music is now widely stored and diffused in
digital form. This revolution is mainly due to the spread
of audio coding technologies, which allow to considerably
reduce the amount of data necessary to represent a PCM audio
signal with no (or little) loss in the perceived quality of the
decoded signal. The basic principle of an audio coder is to
use a time-frequency representation of an input PCM signal,
which is then quantized with variable precision according to
a psychoacoustic model such that the loss introduced by the
quantization is minimally perceived. The first standardized
MPEG audio codecs (MPEG-1 [1]), developed in the early
90s, employ a PQF filterbank (Polyphase Quadrature Filters)
to decompose the sound in several subband signals. The
third layer of MPEG-1 (MP3) also uses a MDCT transform
(Modified Discrete Cosine Transform) which is applied on
each subband signal to get better frequency resolution. MP3
is able to reduce the size of a PCM audio signal more than
6 times while guaranteeing a near-transparent quality. This
property made it very attractive to the music listeners and it
is now widely used. The most widespread successor of MP3,
called Advanced Audio Coding (AAC), was first introduced in
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the MPEG-2 standard [2] in 1997 and included in the MPEG-
4 standard [3] in 1999. AAC is based on a pure MDCT
(without PQF filterbank), an improved encoding algorithm,
and several additional coding tools (e.g. Temporal Noise
Shaping, Perceptual Noise Substitution ...). Formal listening
tests [4] showed that AAC is able to encode stereo music at
96 kbps with better quality than MP3 at 128 kbps, and with
“indistinguishable quality” (in the EBU sense) at 128 kbps -
as a comparison, the bitrate of a stereo PCM signal in CD
format is 1411 kbps. MPEG-4 AAC is still considered as the
state-of-the-art standard for (near-)transparent audio coding.

More recently, the digital revolution gave birth to another
research domain known as automatic audio indexing, which
allows to extract high-level features from digital audio. Ex-
amples of audio indexing tasks include beat tracking [5]–[8],
chord recognition [9]–[12] and musical genre classification
[13]–[15]. Audio indexing is useful for music information
retrieval (MIR), a research domain that studies the problem of
efficiently finding a given information in the ever increasing
mass of digital music data. Most audio indexing systems are
based on a time-frequency representation of an input PCM
signal. This time-frequency representation is then used as an
input to an indexing system that extract the desired high-level
features (e.g. a sequence of beat positions for beat tracking, a
sequence of chords for chord recognition, or a genre class for
musical genre classification).

Though research in audio coding and in audio indexing
has been conducted independently, the methods used in both
areas share many similarities. In particular, they are both based
on similar time-frequency representations. Then, one of the
current challenges in audio signal processing would be to
design a single time-frequency representation that could be
useful for both audio coding and indexing. It would open the
possibility of designing an audio indexing system that uses
the internal representation of an audio codec, a case known
as “transform-domain audio indexing”. Given a coded file,
a transform-domain audio indexing system does not decode
the PCM signal but directly uses the internal time-frequency
representation. The main interest of such a system is thus to
reduce computational cost when processing coded files. This
is useful e.g. for processing very large databases of coded files
(see Fig. 1).

Transform-domain audio indexing has already been studied
for the standard MPEG codecs: MPEG-1 Layer 1/2/3 and
AAC. The study of Patel and Sethi [16] was probably the first
to propose low-level audio features based on MPEG-1 com-
pressed data. The basic principle is to use the internal MPEG-1
representation composed of the PQF subband signals, and to
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Fig. 1. Audio indexing on a very large database of coded files. Top: the traditional time-domain approach. Bottom: the transform-domain approach.

compute low-level features such as “signal energy”, “pause
rate”, “band energy ratio”... These audio features were then
combined with video features and used in a machine learning
system in order to classify video clips. Other studies [17]–[23]
follow a similar approach but propose different low-level audio
features and consider different applications such as speech
recognition [17], audio segmentation and classification [18],
[19], [22], beat tracking [20], [23] and music summarization
[21] (see also [24] for a review on MPEG-1 transform-domain
indexing). One should note that the work of Wang et al. [20],
[21], [23] and the work of [22] are in a way different from
other works as they use MDCT coefficients instead of the PQF
subband signals for the calculation of audio features. Indeed,
these appproaches are targeted for the MP3 codec [20], [21],
[23], and the AAC codec [22], [23]; they are not intented to
work on the first two layers of the MPEG-1 codecs.

Despite the success of standard audio codecs for several
transform-domain audio indexing applications, the internal
time-frequency representation used in MP3 and AAC has
limitations and in particular in terms of frequency resolution.
This limitation prevents the use of such codecs for transform-
domain audio indexing applications that need good frequency
resolution such as chord recognition. To overcome this limita-
tion, we propose the study of a new non-standard audio codec
[25] that uses a sparse overcomplete transform composed of
a union of 8 MDCT bases with different scales, allowing dif-
ferent time-frequency tradeoffs. This new audio codec, noted
”8xMDCT” in this paper, uses simultaneously both very small
and very large analysis windows allowing both good time and
frequency resolution. We show in this paper that, contrary to
the standard MP3 and AAC codecs, this new codec allows
efficient transform-domain audio indexing for different appli-
cations including beat tracking, chord recognition and musical
genre classification. For each application (beat tracking, chord
recognition and musical genre classification) and each codec
(MP3, AAC and 8xMDCT), we propose simple mid-level
representations (a mid-level representation is an intermediate
representation that emphasizes certain structures useful for a
given application) that are computed in the transform-domain.
We then integrate these mid-level representations in state-of-

the-art audio indexing systems and evaluate their performance
and computation times.

The remainder of the paper is as follows. In Section II,
we briefly describe the coding/decoding process of the 3
considered codecs and present the used transform represen-
tations. In Section III, we propose simple and fast algorithms
that compute mid-level representations based on the transform
representations. In Section IV, we describe the state-of-the-art
audio indexing systems and give results for the 3 considered
applications. And finally, we conclude in Section V.

II. AUDIO CODECS

We consider in this paper three audio codecs: MPEG-
1 Audio Layer 3 [1], MPEG-4 AAC LC [3] and the new
8xMDCT codec [25]. In this section, we briefly describe,
for each codec, the coding/decoding process and the time-
frequency representation used. It is important to note that we
consider in this paper mono signals; we thus present in this
section the mono version of each codec only.

A. MPEG-1 Audio Layer 3
1) Coding/decoding process: The MPEG-1 Audio Layer 3

[1] coding/decoding process is shown in Fig. 2. The input
PCM signal is first passed through a 32-band PQF filterbank.
Then, each subband signal is transformed with a time-varying
MDCT and the resulting coefficients are processed in order
to reduce the aliasing introduced by the PQF. Finally, the
MDCT coefficients are scaled using scalefactors, non-linear
quantized and Huffman coded. The MP3 decoder first recov-
ers the MDCT coefficients with Huffman decoding, inverse
quantization and scaling. Then, the coefficients are processed
in order to revert the alias reduction performed in the coder,
and inverse transformed using a time-varying inverse MDCT
per subband. Finally the subband signals are passed trough a
synthesis PQF, which produces the decoded PCM signal.

2) Signal representation: We use the MDCT representation
for the transform-domain audio indexing. We get the MDCT
coefficients produced by the decoder after inverse quantiza-
tion/scaling, and just before the inverse alias reduction stage to
avoid the aliasing introduced by the PQF (see Fig. 2). We have
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Fig. 2. Main operations in MPEG-1 Audio Layer 3 coding/decoding.

chosen this approach instead of the PQF subband signals (as
in e.g. [19]) for two reasons. Firstly, the frequency resolution
of the MDCT is higher ; and secondly, the computational cost
is lower as the inverse MDCT operation is avoided. The time-
varying MDCT used in the MPEG-1 Audio Layer 3 codec is
based on a sine analysis window and two window sizes, one
long of 36 samples (the long window has 3 possible shapes,
one symmetric window and two asymmetric windows), and
one short of 12 samples. The two long asymmetric windows
are used for the transition between the symmetric long and
short windows. The short windows are always selected by
groups of 3 consecutive short windows. One frame (also
called granule) is then composed by either one long window
or 3 consecutive short windows. We assume that the same
window sequence is used in each subband1. The MDCT
coefficients of a “long-window frame” are noted X long

k (q) with
k = kf18 + ks (0 ≤ k < K long = 576) is the frequency index
(0 ≤ ks < 32 is the subband index and 0 ≤ kf < 18 is the
frequency index in one subband), and q is the frame index.
The coefficients of a “short-window frame” are noted X short

p,k (q)
with 0 ≤ p < P short = 3 is the window index, k = ks6 + kf

(0 ≤ k < Kshort = 192) is the frequency index for one short
window (0 ≤ ks < 32 is the subband index and 0 ≤ kf < 6
is the frequency index in one subband), and q is the frame
index.

B. MPEG-4 AAC LC
1) Coding/decoding process: The MPEG-4 AAC LC cod-

ing/decoding process is shown in Fig. 3. Instead of the hybrid
approach used in MP3, AAC uses a pure time-varying MDCT

1We assume that the mixed block feature is not used, which is indeed the
case in most coders such as LAME [26]

Fig. 3. Main operations in MPEG-4 AAC LC coding/decoding.

that is applied directly to the input PCM signal. The MDCT
coefficients are then processed using two optional tools, Tem-
poral Noise Shaping (TNS) and Perceptual Noise Substitution
(PNS). TNS is based on the duality of time and frequency
domain; it uses a prediction approach in the frequency domain
that aims at shaping the quantization noise in the time domain;
TNS is useful for e.g. pitched speech signals. PNS models the
noisy-like components using a parametric approach; PNS is
useful at low bitrates. It is important to note that most existing
coders (e.g. Nero AAC [27] and iTunes AAC [28]) do not
support the PNS tool. Finally, the MDCT coefficients in each
block are scaled using scalefactors, non-linear quantized and
Huffman coded. The AAC decoder first recovers the MDCT
coefficients with Huffman decoding, inverse quantization and
scaling. Then the coefficients are processed with the optional
tools TNS and PNS. Finally the decoded PCM signal is
synthesized using an inverse time-varying MDCT.

2) Signal representation: We use the MDCT representation
for the transform-domain audio indexing. We get the MDCT
coefficients produced by the decoder after the TNS stage
and just before the inverse MDCT stage. The time-varying
MDCT used in MPEG-4 AAC LC is similar to the one used
in MP3 but with different window sizes. The long window
has a length of 2048 samples and allows better frequency
resolution than the MP3 long window (21.5 Hz for AAC,
38.3 Hz for MP3 at 44.1 kHz). The short window has a
length of 256 samples and allows better time resolution than
the MP3 short window (2.90 ms for AAC, 4.35 ms for MP3
at 44.1 kHz). Another difference with MP3 is the possible
use of the Kaiser-Bessel Derived (KBD) window instead of
the sine window, the window can be different for each frame
(this choice is made by the coder). A frame is composed
by either one long window or 8 consecutive short windows.
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Fig. 4. Main operations in 8xMDCT coding/decoding.

The coefficients of a “long-window frame” are noted X long
k (q),

where 0 ≤ k < K long = 1024 is the frequency index and q is
the frame index. The coefficients of a “short-window frame”
are noted X short

p,k (q), where 0 ≤ p < P short = 8 is the window
index, 0 ≤ k < Kshort = 128 is the frequency index for one
short window and q is the frame index.

C. New 8xMDCT codec

1) Coding/decoding process: The 8xMDCT
coding/decoding process is shown in Fig. 4 and described with
more details in [25]. The input signal is first approximated
using the Matching Pursuit (MP) algorithm over a union
of 8 MDCT bases with the following window sizes 128,
256, 512, 1024, 2048, 4096, 8192, 16384 samples. These
analysis windows allow corresponding time resolution 1.45,
2.90, 5.81, 11.6, 23.2, 46.4, 92.9, 186 ms and corresponding
frequency resolution 344, 172, 86.1, 43.1, 21.5, 10.8, 5.38,
2.69 Hz. The MP algorithm is stopped when a target
SNR is reached, generally high (above 50dB) to reach
near-perfect reconstruction. It is important to note that the
signal approximation is here performed globally on the whole
signal, it is fundamentally different from the frame-by-frame
analysis used in the MP3 and AAC coders. Once the signal
has been approximated, the coefficients are grouped in
frames; then in each frame, the coefficients are interleaved
and coded using bitplane encoding. The 8xMDCT decoder
first recovers the interleaved coefficients in each frame using
bitplane decoding. Then the coefficients are de-interleaved
and finally the decoded PCM signal is synthesized using 8
inverse MDCT. It is important to note that, contrary to the
MP3 and AAC codec, 8xMDCT is a scalable codec; it means
that given a sound file coded at high bitrate, the decoder can
decode the file at any bitrate from very low to high bitrate
just by truncating the bitstream of each frame.

2) Signal representation: We use the MDCT representation
for the transform-domain audio indexing. We get the MDCT
coefficients produced by the decoder after the inverse inter-
leaving stage and just before the inverse MDCT stage. The

MDCT coefficients are noted Xm,p,k, where m is the MDCT
basis index (0 ≤ m < 8), p is the window index of the m-th
MDCT (0 ≤ p < Pm = 128 × 2−m) and k is the frequency
index (0 ≤ k < Km = 128 × 2m−1).

III. MID-LEVEL REPRESENTATIONS

We propose in this section several mid-level representations
that are computed in the transform domain using the MDCT
coefficients of the three codecs presented in the previous
section. We are interested here in three types of mid-level
representations: onset detection function (for beat tracking),
chromagram (for chord recognition), and MFCC-based fea-
tures (for musical genre classification).

A. Onset detection function
Onset detection functions are mid-level representations that

aim at localizing transients in an audio signal. These are gener-
ally subsampled, and ideally have peaks located at transients.
These functions are obviously useful for onset detection,
the onsets are simply detected by peak-picking the detection
function (see [11] for a review on onset detection algorithms).
They are also useful for beat tracking (see e.g. [5]–[8]), the
basic principle is to look for periodically related peaks in
the onset detection function, these particular onsets are called
“beats”.

In the following, we propose several onset detection func-
tions that are computed in the transform-domain and based
on the MP3, AAC and 8xMDCT codecs. The reference time-
domain onset detection function that we will use as compari-
son is the complex spectral difference onset detection function
first proposed in [29] and used in the beat tracking system
of [8]. The reference onset detection function used in our
experiments is based on a Hanning analysis window with
length 2048 samples and a hop size of 1024 samples, which
gives a time resolution of 23.2 ms at 44.1 kHz; the function
is then interpolated by a factor of two in order to have one
sample every 11.6 ms at 44.1 kHz.

1) MP3/AAC transform-domain onset detection functions:
We propose a detection function similar to the spectral flux
(i.e. spectral difference [29]). The proposed onset detection
function is the same for the MP3 and AAC codecs, it is defined
as

Γ(q) =
K long∑

k=1

|Sk(q) − Sk(q − 1)|1/2 (1)

where Sk(q) is a “pseudo-spectrogram” at frame q and fre-
quency k. It is defined for a “long-window frame” as

Sk(q) = |X long
k (q)|2 (2)

For a “short-window frame”, it is defined as the interleaved
coefficients of the P short short windows in one frame

Sk(q) = |Xshort
a,b (q)|2 (3)

where a and b are respectively the rest and the quotient of
the Euclidean division of k by P short (k = P shortb + a). The
time resolution is here determined by the frame length and
is thus equal to 576 samples for MP3 (13ms at 44.1 kHz)
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and 1024 samples for AAC (23.2ms at 44.1 kHz). To get the
same sample rate as the reference approach, the AAC detection
function is interpolated by a factor of two, resulting in one
sample every 11.6 ms at 44.1 kHz.

2) 8xMDCT transform-domain onset detection function:
The signal representation used in the 8xMDCT codec is based
on a union of 8 MDCT bases with analysis window sizes from
128 to 16384 samples. Since high amplitude components with
small window sizes (128 and 256) are often located around
attacks, we can build a very simple onset detection function
by sorting the decomposition such that we keep only small
window sizes components, and then sum the absolute value of
the corresponding coefficients in temporal bins to construct
a downsampled signal with peaks located at attacks. The
length of one bin is defined such that the corresponding time
resolution is the same as in the reference detection function
which is 11.6 ms and it is equivalent to 512 samples at 44.1
kHz sampling rate. The function Γ(q) at frame q is then
defined as

Γ(q) =
∑

m,p,k

|Xm,p,k| (4)

where we sum only the atoms satisfying the following two
conditions: the window size is 128 or 256 samples; the center
of the analysis window is in the temporal support of the q-th
bin.

Fig. 5 shows the four onset detection functions obtained
with a 5-second signal of rock music. The reference function
is computed on the original PCM signal; and the transform-
domain functions are computed on coded versions of this
signal with a bitrate of 64 kbps. In this example, the onset
detection functions have peaks that correspond to the drum
strokes.

B. Chromagram
A chromagram or Pitch Class Profile (PCP) [9] traditionally

consists of a 12-dimensional vector, with each dimension
corresponding to the intensity of a semitone class (chroma).
The procedure collapses pure tones of the same pitch class,
independent of octave, on the same chromagram bin; for
complex tones, the harmonics also fall into particular related
bins. Though the simplest way is to use a 12-bin chromagram,
better modeling is obtained by using more bins (24 or 36), in
order to obtain better resolution and compensate for possible
mis-tuning. These features find obvious interests in tonality-
related applications, such as key estimation [30], [31] and
chord recognition [9]–[12].

The reference chromagram that we will use as comparison
is based on a constant-Q transform applied on a downsam-
pled signal (see [11] for complete reference). The reference
chromagram used in our experiments downsamples the input
signal at 11.025 kHz and applies a constant-Q transform with
a lowest frequency resolution of 1.3 Hz and a hop size of
2048 samples; the resulting chromagram has 36 bins and a
time resolution of 185.8 ms.

The proposed algorithm for the calculation of a transform-
domain chromagram is the same for the three codecs MP3,
AAC and 8xMDCT. The first step is to keep only MDCT
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Fig. 5. A 5 seconds signal of rock music; the complex spectral difference
onset detection function; the MP3 transform-domain onset detection function;
the AAC transform-domain onset detection function; the 8xMDCT transform-
domain onset detection function.

components with best frequency resolution, these components
correspond to the analysis windows with largest size: 36
sample windows for the MP3 codec (frequency resolution:
38.3 Hz); 2048 sample windows for the AAC codec (frequency
resolution: 21.5 Hz); 8192 and 16384 sample windows for
the 8xMDCT codec (frequency resolution: 5.4 and 2.7 Hz).
The second step is to keep only MDCT components with low
center frequency and to map the center frequency of these
components to chroma-related bin. Given a component with
center frequency f (in Hz), it is mapped to the chroma bin b
such that

mod
(

round
(

B log2
(

f

fmin

))
, B

)
= b (5)

and
fmin ≤ f ≤ fmax (6)

with B the number of bins per octave, fmin the minimum
frequency, and fmax the maximum frequency. The final step
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is to sum the absolute value of the corresponding MDCT
coefficients in time/chroma bins. The time bins have equal size
of 185.8 ms allowing same time resolution as the reference
chromagram. A given MDCT coefficient is mapped to the
time bin whose temporal support includes the center of the
corresponding analysis window, and to the chroma bin given
by the previous formula.

As we have seen, MP3 and AAC have limited frequency
resolution as compared to the reference approach. This lim-
itation prevents the calculation of an efficient chromagram,
because the frequency analysis cannot distinguish neighboring
notes, and this is particularly true at low frequencies. We will
see later that this limitation prevents a good performance in
practical applications such as chord recognition.

Fig. 6 shows the chromagrams obtained with a 50-second
signal of rock music. The reference chromagram is computed
on the original PCM signal; and the transform-domain chro-
magrams are computed on coded versions of this signal with
a bitrate of 64 kbps.

C. Mel-Frequency Cepstral Coefficients

Mel-Frequency Cepstral Coefficients (MFCC) aims at pro-
viding a compact representation of the spectral envelope of
an audio signal. These features were originally developed for
speech recognition [32], as they model the vocal tract transfer
function. They are now widely used in musical applications,
as they appear to be a good description of the timbre. They
find useful applications in e.g. musical genre classification
[13] and music similarity [33]. More recently, MFCC are
used in baseline systems for evaluating audio classification
systems (e.g. [15], [34]). We first detail the implementation
we have chosen for the reference MFCC that are computed in
the time-domain, then we propose simple algorithms for the
computation of transform-domain MFCC based on the three
considered audio codecs.

1) Reference time-domain MFCC: The computation of a
set of C MFCC coefficients is described as follows. A small
frame x(n), n = 0, .., N−1 is first extracted from the signal. In
our implementation, the frames are non-overlapping and have
a length of 23.2 ms i.e. N = 1024 samples at 44.1 kHz. Then,
the magnitude of the Discrete Fourier Transform is computed

X(k) = |
N−1∑

n=0

x(n)w(n)e−ikn/N | (7)

with k = 0, .., N/2 − 1, and w(n), n = 0, .., N − 1 the
analysis window. In our implementation, it is a Hamming
window. Then, the resulting spectrum X(k) is mapped onto
the Mel scale using L triangular overlapping windows that are
equally spaced on the Mel scale. In our implementation, we
use L = 40 triangular windows whose frequency bounds range
from 20 Hz to 16000 Hz, and we use the following formula
for the Mel-scale:

m = 1127.01048 log(1 + f/700) (8)
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Fig. 6. A 50 seconds signal of rock music; the reference chromagram;
the MP3 transform-domain chromagram; the AAC transform-domain chro-
magram; the 8xMDCT transform-domain chromagram.

where m is the frequency in mel and f is the frequency in Hz.
The mapped spectrum Y (l), l = 0, .., L− 1 is then defined as

Y (l) =
N/2−1∑

k=0

X(k)Wl(k) (9)

with l = 0, .., L− 1, and Wl(k), k = 0, ..., N/2− 1 is the l-th
triangular window. Finally, the mapped spectrum is log-scaled
and transformed with a Discrete Cosine Transform. The final
MFCC coefficients are defined as

MF (c) =
L−1∑

l=0

log10(Y (l) + ε)dctL(c, l) (10)

with
dctL(c, l) =

Λ(c)
L/2

cos
(
π

L

(
l +

1
2

)
c

)
(11)

and c = 0, ..., C − 1. Λ(c) =
√

2/2 if c = 0 and Λ(c) = 1
otherwise. The constant ε = 1e − 16 avoids log of zero. In
our implementation, we keep C = 13 coefficients.
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2) MP3/AAC transform-domain MFCC: We propose here
a simple algorithm for the computation of a set of MFCC
in the transform-domain of MP3/AAC audio files. The basic
principle is to use the absolute value of the MDCT coefficients
instead of the magnitude of the DFT in the MFCC computation
described previously. The rest of the algorithm is exactly the
same. It is important to note that the MFCC are computed on
long and symmetric windows only. We do this for two reasons,
firstly the frequency resolution of small-window blocks is too
low, secondly we want to have comparable feature vectors in
order to estimate long-term statistics.

3) 8xMDCT transform-domain MFCC: We propose here an
algorithm to compute MFCC-like features from the transform-
domain representation of the 8xMDCT codec. These features
are computed on a frame-by-frame basis, where a vector
of features is computed for each frame of 8192 samples.
In each frame, a scale-frequency representation is computed,
where the frequency axis is on the same Mel-scale as in the
reference MFCC computation, and the scale axis corresponds
to the window size. This representation can be seen as scale-
dependant MFCC. This scale-frequency representation is sim-
ply a weighted histogram where the amplitude of the atoms
are summed in scale-frequency bins. The scale-frequency
representation Y (l,m) is defined as

Y (l,m) =
∑

p,k

|cm,p,k|Wm,l(k) (12)

with l = 0, .., L− 1 , m = 0, ..,M − 1, and Wm,l(k) is the l-
th window of the scale m. This scale-frequency representation
is then log-scaled and transformed with a 2D-DCT. The final
MFCC coefficients are defined as

MF (i, j) =
L−1∑

l=0

M−1∑

m=0

log10(Y (l,m) + ε)dct2L,M (i, j, l,m)

(13)
with

dct2L,M (i, j, l,m) = dctL(i, l)dctM (j,m) (14)

and i = 0, .., Cj − 1 , j = 0, .., J − 1. The total number
of MFCC coefficients is then equal to C =

∑J−1
j=0 Cj . In our

implementation, we choose J = 4, and C0 = 7 coefficients on
the first scale axis, C1 = 3 on the second scale axis, C2 = 2 on
the third scale axis and C3 = 1 on the fourth scale axis. This
results in an identical total number of coefficients C = 13.

4) Texture window: MFCC are computed on segments of
length 23.2 ms for the reference implementation, 13.0 ms for
MP3, 23.2 ms for AAC, and 185.8 ms for 8xMDCT coding.
As proposed in [13]–[15], the MFCC are grouped in longer
frames, also called texture windows. In our implementation,
we take the mean and the variance of the MFCC on non-
overlapping texture windows of length 3 seconds. This results
in a vector of 26 features for each 3 seconds of an audio
signal. Fig. 7 shows a 30-second signal of rock music and the
different MFCC implementations.

IV. EVALUATION

In this section, we evaluate the proposed transform-domain
mid-level representations which are integrated in state-of-the-
art audio indexing systems. We first describe the experimental
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Fig. 7. A 30-second signal of rock music; the reference time-domain; the MP3
transform-domain MFCC; the AAC transform-domain MFCC; the 8xMDCT
transform-domain MFCC (mean and variance for each texture window).

setup: implementation of the coding/decoding, a brief de-
scription of the audio indexing systems, and the evaluation
databases and metrics. Then, we give results and discuss the
performance and computation times of the final systems.

A. Experimental setup

1) Coding/decoding: We detail here the implementation
and configuration of the coding/decoding process. For re-
producing results, the source code is open-source and freely
available2.

We use the following coders: LAME [26], a well-known
open-source and high-quality MPEG-1 Layer 3 encoder; Nero
AAC Codec, a freely available and high-quality MPEG-4 AAC
LC encoder [27]; the 8xMDCT coder described in [25], it
is open source and freely available. Coders are setup with

2Source code can be downloaded at the following address:
http://www.emmanuel-ravelli.com/downloads
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default parameters, constant bitrate (i.e. equal bit budget per
frame) and no downsampling at low bitrate (input and output
signals are sampled at 44.1 kHz). The 8xMDCT coder uses
the standard Matching Pursuit algorithm (without pre-echo
control) with a target SNR of 60 dB, and the simple bitplane
encoding algorithm (without psychoacoustic model). Each
sound file is encoded at 3 bitrates for the MP3 and AAC coders
(32kbps, 64kbps, and 128kbps). For the 8xMDCT coder, each
sound file is encoded at a unique bitrate of 128kbps, lower
bitrates are simply obtained by truncating the bitstream of each
frame.

We use the following decoders: libMAD [35], an open-
source library for MPEG-1 audio decoding; FAAD [36],
an open-source library for MPEG-2/4 AAC decoding; the
8xMDCT decoder described in [25], it is open source and
freely available. For each decoder, we have implemented
Matlab MEX functions in the C/C++ language that are able
to : decode the PCM signal, decode the MDCT coefficients,
and compute the 3 transform-domain mid-level representations
described in the previous section. We have also implemented
the reference mid-level representations in the C++ language
in order to have a fair comparison of the computation times.

2) Audio indexing systems: The proposed transform-
domain audio indexing systems are based on reference state-
of-the-art audio indexing systems; only the mid-level repre-
sentations are different, the rest of the systems are exactly
the same. We briefly describe the 3 reference systems in the
following.

The reference beat tracking system [8] first post-processed
the onset detection function using an adaptive moving average
threshold. Then the onset detection function is partitioned into
overlapping frames to allow variable tempo. In each frame,
the unbiased autocorrelation function of the onset detection
function is calculated. The autocorrelation function is then
passed into a shift-invariant context-dependant comb filterbank
in order to estimate the tempo of the current frame. Finally, a
beat train at the estimated tempo is built and aligned with the
current frame by passing the detection function into a tuned
context-dependant comb filterbank. It is worth noting that this
system obtained the 2nd place at the MIREX 2006 audio beat
tracking contest.

The reference chord recognition system [11] first circularly
shifts the 36-bin chromagram according to the estimated
tuning of the piece, low-pass filter it, and map it to a 12-
bin chromagram by simply summing within semitones. Then,
the Expectation Maximization (EM) algorithm is used to
train the initial states probabilities and the transition matrix
of an Hidden Markov Model (HMM). Finally, the sequence
of chords is estimated using the Viterbi algorithm with the
chromagram and the trained HMM. The system recognizes 24
chords only (C major, C minor, C# major, C# minor...). A
slightly updated version of this system obtained the 1st place
at the MIREX 2008 audio chord detection contest.

The reference musical genre classification system is a
simple system based on SVM. MFCC are first computed on
temporal segments, then the mean and the variance of the
coefficients are computed on longer frames called texture
windows (see previous section). The length of the texture

window is 3 seconds, and the number of MFCC is 13. There
are then 26 features for each 3 seconds of audio signal. As
an example, for a 30-second signal, there are 10 vector of
26 features. A SVM classifier is used to classify each vector
in a genre class. We use libSVM, a high-performance and
easy to use open source library. Finally, each vector votes
for a genre class, and the class with the maximum number
of votes is attributed to the whole song. This system obtains
results competitive with those obtained in most recent work
on musical genre classification [15].

3) Evaluation databases and metrics: The audio indexing
systems are evaluated with same databases and metrics as used
in recent work. We detail them in the following.

The beat tracking database is the same as used in [8], which
was originally provided by S. Hainsworth [37]. There are 222
files of several music genres. The files are mono, sampled at
44.1 kHz and have a length of approximately 60 seconds. The
database was annotated by a trained musician, by recordings
taps in time to the audio recordings. The annotations were
then corrected and refined using synthesized beat sounds over
each track (see [37] for details). Evaluating beat tracking
systems is not a straightforward problem. Several evaluation
metrics have been proposed and discussed in [7] and used
also in [8]. We have chosen the metric “accept d/h” which
was proposed in [7] as the best single metric for evaluating
beat tracking systems. This metric is defined as the length of
the longest continuous segment of well recognized beats (with
an acceptance window of 17.5% the beat period) normalized
by the total number of beats (the metric is expressed in %).
Moreover this metrics allows cases where tapping occurs at
twice or half the annotated rate: the metric is calculated for
the three annotations (annotated beats, twice and half) and the
higher result is chosen.

The chord recognition database is the same as used in [11].
It consists of 2 albums of the Beatles: Please Please Me (14
songs) and Beatles for Sale (14 songs). Audio signals are mono
and sampled at 44.1 kHz. The database has been annotated
by C. Harte et al [38]. As some chords in the database do
not belong to the set of 24 recognized chords, these complex
chords are mapped to their root triad as explained in [11]. We
use a simple evaluation metric as proposed in [11], it is the
percentage of well recognized frames.

The musical genre classification database is one of those
used in several recent publications including [15]. It is a
database originally provided by G. Tzanetakis [13]. It is
composed by 1000 tracks classified in 10 genres (blues,
classical, country, disco, hiphop, jazz, metal, pop, reggae,
rock), where each genre class contains 100 tracks. The tracks
are mono, 30-second length and sampled at 22.05 kHz. As
the coders need input signals sampled at 44.1 kHz , the tracks
have been resampled at 44.1 kHz. To evaluate the systems,
the standard 5-fold cross-validation procedure is used (as in
[15]). The dataset is first randomly partitioned into 5 equal-
size subsets. Then, 4 subsets are chosen to train the SVM
model, and the remaining subset is evaluated using the train
model. The classification accuracy is then the percentage of
good classifications. To avoid biased results due to the random
partitioning, the cross-validation procedure is repeated 100



9

32 64 128
55

60

65

70

75

Bitrate (kbps)

A
cc

ur
ac

y 
(%

)

 

 

Reference PCM
MP3 time−domain
MP3 transform−domain
AAC time−domain
AAC transform−domain
8xMDCT time−domain
8xMDCT transform−domain

0.25 0.5 1 2 4 8 16 32 64 128
0

10

20

30

40

50

60

70

Bitrate (kbps)

A
cc

ur
ac

y 
(%

)

 

 

Reference PCM
MP8 time−domain
8xMDCT transform−domain

Fig. 8. Mean of the beat tracking accuracy. Left: performance of the 3 time-domain and transform-domain systems based on MP3, AAC and 8xMDCT for
3 bitrates 32, 64 and 128 kbps. Right: performance of the time-domain and transform-domain systems based on 8xMDCT for a wider range of bitrates. The
dashed line corresponds to the performance of the reference system on the original PCM signal.
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Fig. 9. Computation times of 3 time-domain and transform-domain beat tracking systems based on MP3, AAC and 8xMDCT.

times and the final result is the mean of the 100 classification
accuracies.

B. Results and discussion

1) Performance: Figures 8, 10 and 12 show performance
of respectively the beat tracking, chord recognition and mu-
sical genre classification systems. For each codec and each
application, we give results for both time-domain (decod-
ing+reference system) and transform-domain systems, we also
compare these systems with the reference system on original
PCM audio.

The results of the beat tracking systems (Fig. 8) show that
all transform-domain systems obtain very good performance.
At 32, 64 and 128 kbps, transform-domain systems obtain
performance close to the corresponding time-domain systems.
For the standard audio codecs MP3 and AAC, these results
confirm that efficient transform-domain beat tracking is possi-
ble [23]. For the new 8xMDCT audio codec, these results show
that efficient transform-domain beat tracking is possible too.
Moreover, the performance of the 8xMDCT system decreases
slowly with the bitrate, it is thus quite robust against the
bitrate.

The results of the chord recognition systems (Fig. 10) show
that, contrary to the beat tracking case, only the 8xMDCT
transform-domain system obtains good performance. The
transform-domain systems based on MP3 and AAC obtain
bad performance, the reason is that their MDCT representation
has too low frequency resolution (as explained in the previous
section), this limitation prevents the calculation of an efficient
chromagram, and thus prevent good performance in chord
recognition. The transform-domain system based on 8xMDCT
obtains performance close to the corresponding time-domain
system. Moreover, its performance is robust against the bitrate,
it decreases with the bitrate less slowly than the beat tracking
system. This could be explained by the fact that the Matching
Pursuit algorithm extract first components with highest energy
which are in most cases components with long windows;
at low bitrates, only components with highest energy are
encoded; and consequently, at low bitrates, there are in great
majority long-window components which are useful for chord
recognition but not for beat tracking.

The results of the musical genre classification systems (Fig.
8) show that all transform-domain systems obtain very good
performance (with the only exception of the systems based on
MP3 at 32kbps, which is the lowest possible bitrate of this
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Fig. 10. Mean of the chord recognition accuracy. Left: performance of the 3 time-domain and transform-domain systems based on MP3, AAC and 8xMDCT
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Fig. 11. Computation times of the time-domain and transform-domain chord recognition systems based on 8xMDCT.

codec and the quality of the decoded sound is very bad in this
case). The transform-domain systems based on the standard
coders MP3 and AAC obtain performances close to the
corresponding time-domain systems. For the new 8xMDCT
codec, the performance of the transform-domain system is
even higher than the corresponding time-domain system. The
transform-domain system based on 8xMDCT is highly robust
against the bitrate with an accuracy above 50% at 1kbps (it
is interesting to note that the listening quality of the decoded
sound at this very low bitrate is extremely bad). Moreover, at
high bitrate (above 128kbps), the performance is even higher
than the reference system on the original PCM audio. This
results shows that the proposed scale-dependant MFCC-like
features are better features than the standard MFCC features
for musical genre classification, being able to grab some of
the temporal structures.

2) Computation times: Figures 9, 11 and 13 show computa-
tion times of respectively the beat tracking, chord recognition
and musical genre classification systems. For each codec and
each application, we give computations times for both time-
domain (decoding+reference system) and transform-domain
systems. Computation times were evaluated on a Laptop with
a Core2duo 2.0Ghz processor, 2GB of memory, a Linux 64
bits system and Matlab 7.6 as front-end. Computation times
are calculated on a whole database, then normalized by the
total duration of the tracks.

These results first show that the transform-domain systems
are always faster than the corresponding time-domain systems.
This is due to two reasons: firstly, the transform-domain sys-
tems avoid the computation of the signal synthesis; secondly,
the calculation of the mid-level representation is faster for
the transform-domain case than for the time-domain case.
The computation time of the transform-domain systems thus
depends mainly on the two other operations, which are exactly

in both cases: the decoding of the MDCT coefficients, and the
machine learning stage.

In the case of the MP3 and AAC codecs, the decoding
stage is very fast, much faster than the decoding stage of the
8xMDCT codec. Consequently, the systems based on MP3
and AAC are faster than the corresponding systems based on
the 8xMDCT codec. However, it is interesting to note that
the 8xMDCT codec is scalable, and thus the complexity of
the decoding stage is also scalable. As an example, decoding
at 2kbps is more than twice faster than decoding at 64kbps.
This property allows user to balance complexity and perfor-
mance of the 8xMDCT-based systems: decreasing the bitrate
decreases the complexity but also decreases the performance,
reversibly increasing the bitrate increases the performance but
also increases complexity.

The computations times depend not only on the decoding
stage, but also on the machine learning stage. In the case of
the beat tracking and musical genre classification systems, the
machine learning stage is very fast and thus it does not really
influence the total times. However, in the case of the chord
recognition systems, the machine learning stage is costly, it
represents a large proportion of the total time, and thus the
computation time ratios between the transform- and time-
domain systems is lower than for the two other applications.

Finally, it is worth noting that the calculation of the mid-
level representations in the transform-domain are very fast,
with the only exception of the MFCC-like features of the
8xMDCT codec. In this case, the computation time is relatively
high, this is due to the many calculations involved during the
triangular-filtering stage. However, the total computation time
of the transform-domain system still remains lower than the
corresponding time-domain system; moreover, as seen previ-
ously, the transform-domain system obtains better performance
than the time-domain system.
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Fig. 13. Computation times of 3 time-domain and transform-domain musical genre classification systems based on MP3, AAC and 8xMDCT.

V. CONCLUSION

The main purpose of this paper was to investigate alternative
audio signal representations for transform-domain audio index-
ing. Most existing work on transform-domain audio indexing
deals with standard audio codecs such as MP3 and AAC.
However, the internal audio signal representations used in
these codecs have limitations such as limited frequency resolu-
tion, which prevent efficient transform-domain audio indexing
for tonality-related applications such as chord recognition.
We have thus investigated a new audio codec that is based
on a sparse signal representation which does not have these
limitations. We have shown that this new audio codec is able
to give very good performance for several different transform-
domain audio indexing applications, including beat tracking,
chord recognition and musical genre classification. We have
also shown that this new audio signal representation allows the
calculation of MFCC-like features that give better performance
than the standard MFCC features for musical genre classi-
fication. Finally, due to its scalability, the 8xMDCT codec
has the advantage to allow a user to choose how to balance
performance and complexity. Given a sound file encoded at
high bitrate, the audio indexing system can decode any portion
of the bitstream : decoding only the first few bits is very fast
but decreases the performance, decoding more bits is slower

but increases the performance.
This study opens new ways for designing audio signal

representations. To be useful for both audio coding and
audio indexing, an audio signal representation must provide
not only a compact representation, but also must deliver an
explicit information on the sound content. Future research will
consider other techniques of audio signal representations, such
as representations based on complex transforms (e.g. MCLT),
or object-based audio signal representations (e.g. sinusoidal
modeling or so-called ”molecular” representations).
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features and ADABOOST for music classification,” Machine Learning,
vol. 65, no. 2-3, pp. 473 – 484, 2006.

[15] A. Holzapfel and Y. Stylianou, “Musical genre classification using
nonnegative matrix factorization-based features,” IEEE Trans. on Audio,
Speech and Lang. Proc., vol. 16, no. 2, pp. 424–434, 2008.

[16] N. Patel and I. Sethi, “Audio characterization for video indexing,” in
Proc. SPIE, 1996, pp. 373–384.

[17] L. Yapp and G. Zick, “Speech recognition on MPEG/Audio encoded
files,” in Proc. IEEE Int. Conf. on Multimedia Computing and Systems,
1997, pp. 624–625.

[18] Y. Nakajima, Y. Lu, M. Sugano, A. Yoneyama, H. Yamagihara, and
A. Kurematsu, “A fast audio classification from MPEG coded data,” in
Proc. IEEE Int. Conf. Acoustics, Speech and Sig. Proc., vol. 6, 1999,
pp. 3005–3008.

[19] G. Tzanetakis and P. Cook, “Sound analysis using MPEG compressed
audio,” in Proc. IEEE Int. Conf. Acoustics, Speech and Sig. Proc., vol. 2,
2000, pp. 761–764.

[20] Y. Wang and M. Vilermo, “A compressed domain beat detector using
MP3 audio bitstreams,” in ACM Multimedia, 2001, pp. 194–202.

[21] X. Shao, C. Xu, Y. Wang, and M. Kankanhalli, “Automatic music sum-
marization in compressed domain,” in Proc. IEEE Int. Conf. Acoustics,
Speech and Sig. Proc., vol. 4, 2004, pp. 261–264.

[22] S. Kiranyaz, A. F. Qureshi, and M. Gabbouj, “A generic audio classifica-
tion and segmentation approach for multimedia indexing and retrieval,”
IEEE Trans. on Audio, Speech and Lang. Proc., vol. 14, no. 3, pp.
1062–1081, 2006.

[23] J. Zhu and Y. Wang, “Complexity-scalable beat detection with MP3
audio bitstreams,” Computer Music Journal, vol. 32, no. 1, pp. 71–87,
2008.

[24] S. Pfeiffer and T. Vincent, “Formalisation of MPEG- 1 compressed
domain audio features,” Technical Report 01 / 196, CSIRO Mathematical
and Information Sciences, Australia, Tech. Rep., 2001.

[25] E. Ravelli, G. Richard, and L. Daudet, “Union of MDCT bases for audio
coding,” IEEE Trans. on Audio, Speech and Lang. Proc., vol. 16, no. 8,
pp. 1361–1372, Nov. 2008.

[26] LAME, “LAME mp3 encoder webpage,” 2008,
http://lame.sourceforge.net.

[27] Nero, “Nero aac codec webpage,” 2008.
[28] iTunes, “Apple iTunes 7 webpage,” 2008,

http://www.apple.com/fr/itunes/download/.
[29] J. Bello, C. Duxbury, M. Davies, and M. Sandler, “On the use of phase

and energy for musical onset detection in the complex domain,” IEEE
Sig. Proc. Letters, vol. 11, no. 6, pp. 553–556, 2004.

[30] S. Pauws, “Musical key extraction from audio,” in Proc. of the 5th
ISMIR, 2004, pp. 96–99.

[31] E. Gomez and P. Herrera., “Estimating the tonality of polyphonic audio
files: Cognitive versus machine learning modelling strategies.” in Proc.
of the 5th ISMIR, 2004, pp. 92–95.

[32] S. Davis and P. Mermelstein, “Comparison of parametric representations
for monosyllabic word recognition in continuously spoken sentences,”
IEEE Trans. Acoust., Speech, Sig. Proc., vol. 28, no. 4, pp. 357–366,
1980.

[33] F. Pachet and J. J. Aucouturier, “Improving timbre similarity: How high
is the sky?” J. Negative Results Speech Audio Sci., vol. 1, no. 1, 2004.

[34] P. Leveau, E. Vincent, G. Richard, and L. Daudet, “Instrument-specific
harmonic atoms for mid-level music representation,” IEEE Trans. on
Audio, Speech and Lang. Proc., vol. 16, no. 1, pp. 116–128, 2008.

[35] libMAD, “libMAD mpeg audio decoder webpage,” 2008,
http://www.underbit.com/products/mad/.

[36] FAAC, “FAAC and FAAD webpage,” 2008,
http://sourceforge.net/projects/faac/.

[37] S. Hainsworth, “Techniques for the automated analysis of musical
audio,” Ph.D. dissertation, Dept. Eng., Cambridge University, 2004.

[38] C. Harte and M. Sandler, “Automatic chord identification using a
quantized chromagram,” in Proceedings of the 118th AES Convention,
May 2005.


