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Abstract 

The iterative time reversal mirror provides an elegant way of focusing in multiple target media on the most reflective one. 
This paper presents a method to focus on the other targets. It is derived from a theoretical study of the iterative time reversal 
process. The iterative process can be described at each frequency by a time reversal operator which can be diagonalized. The 
eigenvectors of this operator are eigenmodes of the time reversal process. In the case of well resolved targets of different 
“brightness”, the rank of the time reversal operator is equal to the number of targets and each eigenvector of non zero eigenvalue 
provides the optimal phase and amplitude law to focus on the corresponding target. An experimental validation of these results 
is given. 

1. Introduction 

The invariance under time reversal of some physical 
systems is a very fascinating and attractive property. 
Who has never dreamt of going backward in time? But 
this invariance is very difficult to put in evidence exper- 
imentally. The large number of parameters involved in 
most systems explains why irreversibility is generally 
o.bserved. 

In the domain of acoustic waves, the small number 
of degrees of freedom allows to achieve a time reversal 
operation. An acoustic wave can be time reversed by 
means of a time reversal mirror [ l-91. Such a mirror 
is made of a large array of piezoelectric transducers 
that is able to measure and to produce an instantaneous 
pressure field. Each transducers is connected to its own 
electronical device consisting of a receiving amplifier, 
an A/D converter, a storage memory and a program- 
mable transmitter. All these channels are parallel pro- 
cessed for reception as well as for transmission. 

This ability to time reverse an ultrasbnic wave has 

significant consequences on techniques of ultrasonic 

focusing which is a general problem in acoustic. This 

problem arises in many applications such as non- 

destructive testing, medical techniques (lithotripsy and 

hyperthermia) or underwater acoustics. 

In classical methods, the focusing of an acoustic 

wave with an array of transducers requires a knowledge 

of the geometry of the array, the sound speed in the 

medium and the position of the target. Then, the delay 
for each transducer can be computed in order to focus 

on the target. But with large arrays of transducers, 

strong geometrical distortions may occur leading to 

significant errors. Furthermore, if the propagating 

medium is not homogeneous, the time delay can not 

easily be computed. 

For a reflective target adaptive time delay focusing 

technique can be used [ lo]. A first wide wave is trans- 
mitted to the medium in order to get an echo from the 

target. The delays are estimated by a cross correlation 
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technique. Unfortunately, these methods require a 
pointlike scatterer. They are not efficient if there are 
several targets. Furthermore they assume that the prop- 
agating medium only induces time delay distortion in 
the wavefront. In many cases, a wave propagating in 
an inhomogeneous medium is not only delayed but its 
spatial and temporal shape is also distorted through 
refraction, diffraction and multiple scattering. These 
distortions are not taken into account by time delay 
focusing. 

The time reversal operation is an elegant way of 
avoiding all these problems. The geometrical errors as 
well as the sound speed fluctuations are compensated 
automatically by this self-adaptive process. Further- 
more, if there are several targets, the time reversal pro- 
cess can be iterated in order to focus one the most 
reflective ones. 

As shown in several papers [ 2-71, the acoustic iter- 
ative time reversal mirror is a very efficient system to 
focus automatically among a set of well resolved tar- 
gets, on the most reflective one. A question arises: is 
there a way to focus on the other targets? This would 
be useful for instance in lithotripsy when several lithi- 
ases exist. It may also be interesting for target classifi- 
cation. An answer to this question was found in the 
theory of the iterative time reversal process. This theory 
was built in order to get a better understanding of the 
convergence of the iterative time reversal process. It is 
based on a matrix formalism: the array of N transducers 
in a given medium is considered as a linear and time 
invariant system of N inputs/N outputs. It relies on the 
definition of the transfer matrix K of the system and of 
the time reversal operator K * K. 

The results shown in the following are general. They 
only assume that the propagation of waves is linear and 
that an array of transmit-receive elements is used. Fur- 
thermore they might be applied to other linear waves. 

The first part of the paper is a brief summary of the 
principle of acoustic time reversal mirrors. The second 
part provides the theory of the iterative time reversal 
process with the definition of the time reversal operator. 
The third part deals with the particular case of pointlike 
scatterers. The fourth part shows how a detection and 
focusing method is deduced from the preceeding theory 
and it provides experimental examples. 

2. The iterative time reversal mirror 

2.1. Time reversal of an ultrasonic wave 

In the linear regime, in a fluid medium, an ultrasonic 
pressure wave P( r, t) satisfies the equation 

2 VP 
K(r) g= v - 

( 1 p(r) ’ 
(1) 

where K(r) is the compressibility and p(r) is the den- 
sity of the medium. 

This equation contains only a second derivative with 
respect to the temporal variable which provides the 
strong property of being invariant under time reversal. 
In other words, if the pressure wave P(r, t) satisfies 
the Eq. ( 1) then the time reversed wave P(r, - t) also 
satisfies Eq. ( 1) . In particular, if P( r, t) is a wave issued 
from a source then P( r, - t) is a wave focusing on the 
source. The problem is how to produce the time 
reversed version of a given wave. In the case of an 
ultrasonic wave this can be achieved with large arrays 
of transducers. 

2.2. The time reversal mirror 

A time reversal mirror is an array of transducers, 
each connected to its own memory and to its own pro- 
grammable generator. It is used in an inhomogenous 
medium to convert a wave emerging from a source 
whose position is unknown, into a wave converging on 
the source. Usually, the source is an insonified scatterer. 
The time reversal process operates as follows (Fig. 1) : 
( 1) A wide incident wave is transmitted by the array 

of transducers. 
(2) The wave reflected by the target is detected by the 

array, the echographic signals are recorded in the 
memories. 

(3) The signals are time reversed and used to transmit 
a wave converging to the target in spite of the 
sound speed fluctuations in the medium. 

The efficiency of such a process to focus through an 
inhomogeneous medium has been demonstrated in 
Refs. [2-lo]. 

2.3. The iterative time reversal process 

2.3.1. Principle 
In the case of several targets, one time reversal pro- 

cess does not lead to a one-point focussed wave, but 
the process can be iterated in order to focus on the most 
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Fig. 1. Self-focusing through an inhomogeneous medium with a time 

reversal mirror. 

reflective target. Indeed, the wave transmitted after one 
time reversal process leads to a second reflected wave 
that can also be measured and time reversed. For 
instance, we consider two targets A and B of reflectiv- 
ities a and b (a > b), we assume that they are well 
resolved by the array of transducers and placed at the 
same distance from the array (Fig. 2), and that only 
singly scattering is significant. Then the first time 
reversed wave is the sum of a wave focussed on A of 
relative amplitude Q and a wave focussed on B of rel- 
ative amplitude b. Those two waves are reflected by 
the targets which produces two spherical waves of 
amplitudes a2 and b’. After n iterations of the process, 
the relative amplitudes are u” and b”, so that if it is big 
enough the wave focusing on B is negligible, and the 
system learns automatically how to focus on target A. 

2.3.2. Experiment 
To demonstrate the ability of the iterative mode of 

TRM to select the most reflective target, a linear array 
of 64 rectangular transducers is used. The array ele- 
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Fig. 2. Iteration of the time reversal process. 

ments are 0.6 mm wide and spaced 0.75 mm. The target 
is made of two wires of different reflectivities placed 
perpendicular to the array at a depth of 90 mm. 

The first wave is transmitted by one element in the 
center of the array. It is wide in order to insonify both 
wires. The two wavefronts corresponding to each target 
can easily be observed (Fig. 3a). The time reversal 
process is iterated. The signals received on the array 
after iteration 1, 2 and 3 are displayed on Figs. 3b, 3c 
and 3d. On Fig. 3d, only the wavefront corresponding 
to the most reflective wire remains, this wire has been 
selected automatically. In order to confirm this selec- 
tion, the field produced at each iteration was measured 
by a needle hydrophone. At the first time reversal oper- 
ation, the pressure diagram presents two lobes at the 
position of the wires, one is higher than the other. At 
the second and the third iterations the level of the lower 
peak decreases. At the fourth, the wave focuses on the 
most reflective target (Fig. 4). 

This experimental example is quite simple and in 
general the targets can be at different distances from 
the array or not so well resolved, and they can have the 
same reflectivities. Furthermore, there might be more 
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Fig. 3. First experiment: Ethos of the two wires received by the transducers for iterations I to 4. The figure shows every other signal. 
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Fig. 4. First experiment: Maximum of the pressure measured in the 
plane of the two wires after iterations I to 4. 

than two targets. In order to understand how the differ- 
ent parameter of the number of targets, their reflectiv- 
ities and their sizes influence the time reversal process, 
a theory has been developed. It relies on the difinition 
of the transfer matrix of the system and on the time 
reversal operator in the harmonic regime. 

3. The time reversal operator 

The principle of the iterative time reversal process 
has been presented. In order to describe theoretically 
such a process, we give a simple formulation of any 
transmit and receive operation made with an array of 
reversible transducers. The idea is to express in a gen- 
eral manner the received signals as a function of the 
transmitted ones. An array of L transmit-receive trans- 
ducers insonifiing a scattering medium is considered. 
The whole system is supposed to be time-invariant and 
linear. In other words, it is assumed that the behavior 
of the transducers is linear and the waves obey the laws 
of linear acoustics. 

3. I. Inter element impulse response 

In order to express the received signals as functions 
of the transmitted ones, we define for each pair of trans- 



C. Prada, M. Fink/ Wave Motion 20 (1994) 151-163 155 

ducers, an inter element impulse response. This 
response includes all the propagation effects through 
the medium under investigation as well as the acousto- 
electric responses of the two elements. The inter ele- 
ment impulse response k,(t) from the element m to 
the element 1 is the signal received on the channel 
number 1 after a temporal Delta function is applied to 
the channel number m (Fig. 5). As the transformations 
are supposed to be linear and time-invariant, the L2 

temporal functions k,,(t) for 1 Q 1 <L and 1 Q m d L 
can describe any transmit-received operation for the 
same arrangement. Indeed, let e,(t) , 1~ m < L, be the 
L input signals, then the output signals rl( t) , 1 Q 1 G L, 

are given by 

3.2. Multiple input/multiple output formalism: the 

transfer matrix 

A temporal Fourier transform leads to the following 
relation 

R,(o) = 2 &~(W)&(W), IdZ<L. (3) 
m=l 

Eq. (3) is simplified using a matrix formula: 

R(w) =K(o)E(w) (4) 

whereE(o)=(E,(w)),,,,,isthecolumnvectorof 
the Fourier transform of the transmit signals, and 

R(w)=(&(o)),,,,, is the column vector of the 
Fourier transform of the received signals. In the follow- 
ing, those two vectors will be called the input and the 
output signals. Also, K(w) = (&,,( to)), _+__ is 
called the transfer matrix. Note that the model is very 

Channel m 

Channel 1 

)I 
+ 

Linear 

t 
iii 

0 

Medium 

Fig. 5. Inter element impulse responses. 

general in the sense that no assumption is made on the 

responses k,,,,(t). Complex phenomena such as 
mechanical or electronical cross couplings between 
transducer elements may be taken into account pro- 
vided they are linear. 

3.3. Reciprocity theorem and symmetry of the transfer 

matrix 

The reciprocity theorem is well known for propa- 
gation in inhomogeneous media [ 11 I. It indicates that 
the position of a point source and an observer can be 
reversed without altering the acoustic field. A conse- 
quence of that theorem is that the inter element impulse 
response from element number m to element number I 
is equal to the inter element impulse response from 
element number 1 to element number m, so that K,,,, is 
equal to K,,,,. In other words the matrix K is symmet- 
rical. This property is very important in the following. 
In the fourth section we provide a theoretical demon- 
stration for pointlike scatterers and an array of similar 
transducers (see Eq. ( 17) ) . 

3.4. The iterative time reversal process 

The iterative time reversal process can now be 
described: This paragraph provides a mathematical for- 
mulation of the iterative process. The operator linking 
the input signals from one iteration to another is given. 
This description is made at one given frequency, so we 
omit the term w in the following. 

The matrix relation between transmitted and 
received signals allows us to establish an expression of 
the emitted signal for any number of iterations. Let E” 
be the initial input vector signal. The output is then 
R°KEo. 

The time reversal operation is equivalent to a phase 
conjugation in the frequency domain, so that the new 
input signal E ’ is the phase conjugate of the preceeding 
output signal R” 

E’=K*E”*. 

The new output signal is then 

R’=KE’. 

In the same way, the input signals at the second and 
third iterations are 
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These formulas can easily be generalized by induction: 
the input signal at the iterations number 2n and 2n + 1 
are given by 

P= [ K*K]"EO , 

E2”+‘=[ K*K]“K*E”*. (5) 

The issue of the iterative process depends on the asymp- 
totic behavior of the operator [ K* K] “. 

3.5. Behavior of [KYK]“: convergence of the process 

The behavior of [ K*K] n can be determined because 
the matrix K*K can be diagonalized. The symmetry of 
K implies that the operator K*K is hermitian. Indeed, 
we have 

t[K*K]*=f[KK*] =‘K*‘K=K*K, 

where ‘K means the transpose matrix of K. According 
to the theory of hermitian operators, K*K can be diag- 
onalized, its eigenvectors are orthogonal and its eigen- 
values are real. Furthermore, the eigenvalues are 
positive I. 

The operator K*K hasp (p <L) distinct eigenvalues 
A,<A,< ‘.Xh,.LetF,,F,, . . . , FP be the eigenspaces 
associated to these eigenvalues. Any vector can be writ- 
ten as the sum of vectors of the eigenspaces. We assume 
that the decomposition of the first transmitted signal 
E” in terms of the eigenspace Fi is given by 

EO=V,+V,+***+V, 

with W, #Oand Vi~Fi, (6) 

where V,, W,, . . ., VP are different eigenmodes of the 
iterative time reversal process. Then the input signal 
after 2n time reversal operations is 

E’” = [ K*K]“EO 

=/i;v, +A’;V*+-~~+h;:V,, 

so that 

E 2n = A; V, for large values of n . (7) 

For an odd number of iterations, the decomposition 
of K*E’* over the eigenspace is required, Eq. (6) 
leads to 

’ Let A be an eigenvalue of K*K and V an associated eigenvector. 

We have K*KV=hV so that ‘I/* K*KV=‘V*hV=AllVI12. 
Because K is symmetrical we have IIKVII’=‘(KV)*(KV) = 
‘V*K*KV. It followsthat lIKVIl’=All Vll’and A is positive. 

K*EO*=K*V:: +K*V,* +-.+K*l/,*. (8) 

It is easily proven that K* VT is an eigenvector with 
the eigenvalue A i *. Then the input signal at the iteration 
number 2n + 1 is 

E2”+1= [K*K]nK*EO* 

=A;K*V;F. +A;K*V$ +-+A;K*V,* 

so that 

E2n+’ = A; K* VT for large values of n. (9) 

Generally, A, is nondegenerate and the limits are shown 
to be 3 

E z/7+1, A;+“2ei+V, for large values of II . (10) 

This result insures the convergence of the iterative 
process towards odd and even limits. In general, the 
two limits differ by a phase factor. 

This analysis shows that the iterative time reversal 
process has eigenmodes that are the eigenvectors of the 
time reversal operator. A physical interpretation of the 
eigenmodes is given in Section 4, for the case of well 
resolved pointlike scatterers. 

4. Determination of the transfer matrix: pointlike 
targets and single scattering 

4. I. The transfer matrix 

If there are D pointlike scatteres, the transfer matrix 
can be written as the product of three matrices (Fig. 
6): 
( 1) a propagation matrix that describes the transmis- 
sion and the propagation from the transducers to the 
targets, 
(2) a scattering matrix which is diagonal for the case 

of single scattering. 
(3) the back propagation matrix which is the transpose 
of the propagation matrix because of the reciprocity 
principle. 

We assume that the array of transducers is made 
of L similar elements and that the medium contains 
d pointlike scatterers with reflectivity coefficients 

’ Indeed, [K*K]K*V:=K*[K*KV;]*=A,K*V:. 
’ Indeed, lIK*VT /I ‘= V:K*KV, =A, II V, II*. 
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Fig. 6. Pointlike targets: Illustration of the notations. 

Cl, c,, .-., C,. For instance, in the case of Rayleigh 

scatterers the Ci are proportional to the square of the 
frequency. 

Let hir( f) be the diffraction impulse response [ 121 
of the transducer number 1 to the scatterer number i. 
Let a,(t) and a,( t) be the transducers acousto-electrical 
response in emission and in reception, with Fourier 
transforms A,(o) and A,(w). 

4. I. 1. Propagation 
If the input signal at each element 1 is el( t) , then the 4.2. Ideal separation of the targets: determination of 

pressure at the scatterer i is the eigenvectors of K*K 

(11) 
I- I 

This is written in the frequency domain as 

Pi =A, i EIHi,. 
I= I 

(12) 

This expression is simplified using a matrix notation: 

P=A,HE, (13) 

where E is the input signal as in part II, P is the vector 
of the pressure received by the d scatterers and H is a 
matrix of dimension L X d called the diffraction matrix. 

4.1.2. Single scattering 

In the case of single scattering, the pressure reflected 
by the scatterer number i and noted Qi depends only on 
the pressure Pi received by the same scatterer through 
the linear relation Qi= CiPi. Therefore, the vectors P 
and Q are linked by a diagonal matrix C as follows 

Q=CP (15) 

where C, = SiiCj for all i,j E 1, . . . , d. This matrix can 
also be expressed quite simply for double scattering. 

4.1.3. Back propagation 
According to the reciprocity principle, the back prop- 

agation matrix is the transpose of the propagation 
matrix H so that the vector of the pressure reflected by 
the d scatterers, Q, is linked to the output signal R by 
the relation 

R=A,‘HQ 

Finally, the transfer matrix is given by 

(16) 

K=A,A,‘HCH (17) 

It can be seen from Eq. ( 17) that the transfer matrix is 
symmetrical. 

The reflectors are said to be ideally separated when 
it is possible to focus on one of them without sending 
energy to the others. Suppose that a pointlike source is 
placed at the position of the reflector number i and emits 
a temporal signal S(t) . Then, the signal received on the 
transducer number I is the convolution of the impulse 
diffraction response of the element number 1 to the 
scatterer number i with the acousto-electrical response 
in reception a,(t), that is to say a,(t) tB,&,( t). The best 
way to focus on the same reflector, is to use as input 
signals the time-reversed signals a,( - r) @,lzh,( - t) . 

Therefore, the pressure signal received by a reflector 
numberj is in the frequency domain, 

Pj=APA, ~ Hj,H,T . 
I= I 

(18) 

We note that Hi the vector of components (Hi,, Hiz, 
. . ..HiL).TheEq. (18) canbewrittenas 

Pj =AP%‘Hj Hi* . (1% 
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If the separation is ideal at frequency w, Pj is almost 
zero ifj # i. In other words, the vectors Hi are orthog- 
onal. The eigenvectors of K*K are deduced from this 
last equation (see the proof in the appendix). They are 
the H 7 associated to the eigenvalues 

*;=,c;,@ ,&,3’. (20) 
I= I 

Each eigenvector of the time reversal operator is 

signal e(t) . The signals received on the N channels are 
stored. This operation is repeated for all the transducers 

of the array with the same transmitted signal e(t) . The 
components of the transfer matrix K are obtained by a 
Fourier transform of each signal. This measurement 

could also be done with any multiplexed system by 
N X N transmit-receive operations. 

associated to one of the pointlike targets. It is exactly 
(at one frequency) the vector signal that would be 
emitted after one time reversal process if only this target 
was present (Fig. 7). As seen in Eq. (20)) the eigen- 
value depends on the reflectivity of the target as well 
as on propagating effects. Indeed, it is clear that the 
apparent reflectivity of a target depends on its position 
with respect to the array. 

The second step is the diagonalization of the time 
reversal operator at the chosen frequency. For this com- 

putation the matrix has to be symmetrical which is not 
the case in the experiments. Indeed, the reciprocity 

principle is not very well verified because of noise and 

also because of the differences between the acousto- 
electrical responses of the transducers, expecially when 
they have different shapes. So we need first to make 

the transfer matrix K symmetrical by replacing each 

term K,,, 1~ 1, m < N by 1 (K,, + K,,) . The time rever- 
sal operator K*K is then calculated and diagonalized. 

5. The detection and the selective focusing method 

These theoretical results allow us to answer the ques- 
tion: how to focus on a weaker target? Indeed, the 
transfer matrix of the system can easily be measured. 
Then, the diagonalization of the time reversal operator 
provides the amplitude and phase law to focus on each 
target separately. 

5. I. The method 

Then it is very interesting to look at the eigenvalues 

distribution. In the case of point-like targets, the num- 
ber of significant eigenvalues is exactly the number of 

targets, provided they are resolved by the system. More 

generally, this number corresponds to the number of 
bright points in the set of targets. 

Thefirst step is the measurement of the inter element 
impulse response of the system. As the reception is 
parallel in our system, this measurement requires N 
transmit-receive operations for an array of N transduc- 
ers. The first transducers of the array is excited with a 

The third step is to backpropagate each eigenvector. 

This can be done either numerically or experimentally. 

The numerical backpropagation can be computed for 

an homogeneous medium and an array of well known 
geometry and provides separated images of the differ- 

ent targets. The experimental backpropagation requires 
programmable generators controlled in parallel like for 

the time reversal mirror. Pulsed signals are built from 

the monochromatic data given by the eigenvectors (see 
section 5.3.4). This allows us to focus on one of the 

targets without knowing the geometry of the array of 

FIRST EIGENVECTOR SECOND EIGENVECTOR 

Fig. 7. Illustration of the eigenvectors in the case of two ideally resolved and point-like targets 
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transducers nor the properties of the propagating 

medium. 

5.2. Second experiment 

In this experiment, the iterative time reversal process 
is compared to the first eigenvector of the operator K *K 
at one given frequency. 

5.2. I. The experimental set-up 
The array of transducers is linear, made of 96 rec- 

tangular transducers, spaced by 0.41 mm and operating 
around the center frequency of 3 MHz. With 96 elec- 
tronic channels, the received signals are sampled at a 
frequency of 20 Mhz. The target consists of four wires 
of different diameters placed perpendicular to the array 
of transducers at a depth of 90 mm. The first wire is a 
0.2 mm diameter copper wire placed at x, = 13 mm 
from the array axis, the second is a 0.1 mm diameter 
copper wire at x, = 8.2 mm, the third is a 0.2 mm diam- 
eter nylon wire placed at xg = 2.9 mm and the fourth is 
a 0.4 mm diameter steel wire placed at x, = - 4 mm 
(Fig. 8). 

at one given frequency, the analysis of the iterative 
process is made at one frequency. The Fourier trans- 
form of these signals is computed and the components 
at 2.7 MHz provides four vector signals one for each 
iteration. At this frequency the wavelength is 0.56 mm 
and the resolution cell is 1.2 mm wide, so that the targets 
are considered as pointlike. The field produced by the 
propagation of these vectors is calculated and displayed 
on Fig. 9. At the first iteration, we see the position of 
the four wires. The lobe corresponding to the steel wire 
is the higher one. Then comes the 0.2 mm diameter 
nylon wire, the 0.2 mm diameter copper wire and the 
0.1 mm diameter copper wire. The nylon wire is closer 
to the array axis this is why it gets more energy than 
the 0.2 mm diameter copper wire. The convergence of 
the iterative process is rather fast and at the fourth 
iteration, the steel wire is selected. 

5.2.3. Diagonalization of the time reversal operator 
After the measurement of the inter element impulse 

responses, the time reversal operator is computed at 
frequency 2.7 MHz. The distribution of the eigenvalues 
shows four significant eigenvalues, the 92 others are 
almost zero (Fig. 10). 

5.2.2. Iteration of the time reversal process 
The time reversal process is iterated four times and 

The numerical propagation of the first four eigen- 
vectors provides the position of the four wires. For each 

at each iteration the reflected signals are stored. As the 
eigenmodes of the time reversal operator are calculated 

eigenvector, a main lobe is observed at the position of 
one of the wires (Fig. 11) . The order of targets corre- 

LINEAR 
ARRAY 

Fig. 8. Second experimental set-up: The four wires. 
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Fig. 9. Second experiment: Field calculated in the plane of the wire 

at 2.7 MHz for iterations 1 to 4. 

sponds exactly to the level of the different lobes 
observed in Section 5.2.2 after on time reversal process. 
In particular, the eigenvector associated to the biggest 
eigenvalue corresponds to the issue of the time reversal 
process. 

5.3. Third experiment 

This experiment is done with a 2D array and the 
propagation of the eigenvector is done experimentaly. 
Furthermore, the targets are not pointlike and quite 
close to each other. 

5.3.1. The experimental set-up 

We used a prefocussed sectoralized and annular 
array of 12 1 transducers. As 64 electronic channels are 
available, only 64 elements regularly distributed are 

used. The focal length of the array is 190 mm and the 
diameter is 200 mm. The central frequency of the trans- 
ducers isf= 360 kHz. The target is made of two plastic 
spheres placed in water, a few millimeters from the 
focus in the focal plane. Their diameters are 7 mm and 
5 mm and the distance between their centers is 6 mm. 
As the wavelength is 4.2 mm and the resolution cell 4 
mm large, they are far from ideally resolved pointlike 
scatterers. 

5.3.2. The iterative time reversal process 

The time reversal operation has been iterated four 
times. The first transmitted wave was obtained with the 
central element of the array. At the fourth iteration of 
the time reversal process, the pressure field was scanned 
after replacing the spheres with a needle hydrophone 
in the focal plane with a 1 mm step (Fig. 13). We 
observe that the maximum of the pressure is on the 
center of the biggest sphere but the convergence of the 
iterative process is slow because of the small distance 
between the two spheres. 

5.3.3. Diagonalization of the time reversal operator 

The transmission of the eigenvectors is done exper- 
imentally. We choosed to study the time reversal oper- 
ator at 330 kHz because at this frequency the biggest 
sphere is selected fast. The distribution of the 64 eigen- 
values shows two significant values, meaning that the 
object has two “bright” points (Fig. 14). 

5.3.4. Transmission of the two main eigenvectors 

As the eigenvectors are computed at a given fre- 
quency, we need to built a pulsed signal from the 
monochromatic data. The component number i of an 
eigenvector is a complex quantity of phase +i and 
amplitude Ai. Thus, for transducer number i, the pulsed 
signal is built as a modulated gaussian at frequency f 
with maximum amplitude Ai and phase shifted by c#+/ 
2n-5 This provides N signals that are then applied to the 
N transducers. The transmitted field is measured by a 

Fig. 10. Second experiment: Distribution of the 96 eigenvalues of the time reversal operator. 
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Fig. Il. Second experiment: On the left: phase law of the first four eigenvectors. On the right: field calculated by propagation of the first four 
eigenvectors. 
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Fig. 12. Third experimental set-up: the two spheres. 

needle hydrophone in the focal plane after the targets 
were removed. This is done for the first and the second 
eigenvectors. On the pressure diagram, the maximum 
is observed at the position of the biggest sphere after 
transmission of the first eigenvector (Fig. 15) and at 
the position of the second sphere after transmission of 
the second eigenvector (Fig. 16). This example proves 
that the transfer matrix method can be applied to targets 
that are not pointlike nor perfectly resolved. 

Fig. 13. Third experiment: Scanning of the field produced after four 
iterations of the time reversal process, scanned ama 20 X 20 mm. 

6. Conclusion 

The goal of this paper was to present a new method 
of detection and selective focusing in multiple target 
media. The method is based on the time reversal con- 
cept. We introduced a time reversal operator, the eigen- 
vectors of which are linked to the targets. The 
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Fig. 14. Third experiment: Distribution of the 64 eigenvalues for the two spheres. 
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Fig. 15. Third experiment: Scanning of the field produced by prop- 

agation of the first eigenvector, scanned area 20X 20 mm. 

Fig. 16. Third experiment: Scanning of the field produced by prop- 
agation of the second eigenvector, scanned area 20 X 20 mm. 

eigenvalue depends on the reflectivity of the target and 
the eigenvector provides the phase and amplitude law 
to focus on the target. The theoretical and experimental 
results show the efficiency of the method. 

The applications of this method are numerous and 
are now studied in our laboratory in the field of litho- 
tripsy and nondestructive testing. 

Appendix. Determination of the eigenvectors of 
the time reversal operator for the case of well 
resolved targets 

If the input signal is the vector Hi* with components 
Hz, Hil;, . . . . Hz then the received signal is KHT . The 
component number 1 of this vector is according to equa- 
tion (17) 

(A.11 

The sum over m is the scalar product of vectors Hk and 
Hi. The consequence of the ideal separation of the tar- 
gets is that those two vectors are orthogonal for k # i 
and Eq. (A. 1) becomes 

i K,H,*,=Hi,Ci i IHim 1'. (-4.2) 

We see that the output vector KH F is proportional to 
Hi. Eq. (A.2) can be put in a vector form 

KHF =Ci i IHirn12 H;. (A.3) 
m=l 

This leads to the equation 

K*KH~=,C;,‘(,~, ,Hj,.l')lH:. (A.4) 
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The eigenvalues are 1 Ci 1 2( Cf;, =, ) Hi, 1') 2 associated 
with the eigenvectors HF. We have proven that an 

eigenvector of the iterative time reversal operator is 
exactly the vector signal emitted after one time reversal 
for one target taken alone. 
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