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The decomposition-of-the-time-reversal-operator method is an ultrasonic method based on the
analysis of the array response matrix used for detection and characterization. The eigenvalues and
the eigenvectors of the time-reversal operator �equivalent to the singular values and the singular
vectors of the array response matrix� provide information on the localization and nature of scatterers
in the insonified medium. Here, the eigenmodes of the time-reversal operator are studied for two
elastic cylinders: The effects of multiple scattering and anisotropic scattering are considered.
Analytical expressions for the singular values are established within the isotropic scattering
approximation. Then, the comparison with a complete model is presented, putting in evidence the
importance of the anisotropy of the scattering. Experiments, carried out at central frequency
1.5 MHz on 0.25 mm diameter nylon and copper cylinders embedded in water, confirm the theory.
In particular, the small cylinder limit and the effect of the dominant quadrupolar normal mode of
nylon are discussed. © 2006 Acoustical Society of America. �DOI: 10.1121/1.2217128�
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I. INTRODUCTION

The analysis of acoustic scattering is an important tool
for imaging and object identification. It has applications
among nondestructive evaluation, medical imaging, or un-
derwater acoustics. The decomposition-of-the-time-reversal-
operator �DORT� method is an original approach to scatter-
ing analysis which has been developed since 1994. It was
derived from the theoretical analysis of acoustic time-
reversal mirrors used in pulse echo mode. DORT is the
French acronym for Décomposition de l’Opérateur de Re-
tournement Temporel. It consists of the determination of the
invariants of the time-reversal operator obtained by singular
value decomposition of the array response matrix K. It was
applied to detection and selective focusing through nonho-
mogeneous media containing multiple targets.1 It has also
been applied to nondestructive evaluation2 and characteriza-
tion of a cylindrical shell through the analysis of the circum-
ferential Lamb waves.3 Besides, the DORT method has
shown potential for highly resolved detection in a water
waveguide, experimentally4–6 and theoretically.7,8 This
method is general and applies to all types of linear waves,
thus it is also studied for electromagnetic applications.9,10

The first study of the invariants of the time-reversal op-
erator for two scatterers was presented in 1996 by Prada et
al.11 Considering isotropic scatterers and single scattering,
the eigenproblem was solved. Recently, that point of view
was used by Lehman and Devaney,12 to achieve time-
reversal imaging. The effect of multiple scattering was first
addressed in subwavelength localization experiments, by
Prada and Thomas.13 It was shown that, for closely spaced
scatterers, multiple scattering becomes significant and affects
the singular values of the array response matrix, however
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leaving the rank of this matrix unchanged. A rough model
assuming isotropic scattering was used but not described in
this paper. Recently, Devaney et al.14 provided a theoretical
framework that takes into account multiple isotropic scatter-
ing to achieve high-resolution time-reversal imaging. In
Refs. 11–14, the scattering was always supposed to be iso-
tropic, but recent analysis on elastic spheres15 and cylinders16

showed that, even for a single small scatterer, the anisotropy
of the scattering leads to multiple singular values and singu-
lar vectors. Consequently, anisotropy has to be taken into
account for an accurate calculation of the invariants of the
time-reversal operator for two elastic cylinders.

The scattering of two parallel elastic cylinders was first
described by Twersky in 1952,17 in terms of multiple scatter-
ing between two anisotropic scatterers. The isotropic scatter-
ing approximation and small cylinder limit were presented.
That model, valuable for a large separation compared to the
wavelength, was then completed in various papers. Among
them, there was a clear description provided by Young and
Bertrand in 1975,18 which is used in the present paper to
calculate the array response matrix.

Here, the effect of both multiple scattering and aniso-
tropic scattering on the singular values of the two elastic
cylinders problem is analyzed. First, generalities about the
DORT method, the scattering of a single elastic cylinder, and
the isotropic scattering approximation are briefly recalled in
Sec. II. Then, a complete model for two elastic cylinders is
presented in Sec. III, taking into account all significant nor-
mal modes of scattering. The rank of the array response ma-
trix K is discussed. Then, K is written within the isotropic
scattering approximation, taking into account the monopolar
normal modes. Within that approximation, analytical expres-
sions of the singular values and singular vectors, for two
identical cylinders in symmetrical positions, are provided.

These expressions bring an overall physical understanding of

© 2006 Acoustical Society of America 8752�/875/9/$22.50



the role of multiple scattering. In order to improve the de-
scription, a correction to the isotropic model using the values
of back- and sidescattering is proposed. Approximations and
the complete model are then discussed. Finally, in Sec. IV,
experimental results on 0.25 mm diameter copper and nylon
cylinders are presented, and compared to the complete
model.

II. GENERALITIES

In this part, some well known results are briefly recalled
to set the framework of the analysis. An array of N transmit-
receive transducers, used in a time-invariant scattering me-
dium, is characterized at each frequency � by the array re-
sponse matrix K���,1 the elements of which are the Fourier
transform at frequency � of the N�N interelement impulse
responses. The receive vector R��� is related to the transmit
vector E��� through the equation R���=K���E���. The
time-reversal operator tK*K is diagonalizable �the notation *

and t mean complex conjugate and transpose operations�, and
its eigenvectors can be interpreted as invariants of the time-
reversal process. In fact, the eigenvectors of tK*K and KtK*

are the singular vectors of the array response matrix K, while
the eigenvalues are the square of the singular values of K.1

Consequently, the DORT method, which consists of the
analysis of the invariants of the time-reversal operator, re-
quires the singular value decomposition �SVD� of the array
response matrix K. The SVD is written K=U�tV*, where �
is a real positive diagonal matrix of singular values � j, U and
V are unitary matrices—the column of which are the singular
vectors U j and V j, with 1� j�N. Thanks to reciprocity, K is
a symmetrical matrix, and it is straightforward to show that
U j is the conjugate of V j multiplied by an undetermined
phase term � j: U j =V j

*ei�j. In the following, for simplicity
and uniqueness, U j is chosen equal to V j

* �i.e., � j =0�. In that
case, the SVD is written K=U�tU.

A. The case of a single elastic cylinder

A single elastic cylinder �number 1� of radius a1, per-
pendicular to a linear array of transducers, is placed at a
distance F�a1 from the array plane and at a distance dy1

from the array axis �Fig. 1�. The transducers are supposed to
be long rectangles so that the problem can be considered as
two dimensional �2D�. The response from transducer number
j to the scatterer is written H1j. The Green function is ap-
proximated by the 2D far-field Hankel function of the first
kind H0

�1��k0r1j�. Taking into account the aperture function of
the transducer, O1j =sinc�A�yj −dy1� /r1j�, the response is
written as

H1j = O1j� 2

i�k0r1j
eikor1j, 1 � j � N , �1�

where k0 is the wave number in water and r1j is the distance
between the jth transducer and cylinder 1, r1j

=�F2+ �yj −dy1�2. The 1�N vector of components H1j, de-
noted H1, describes the propagation from the N transduc-
ers to the scatterer. Due to the reciprocity principle, the
backpropagation, from the scatterer to the transducers, is

t
described by H. The scattered pressure by an elastic cyl-
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inder is a sum of normal modes.21 Hence, the expression

of the array response matrix K is tH1C̃1H1, where the N

�N scattering matrix C̃1 has the following components:16

C̃1ij = �
n=−�

�

R1,n�− 1�nein	1ij . �2�

The terms R1,n are the scattering coefficients given by Flax et
al.21 They are functions of the density 
1, the radius a1, and
the transverse and longitudinal wave speeds �cT1 and cL1� of
cylinder 1, and the density 
0 and wave speed c0 of the
surrounding fluid. The angle between emission and reception
directions is 	1ij equal to 	1j −	1i �Fig. 1�. That sum is for-
mally infinite, though the terms for which n�k0a are negli-
gible. If m denotes the highest normal mode order taken into

account, the rank of C̃1 is less or equal to 2m+1, the number
of normal modes. Within the small cylinder limit �k0a
�0.5� m=1, so that the rank is 3.16 Furthermore, the rank

of K is equal to the rank of C̃1, since it is less than N. The
singular vectors are combinations of the projections of the
normal modes onto the array.16

B. Isotropic scattering approximation

Within the isotropic approximation, the scattered pres-
sure expression is reduced to one normal mode: The mo-

nopolar one.16 The scattering matrix C̃1 reduces to the com-
plex term R1,0. Denote by R1,0= �R1,0 �ei�1,0, with �R1,0� as the
modulus of the scattering coefficient and �1,0 as the scatter-
ing phase shift. Let �H1� be the norm of the vector H1. The
expression of the array response matrix K is then K
= tH1R1,0H1. The matrix K is rank 1 by construction, so that

the SVD is written as K= Ũ1�̃1
tŨ1, where �̃1 is the real

positive singular value and Ũ1 is the normalized singular
vector. The singular value is expressed as

�̃1 = �R1,0� �H1�2, �3�

FIG. 1. Geometry of the experiment: Two elastic cylinders, located at posi-
tions dy1 and dy2, are placed at a distance F from the array. The distance
between the cylinders is denoted by d. Every transducer position is denoted
by yj �with j ranging from 1 to N�. The problem is considered as 2D.
and the N�1 singular vector is
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Ũ1 =
tH1ei�1,0/2

�H1�
. �4�

With that convention, the phase of a singular vector corre-
sponds to the phase shift due to the propagation from the
array to the scatterer plus one-half of the scattering phase
shift.

III. THEORY

Two elastic cylinders, noted 1 and 2, are placed at a
distance F from the array �Fig. 1�. The distance between the
cylinder axes is denoted by d. To apprehend the effect of
multiple scattering and anisotropic scattering on the singular
values, the array response matrix is first expressed using a
complete model, then different approximations are proposed.

A. General case: Two elastic cylinders complete
model

The expression of the array response matrix K is derived
from Eq. �21� of Young and Bertrand.18 The vectors H1 and
H2 are defined as in Sec. II, as the responses from the array
to the centers of the cylinders �Eq. �1��. K is written as the
sum of four terms: Two terms with the same propagation
vectors H j �j=1, 2�, and two terms coupling vectors H1 and
H2:

K = tH1C1H1 + tH2C2H2 + tH1C1-2H2 + tH2C2-1H1. �5�

For a distance d, small compared to F, the far-field ap-
proximation made in Ref. 18 leads to 	1j 		2j 		 j, with 1
� j�N, where 	 j is the angle with the reference axis �Fig.
1�. The elements of the N�N scattering matrices C are then
written as

C1ij = �
n=−�

+�

i−nWn
−ein	ij , �6a�

C2ij = �
n=−�

+�

inW−n
+ ein	ij , �6b�

C1−2ij = �
n=−�

+�

inX−n
− ein	ij , �6c�

C2−1ij = �
n=−�

+�

i−nXn
+ein	ij , �6d�

where coefficients Xn
± and Wn

± are functions of the scattering
coefficients of each cylinder R1,n, R2,n and of the Hankel
functions Hn

�1��k0d� describing the propagation between the
two cylinders. As in the case of a single elastic cylinder, m
denotes the highest normal mode order taken into account. In
Appendix A, it is shown that the rank of K is less than or

equal to 2�2m+1�, which is the sum of the rank of C̃1 and C̃2

�Sec. II A�. This means that multiple scattering leaves the
rank unchanged. The expressions for Xn

± and Wn
± are given in

Ref. 18 for two perfectly rigid cylinders. In order to compare
with experimental results in Sec. IV, the coefficients of K

using the exact scattering coefficients of each copper or ny-
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lon cylinder will be calculated, as described by Decanini
et al.19 Before, in Sec. III B, the analytic expression of the
array response matrix using the isotropic scattering approxi-
mation as in Twersky17 is given.

B. Isotropic scattering approximation

In this section, the singular values of the two cylinder
problem are studied; writing the array response matrix K
within the isotropic scattering approximation. Then, the SVD
equation is projected in order to reduce the N-dimensional
problem to a 2D problem. Finally, the analytic expressions of
the singular values for two identical cylinders in symmetrical
positions are established and discussed.

1. Expressions of the array response matrix K

The isotropic scattering approximation means that the
scattering sum Cij �Eq. �6�� is limited to monopolar terms,
n=0. The coefficients X0

± and W0
± depend on the scattering

coefficients Rj,0 �j=1, 2� and on the Hankel function of the
first kind H0

�1��k0d�, denoted h. Their expressions are

W0
− =

R1,0

1 − R1,0R2,0h2 , �7a�

W0
+ =

R2,0

1 − R1,0R2,0h2 , �7b�

X0
− = X0

+ =
R1,0R2,0h

1 − R1,0R2,0h2 . �7c�

Using these expressions, the array response matrix K can be
written as

K = �K�1� + K�2��
1

1 − R1,0R2,0h2 . �8�

An interpretation of each term in Eq. �8� is now given.
First, single scattering is considered, and only the direct scat-
tering between the array and the cylinders are taken into
account.11,13 This is the distorted wave Born approximation
described in Refs. 12 and 14. In that case, the array response
matrix, noted K�1� for a single scattering contribution, is the
sum of two array response matrices �Fig. 2�a��, each one
corresponding to a single isotropic cylinder as described in
Sec. II B:

K�1� = tH1R1,0H1 + tH2R2,0H2. �9�

Likewise, the double scattering corresponds to the paths de-
scribed in Fig. 2�b�. Thus, the double scattering contribution
noted K�2� is written as

K�2�=tH2R2,0hR1,0H1 + tH1R1,0hR2,0H2. �10�

Multiple scattering between the cylinders is also taken
into account. Two cases are distinguished depending on the
parity of the number of scatterings. If that number is odd, the
propagation vectors H j �j=1, 2�, from the array and back to
the array, are the same �Fig. 3�a��. On the contrary, in the

even case, the propagation vectors are different �Fig. 3�b��.
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The term R1,0R2,0h2 corresponds to the weight of a round trip
between the cylinders with two scatterings. Hence, the third
scattering order contribution K�3� is equal to R1,0R2,0h2K�1�.
Similarly, K�4�=R1,0R2,0h2K�2�, K�5�= �R1,0R2,0h2�2K�1�, and
so on. Therefore, the asymptotic value of the array response
matrix K corresponds to Eq. �8�: The sum of the single and
double scattering contributions K�1�+K�2� multiplied by the
asymptotic value of the geometric sum of the ratio
R1,0R2,0h2.

2. Projected array response matrix S

The single scattering contribution K�1� �Eq. �9�� is ex-
pressed as

FIG. 2. Expressions of the single scattering contribution K�1� �a�, and double
scattering contribution K�2� �b�. A element Kij

�1� is a sum of two terms, each
one corresponds to a single scattering on the cylinder 1 �H1jR1,0H1i� or 2
�H2jR2,0H2i�. A element Kij

�2� is also a sum of two terms. The first one cor-
responds to the scattering on the cylinder 1 then on the cylinder 2:
H2jR2,0hR1,0H1i. The second one corresponds to the scattering on the cylin-
der 2, then the cylinder 1: H1jR1,0hR2,0H2i. The propagation term between
the two scatterers is denoted h.

FIG. 3. Expression of the nth scattering order contribution K�n� as function
of the parity of the number of scatterings. The term corresponding to two
propagations between the cylinders and two scatterings is equal to
R1,0R2,0h2. For odd contribution �a�, K�2n+1� is equal to �R1,0R2,0h2�nK�1�. For

�2n� 2 n �2�
even contribution �b�, K is equal to �R1,0R2,0h � K .
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K�1� = Ũ1�̃1
tŨ1 + Ũ2�̃2

tŨ2, �11�

where �̃ j and Ũ j �j=1, 2� are the singular values and vectors
if each scatterer is alone �Eqs. �3� and �4��. In general, they

are not singular vectors anymore as Ũ1 and Ũ2 are not or-
thogonal. By analogy �̃12 denotes the weight of the double
scattering interaction:

�̃12 = hei/2��1,0+�2,0��R1,0� �R2,0� �H1� �H2� . �12�

The �̃12 term is complex, whereas the singular values �̃ j

are real positive. Thus, the double scattering contribution
K�2� �Eq. �10�� is written as

K�2� = Ũ1�̃12
tŨ2 + Ũ2�̃12

tŨ1. �13�

The matrix K is a linear combination of Ũ1 and Ũ2 �Eq.
�8��, hence it is rank 2. This is in agreement with Devaney et
al.14 Thus, the singular value decomposition of K is written
as

K = U1�1
tU1 + U2�2

tU2, �14�

where � j and U j �j=1, 2� are the singular values and vectors
of the two cylinder problem. The singular vector U j is ex-

pressed as a linear combination of the vectors Ũ1 and Ũ2

U j = �1jŨ1 + �2jŨ2, j = 1,2. �15�

The �ij terms are complex. The term � j denotes the 2�1
vector containing the term �1j and �2j. Expressing K and U j

as functions of Ũ j, the N-dimensional problem can be re-
duced to a 2D problem. The relation KUj

*=� jU j is ex-
pressed as S� j

*=� j� j, where S is the a matrix of dimen-
sion 2 and corresponds to the projection of the array

response matrix on the subspace Span 
Ũ1 , Ũ2� �Appendix
B�. Accordingly, it leads to SS*� j =� j

2� j. That is to say � j
2

and � j are, respectively, the eigenvalues and eigenvectors
of SS*, which corresponds to the projection of the time-

reversal operator KK* on the subspace Span 
Ũ1 , Ũ2�.

3. Resolution for two identical cylinders in
symmetrical positions

The calculations of the singular values and vectors for
two identical cylinders in symmetrical positions are ex-
plained in Appendix C. Denote by w12 as the hermitian scalar

cross product tŨ1
* . Ũ2, which is real in the symmetrical case.

Denote by �̃ as the singular value for a single cylinder of
monopolar term R0. In that case, the singular values are

�+ = �̃�1 + w12�� 1

1 − R0h
� , �16a�

�− = �̃�1 − w12�� 1

1 + R0h
� , �16b�

associated with the singular vectors

U+ 
 �Ũ1 + Ũ2�/�Ũ1 + Ũ2� , �17a�

˜ ˜ ˜ ˜
U− 
 �U1 − U2�/�U1 − U2� . �17b�
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C. Back- and sidescattering approximation

In this section, a correction to the isotropic scattering
approximation using only two values of the anisotropic scat-
tering values is proposed: The backscattering amplitude �	
=0° � and the sidescattering amplitude �	=90° �. Denote by
C0 and C90, the values of the scattering amplitude at those
angles �Eq. �2��. That approximation assumes that the back-
and sidescattering are constant within the array aperture;
hence, the singular values calculation is similar to the isotro-
pic scattering calculation �Appendix D�. The singular values
are then

�+ = �̃�1 + w12��1 + h
C90

2

C0

1

1 − C0h
� , �18a�

�− = �̃�1 − w12��1 − h
C90

2

C0

1

1 + C0h
� . �18b�

To provide an analytical expressions for C0 and C90, the
small cylinder limit is used, valid for k0a�0.5, described by
Minonzio et al.16 and Twersky.17 In that case, the scattering
is the sum of two normal modes �monopole and dipole�. It
depends on the compressibility contrast �, the density con-
trast � and on a scattering coefficient c, which are written20

� = 1 −

0c0

2


1�cL
2 − cT

2�
, �19a�

� = 2

1 − 
0


1 + 
0
, �19b�

c = − i�k0
2a2/4. �19c�

The weight of the monopolar mode is R0=�c, and the
weight of the dipolar mode is −2R1=�c. Thus, the back-
scattering coefficient is C0= ��+��c, and the sidescattering
coefficient is C90=�c. In both cases, the scattering phase
shift is �=−� /2.

D. Comparison of the three models

In Fig. 4, results given by the three models are com-
pared: Isotropic scattering approximation �Eq. �16��, back-
and sidescattering approximation �Eq. �18��, and the com-
plete model. The normalized singular values are shown for
two identical cylinders, at a single frequency, versus the dis-
tance d between the two cylinders. The diameters are equal
to 0.25 mm and the frequency is 1.5 MHz, hence k0a=0.8.
Separation d ranges from contact �d=2a� to 3 mm. Figure
4�a� shows the copper case, and Fig. 4�b� shows the nylon
case. Physical parameters taken into account for calculations
are given in Table I.

The isotropic and the back- and sidescattering approxi-
mations give the same expression for the singular values for
single scattering, keeping only the first-order term: �±

�1�

= �̃�1±w12�. As in Sec. III B, superscript �1� is used for
single scattering. That expression is equivalent to Eq. �25� of
Prada et al.11 Single scattering singular values are shown as a
dashed line �Fig. 4�. If d is small compared to the resolution

�1� ˜
cell, the nonresolved case, w12 is close to 1: �+ 	2� and
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�−
�1�	0. On the contrary, if d is large compared to the reso-

lution cell, the well-resolved case, w12 is close to 0: �+
�1�

	�−
�1�	 �̃.11–13 Note that the SVD gives the singular values

in order of importance, i.e., �1��2. On the contrary, the
previous equation gives �+

�1� inferior to �−
�1� when w12 is

negative.
For the three models, the singular values �± present os-

cillations compared with the single scattering singular value
�±

�1� �Fig. 4�. For d�0.6 and d�1.1, �+ is larger than �+
�1�,

whereas for 0.6�d�1.1, �+ is smaller than �+
�1�. The second

singular value �− presents opposite variations compared with
�−

�1�. It is possible to explain these oscillations looking at the
expression for the singular values �Eqs. �16� and �18��. In
both cases, the singular values can be written as a second-
order Taylor expansion:

�± 	 �̃�1 ± w12�
1 ± �x� h�cos�k0d − �/4 + �x� + o�h2�� ,

�20�

where x is equal to R0 or C90
2 /C0 and �x is the phase of x.

The phase of h is equal to k0d−� /4, because h reduces to
eik0d�2/ i�k0d for large arguments �valid for k0d�2 or d
�0.3��. With �x=−� /2, the oscillations given by the Tay-
lor expansion are in good agreement with the complete
model singular values shown in Fig. 4. The two first zeros
of the cosine correspond to k0d=5� /4 and 9� /4 �d=0.6

FIG. 4. Normalized singular values versus separation d, for two 0.25 mm
diameter cylinders, at 1.5 MHz, copper �a� and nylon �b�: Single scattering
�dashed line�, isotropic scattering approximation �•�, back- and sidescatter-
ing approximation ��� and complete model �solid line�.

TABLE I. Physical parameters of copper and nylon.


 �g cm−3� cL �mm �s−1� cT �mm �s−1� � �

Copper 8.9 5.0 2.3 0.99 1.6
Nylon 1.15 2.5 1.0 0.62 0.14
Water 1 1.48
Minonzio et al.: Multiple scattering and time-reversal operator 879



and 1.1 mm�. Likewise, the extrema are located at k0d
=3� /4 and 7� /4 �d=0.4 and 0.9 mm�. Accordingly, the
small cylinder limit scattering phase shift �−� /2� is cor-
rect in that case �Eq. �19c��. The cosine positive domain
corresponds to constructive inferences between single and
multiple scattering. On the contrary, the negative domain
corresponds to destructive interferences.

However, the amplitude of the singular values given by
the isotropic scattering approximation �•� differs from those
given by the complete model �solid line�. That difference can
be explained by the scattering patterns shown in Fig. 5�a� for
copper and Fig. 5�b� for nylon. For copper, �C90� is less than
�C0�. This is why the complete model oscillations are smaller
than the oscillations given by the isotropic scattering ap-
proximation �Fig. 4�a��. On the contrary, for nylon, �C90� is
larger than �C0�; so that the complete model oscillations are
larger than the isotropic ones �Fig. 4�b��. The back- and si-
descattering approximation ��� compensates for part of that
difference, and agrees really well for large values of d. Fur-
thermore, for metals, as the quadrupolar term R2 is small, for
k0a�1, the small cylinder limit �Eq. �19�� is a good approxi-
mation. The small cylinder limit scattering pattern �Fig. 5�c��
is close to the copper one �Fig. 5�a��.

Furthermore for nylon, the complete model does not
show similar oscillations for the lower pair of singular values
�3 and �4. In the copper case, these singular values are due
to the antisymmetric dipolar normal modes, which are maxi-
mum for 90° scattering angles, as described by Minonzio
et al.16 On the contrary, for nylon, the second pair of singular
values seems to be weakly affected by multiple scattering. In
that case, these singular values are due to the antisymmetric
quadrupolar normal modes.16 Actually, the nylon dipolar
mode is small because of the weak density contrast. For 90°
scattering angles, the antisymmetric quadrupolar modes are
null, so that for nylon the effect of multiple scattering is
weak for those singular values.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Experimental setup

In a water tank a 96 element linear array—with
1.5 MHz central frequency and 0.5 mm pitch—is used. The
two cylinders are identical, but their positions are not sym-
metrical. One cylinder is fixed, whereas the second one is

FIG. 5. Scattering patterns �C̃�	��: 0.25 mm diameter copper �a�, nylon �b�
at 1.5 MHz and small cylinder limit �c�. Patterns �a� and �b� have been
calculated with Eq. �2�. Pattern �c� is equal to ��+� cos�	��, where � and �
are the compressibility and density contrasts of copper �Table I�.
connected to a motor. The distance d between the two cylin-
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ders is incremented from contact �d=2a� to 3 mm. The dis-
tance from the array is F=50 mm. Experiments have been
carried out for two materials: Copper and nylon. In both
cases, the diameters were taken equal to 0.25 mm. With that
array, the parameter A of the aperture function does not de-
pend on frequency �Eq. �1��. It has been experimentally mea-
sured and is equal to 1.6. A reception level correction law is
used as described by Minonzio et al.16 As the wave backscat-
tered by such small objects is very weak, the Hadamard-
Walsh basis with chirps is used to acquire the array response
matrix so as to optimize the signal-to-noise ratio in the whole
bandwidth �1–2 MHz�.8

B. Two copper cylinders

The first experiment was carried out on two 0.25 mm
diameter copper cylinders. Physical parameters, given in
Table I, are taken into account for the complete model cal-
culations. Figures 6�a�–6�c� show the normalized singular
values versus the distance for three frequencies, 1.5, 1.8, and
2 MHz. There is good agreement between experimental and
theoretical values �complete model�. For copper, as already
observed in Sec. III D, the small cylinder limit gives good
results. Therefore, Eqs. �18� and �19� are sufficient to de-
scribe the multiple scattering between two small metallic
cylinders. Experimental results are similar to those presented
by Prada and Thomas;13 however, the multiple scattering

FIG. 6. Two 0.25 mm diameter copper cylinders: Experimental and com-
plete model normalized singular values versus the separation d. Three fre-
quencies are shown: 1.5 MHZ �a�, 1.8 MHz �b�, and 2 MHz �c�, single
scattering �dashed line�, complete model �solid line�, and experimental val-
ues �o, + , � �.
model was not described.
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C. Two nylon cylinders

The second experiment was carried out on two 0.25 mm
diameter nylon cylinders. Physical parameters, given in
Table I, are taken into account for the complete model cal-
culations. Figures 7�a�–7�f� show the singular values versus
the distance for six frequencies between 1.2 and 2 MHz.
There is a good agreement between experimental and theo-
retical values �complete model�. The frequency 2 MHz cor-
responds to the peak of the quadrupolar term R2 described in
Ref. 16. For that frequency, the scattering pattern is a quad-
rupole with a scattering phase shift equal to −�, instead of
−� /2, for the small cylinder limit. Thus the maximum inter-
action appears for k0d equal to 5� /4 �d=0.5 mm�, instead of
3� /4. It clearly appears that the small cylinder limit, which
does not take the quadrupolar mode into account, is not valid
for the nylon cylinders.

Furthermore, the lower-order singular values �3 and �4

are not negligible, as in the copper case. They are clearly
measured for frequencies beyond 1.5 MHz �Figs. 7�c�–7�f��.
As noticed in Sec. III D, the effect of multiple scattering
seems to be small for those singular values.

V. CONCLUSION

In order to describe how multiple scattering between
two elastic cylinders affects the singular values of the inter-
element array-response matrix K, three points of view have
been proposed: Isotropic scattering, back- and sidescattering,
and a complete model. The rank of K was specified as a
function of the number of normal modes taken into account:
All the significant ones for the complete model, only the

monopolar ones for the isotropic scattering approximation.
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Within that approximation, for two identical cylinders in
symmetrical position, analytical expressions for the singular
values �± have been given �Eq. �16�� which, explain overall
the oscillations given by the complete model. A correction to
the isotropic model is proposed using the back- and sidescat-
tering amplitudes �Eq. �18��: It compensates for part of the
difference between isotropic and complete models. Within
the small cylinder limit, back- and sidescattering amplitudes
are expressed as a function of the compressibility and density
contrasts � and � �Eq. �19��. For metal cylinders, for k0a
�1, that expression is sufficient to describe the multiple
scattering problem. Experimental results confirm the validity
of the model for 0.25 mm diameters nylon and copper cyl-
inders, for frequencies between 1.2 and 2 MHz. The effect of
the interaction between the two cylinders is clearly shown.
For nylon, the two following singular values �3 and �4 are
weakly affected by multiple scattering because of the pre-
dominance of the quadrupolar normal mode.

APPENDIX A: RANK OF K

Let us denote by m the highest normal mode order taken
into account in Eq. �6�. Let us define four �2m+1�� �2m
+1� diagonal square matrices W± and X±:

W− = diag�i−nWn
−� , �A1a�

W+ = diag�inW−n
+ � , �A1b�

X− = diag�i−nX−� , �A1c�

FIG. 7. Two 0.25 mm diameter nylon
cylinders: Experimental and complete
model normalized singular values ver-
sus the separation d. Six frequencies,
from 1.2 to 2 MHz are shown, single
scattering �dashed line�, complete
model �solid line�, and experimental
values �o, + , • , � �. The singular val-
ues �3 �•� and �4 ��� are weakly af-
fected by multiple scattering.
n
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X+ = diag�inX−n
− � , �A1d�

with −m�n�m. Let also define E as a �2m+1��N matrix
of coefficients Ejn=ein	j. Using 	ij =	 j −	i, Eq. �5� can be
written as

K = t�EH1�W−E*H1 + t�EH2�W+E*H2

+ t�EH1�X−E*H2 + t�EH2�X+E*H1, �A2�

where K appears to be the product of three larger matrices,
such that

K = t
EH1

EH2
�
W− X−

X+ W+�
E*H1

E*H2
� . �A3�

The dimension of the square matrix in the center is 2�2m
+1�, so that the rank of K is necessarily lower than 2�2m
+1� since it is less than N.

APPENDIX B: EXPRESSION OF THE PROJECTED
ARRAY RESPONSE MATRIX S

For two elastic cylinders, within the isotropic scattering
approximation, the matrix S is expressed as

S = ��̃W1 + �̃12W2�
1

1 − R1,0R2,0h2 , �B1�

where �̃, W1, and W2 are 2�2 matrices. �̃ is diagonal and
contains the single cylinder singular values �̃ j equal to �Rj,0�
�H j�2 �Eq. �3��. Let us denote by wij �i, j=1, 2� the hermitian

scalar product equal to tU* . Ũ j. As the Ũ j are normalized
�Eq. �4��, wii is equal to 1. In general, that product is complex
and wji is equal to wij

*. The modulus �wij� ranges from 0 to 1.
It corresponds to the normalized acoustic field on the second
scatterer when the field is focused on the first one.11 The
matrices W j contain the wij terms. The matrices are written
as

�̃ = ��̃1 0

0 �̃2
� , �B2�

W1 = � 1 w12
*

w12 1
� ,

W2 = �w12 1

1 w12
* � .

The matrix product �̃W1 is the single scattering projected
matrix. It corresponds to the matrix S� presented in the Ap-
pendix of Ref. 11.

APPENDIX C: RESOLUTION FOR TWO IDENTICAL
CYLINDERS IN SYMMETRICAL POSITIONS

The two cylinders are now considered as identical in a
symmetrical geometry with respect to the array axis �x axis,
Fig. 1�, i.e., dy1=−dy2. If the cylinders are identical, R1,0 is
equal to R2,0: The weight of the monopolar normal modes is
denoted R0. Furthermore, if the positions are symmetrical,
the norms �H j� are also equal. So the �̃ j coefficients are

˜
equal: They are denoted �. Likewise, the weight of the
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double scattering interaction �̃12 is equal to R0h�̃ �Eq. �12��,
and the round trip interaction term R1,0R2,0h2 is equal to
�R0h�2. For symmetrical positions, the crossed scalar product
w12 and w21 are real and equal. Thus, the symmetrical case
simplifies the matrices product WiW j �i, j=1, 2� as

W1
2 = W2

2 = �1 + w12
2 2w12

2w12 1 + w12
2 � , �C1�

W1W2 = W2W1 = � 2w12 1 + w12
2

1 + w12
2 2w12

� . �C2�

Therefore, the expression of SS* is

SS* = �̃2��1 + �R0h�2�W1
2

+ �R0h + �R0h�*�W1W2�
1

�1 − �R0h�2�2
. �C3�

The expression of the SS* matrix is symmetrical, in

�a b

b a � form. Thus, the two eigenvalues �±
2 are written

a+b and a−b, associated with the eigenvectors
1 /�2t�1 1 � and 1/�2t�1 −1 �. The singular values of K
�Eq. �16�� are the square roots of the eigenvalues of SS*.
The singular vectors are given in Eq. �17�.

APPENDIX D: BACK-AND SIDESCATTERING
APPROXIMATION

Let us denote by C0 the value of the backscattering; and
C90, the value of the sidescattering �Eq. �2��: C0 is equal to
R0−2R1+2R2+ . . . and C90 to R0−2R2+ . . . With those nota-
tions, the singular value �̃ is equal to �C0� �H1�2 for a single
scatterer, the weight of the double scattering interaction �̃12

�Eq. �12�� is equal to �̃C90
2 h /C0 and the round trip interaction

term is equal to �C0h�2. Accordingly, the expression of the
projected array response matrix S is

S = �̃�W1 + h
C90

2

C0
�W2 + C0hW1�

1

1 − �C0h�2� . �D1�

Calculations are similar to those in Appendix C. The singular
vectors are the same as before �Eq. �17��. The singular values
are given in Eq. �18�.
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