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The decomposition of the time-reversal operator provides information on the scattering medium. It
has been showfChambers and Gautesen, J. Acoust. Soc. 208, 2616—26242001) ] that a small
spherical scatterer is in general associated with four eigenvalues and eigenvectors of the
time-reversal operator. In this paper, the 2D problem of scattering by an elastic cylinder, imbedded
in water, measured by a linear array of transducers is considered. In this case, the array response
matrix has three nonzero singular values. Experimental results are obtained with linear arrays of
transducers and for wires of different diameters smaller that the wavelength. It is shown how the
singular value distribution and the singular vectors depend on the elastic velagities;, the
densityp of each wire, and on the densijby and velocityc, of the surrounding fluid. These results

offer a new perspective towards solution of the inverse problem by determining more than scattering
contrast using conventional array processing like that used in medical ultrasonic imagir&050
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I. INTRODUCTION For all these applications, a good understanding of the

The analysis of acoustic scattering is an important tooinvariants of the time-reversal operator is required. Some
for object identification. It has applications among nonde-experimental results obtained in a former study revealed the
structive evaluation, medical imaging, or underwater acousmyltiplicity of the invariant of the time-reversal operator for

tics. The DORT method is a new approach to scattering, \qiq cylinder immersed in waté?.In the present paper, we
analysis that was developed in 1994. It was derived from the . . . . .

. . - . Study these invariants for elastic cylinders theoretically and
theoretical analysis of acoustic time-reversal mirféRM)

used in the pulse echo mode. DORT is the French acronyr1.:,\|xperimentally. In Sec. I, we derive an expression for the
for Decomposition de I'Opeateur de Retournement Tempo- array response matrix in two dimensions for the case of a
rel. It consists of the determination of the invariants of thelinear array and an elastic cylinder in a fluid medium. The
time-reversal operatdifRO). It was applied to detection and singular value decompositiof(8VD) is applied toK to de-
selective focusing through nonhomogeneous multiple targetgrmine the number of singular values generated by the cyl-
media? It has also been applied to nondestructiveinder. For the particular case of low frequertsynall cylin-
evaluatior’, and characterization of a cylindrical shell gey analytic expressions for the singular values and singular
thrqugh the_ analysis of the circumferential Lamb mOﬁles'vectors are obtained and used to interpret the acoustic scat-
While the time-reversal mirror has been shown to be Ver}{ering mechanism that generates each eigenstate of the time-

interesting for spatial and temporal focusing in Shanowreversalo erator. We use the approach found in recent analy-
water>~’ the DORT method has also shown high potential op : pp : ) y
ses of time reversal for spher¥s® We will develop the

for highly resolved detection in a water wavegufdé® This _ :
method applies to all type of linear waves and it appears téh€ory for a discrete array at a single frequemcpnd then

be interesting for electromagnetic scattering and inversd8ive the final results. In Sec. IIl, experimental results for thin
problem?!t12 steel and nylon cylinders are described. It is shown that the

analysis of singular values and singular vectors of the trans-

dCorrespondence address: Lawrence Livermore National Laboratory, P.(j.er matrixK Oﬁers_ the pOSSIbIlIty to characterize Cyllnders of
Box 808, L-154, Livermore, CA 94551. subwavelength diameter.
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7 ol H [ 2 ek )
clement j For that case, the 2D cylindrical Green’s function is the Han-
o Py . kel function. Note that; is the distance from the scatterer to

o , \6.’. ................... the transducer number Each element of the array response
F [T Tos, e matrix is then
pegieesne 5 ki) .
ele'mfent i ij (w) - pOI 7Tk0 \/r— \/r— C, ( )
emission I ]
TRM N elements wherep, is the amplitude of the pressure emitted by a trans-

. _ _ ~ ducer. We introduce the matrix of the phase tefimst con-
FI(_B. 1. Geometry of the expel_’lmerﬁ_: is the d|s_tance between the_ elast_u_: Jains theN phase elemengio'i corresponding to the propa-
cylinder and the array. The cylinder is perpendicular to the plane insonifie: . .
by the N-elements array. gation between the transducer numband the scatterer, i.e.,
a diagonal coefficient ig;;=e'koi. T is unitary and diago-
nal. It is possible to write the array response matrix as
Il. THEORY

2
A. Reduced array response matrix for an isotropic K(w)= Poi TKredueed )T, (4)
scatterer 0

First of all, an array ofN transmit—receive transducers An element of the reduced array response matrix is then

insonifying a static scattering medium is considered as a ”n\_/vntten
ear, time-invariant system dfl inputs andN outputs. It is c
. reduce —
characterized at each frequengyby the array response ma- K w) = N )
trix K(w). The matrixK* (w)K (o) is called the time-reversal Fir;
operatort TRO (the notatiofi means complex conjugatets In the case of a single isotropic scatterer, this reduced
eigenvectors can be interpreted as invariants of the timematrix is real and symmetrical. Thus, the singular value de-
reversal process. composition is reduced to diagonalization. We shall see that

As discussed in several papéfsf the scattering me- this reduction is always possible in the far-field approxima-
dium contains a single isotropic scatterer, the array respong®mn and we shall use it for simplicity in the case of aniso-
matrix is easily written as the product of three elements: tropic scatterer.

(i)  a propagation vector of sizBlX1, written H, that .
describes the transmission and the propagation fron. Reduced array response matrix for an elastic
the N transducers to the scatterer. The coefficidnt ~ Cylinder

of the vector corresponds to the Fourier trgnsform of  The pressure field scattered by an elastic cylinder, even
the impulse response from transducer numitterthe  for a small cylinder, is not isotropic. In far-field conditions,

) scatterer. o . the field scattered from a plane wave is given, in polar coor-
(i) a scattering coefficient, which corresponds to the dinatesr and 6, by a sum of partial wavé&'®

reflectivity of the scatterer. .
(i) a backpropagation vector which'id due to the reci- _ | 2 s
procity principle. The notatiohis used for the trans- Pecd",0)=Po i kol e nzo €nRn COSNO), ®)
pose operation.

whereR,, are the scattering coefficients the angle at the

The array response matrix is then origin between the field point and direction of the incident
plane wave, and is the distance between the scatterer and
K=Hc'H. (1)  the field point(Fig. 1). The Neumann coefficients arg

=1 ande,=2 for n=1. As before, we have used the far-

We see that in the case of a single isotropic scattereffjeld form of the field, replacing the Hankel functions with
things are very simple: the expression above provides ditheir asymptotic expressions for large arguments. The scat-
rectly the singular value decompositiéBVD) of K. In this  tering coefficients are the coefficients found in Febal®
particular case, there is one nonzero singular valaad one  These are functions of the physical parameters of the cylin-
singular vectoH. ders, densityp,, radiusa, transverse and longitudinal wave

We now introduce a reduced array response matrix thaspeeds ¢; andc, ), and the physicals parameters of the fluid
will be used in the following analysis. AssumirgF>1,  surrounding, velocityc, and densitypg.
whereF is the distance between the scatterer and the array, Each term of the sum corresponds to a partial wave, or
andk is the wave number in watéFig. 1), we can use the normal mode. The first terrR, produces a monopole wave
far-field form (large argumentof the propagation Green’s that is circularly symmetric. The second terniR20s(F)
function in two dimensions in the expression for elementproduces a dipole partial wave, the third teriR,Z0s(%) a
numberi of the propagation vector qguadrupole partial wave, and so on. Thus, the values of the
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FIG. 2. Normal modes in polar coordinates and their projections onto the array: The normalsnqdesly are orthogonal, whereas the projections w,,
andw, are not. The projected modeg andw, are symmetric around theaxis, whereasv, is antisymmetric.

R, coefficients determine the shape of the scattered field. Lef. Reduced array response matrix for a small elastic

» denote the position along the axis of the array, wijtithe  cylinder

position of. tran§ducer nurpbér The poFsitior? vectors for Though the sum is formally over an infinite number of
transducers andj arer;=[, "] andr;=[,, "], with the angle o/ mg  the coefficients fon>kya are exponentially small
between them given by cag()=(r;r))/rirj=(F?>  and the sum can be truncated with little efdEor the case
+ min;)/rir; . If the radiusa of the cylinder is much smaller of a thin cylinder kpa<1k a<1k =w/c,), the scattering
than the distance to the arrag<F), the field emitted from  for n=2 can be ignorelf and the scattered pressure be-
transducer is a plane wave at the cylinder, and the scattere¢omes

field received by transducgrwill be given by Eq.(6) with

6=m— ¢j; . Using cosfif)=(—1)"cosfip;), the reduced ar- B [ 2 iKere
ray response matrix for the case of a single elastic scattering Pscd T} ¢ij) = Po i Ko | €70 Ro— 2R, cosg;;

cylinder can be written as

1z +0 277% . 9
KiFw)=—=2 eRp(—1)"cotng;). (D)
Jrir; = The two first scattering coefficients &te
We notice that the expressions for the reduced array re- 2.2 ) 2 2
sponse matrices for isotropic or anisotropic scatterers are = mkpa PoCo i mkoa” [ By 1)
similar, in far-field conditions. We introduce the scattering 0 4 pl(cf—ci) 4 Nu '
coefficientC;; equal to the sunk, _,e,R,(—1)" cosfig;), (10
where Cj; is an element of théd XN matrix C. Thus, the s
general form for an element of the reduced array response Ri— —i mKea“ p1—po (11)
matrix is e 4 pitpo’
reduce Cij In this approximation an element of the reduced scattering
Kij fw)= Fr] (8) matrix becomegomitting the term—i[wk§a2/4])
Note that the matrixC reduces to a scalarin the case of an K-‘educe‘ﬂw): L wt F2+ 7, 77j> (12)
isotropic scatterer. It is independent of the positions of the 1 \/F rif | '
transducers andj with respect to the scatterer akdduedis .
rank 1. For the elastic cylinde€ is a matrix defined by the The constantst and 8 are’
infinite sum. The rank oK "®®®ddepends on the number of
significantR,. We shall see that if onljR, andR; are sig- w=|1- Bo B=2 P1—Po (13)
nificant, K "¢ducedjs rank 3. ANtp) pP1tpo’
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FIG. 3. The three singular vectots;,, U,, andU; are calculated analytically with the small cylinder approximation along the &waypordinatg. Their
modulus are ploted for different distandedetween the scatterer and the array: 30 frn 50 mm(O), and 80 mm(*). The variations with the distance are
weak.

where\ andu are the Lameslastic constants of the cylinder, If the position of the cylinder is symmetrical with respect to
and By, is the bulk moduluginverse of compressibililyof  the array, the matrix simplifies to
the fluid. For a 2D-elastic medium, the bulk modulusBis

aWss  aWgy 0

=A+u [B=N+(2/3)u for a 3D-elastic mediuh The term Xs Xs
proportional tow represents scattering by the compressibility BWsxy BW, 0 Xx | =N\| Xx|. 17
contrast. It produces a monopolar radiation pattern that is 0 0 BW,, | LXy Xy

circularly symmetric. The term proportional ® represents

scattering by the density contrast, which produces dipolar Thus, the reduced array response matrix for a thin cyl-
radiation patterr{Fig. 2). inder may have as many as three distinguishable singular

values and singular vectors. If the density contyast zero,
there is only one singular value. The interpretation of the

D. Analysis of reduced array response matrix for a

small elastic cylinder 1 IR | exact
= Py
An element of the matrix can be rewritten as the sum of N 2R | exact Ke
three separable terms "l * IR small cylinder limit o
o 2R Il small cylinder limit OO
1 7 — 0.6 ° 1
reduced_ oM = O el
Kij \f \/* '8 32 3/2 BT r32  302° (14 = £
j @ o4l " oeciF
) 0.4 Oo ’c' **
Let wg, Wy, andw, be the three vectors which correspond to X
the projection of the normal modes on the TRMg. 2). The 0.2t X
elements number of these vectors, corresponding to the
transducer number are oL oossatd®® . ‘ |
0 0.2 04 ka 06 0.8
1 F 7
Ws(ﬂi):rT/zr Wx(ﬁi):rT,z. Wy(ﬂi):rT,z- (15 @)
| duced_ t | t 1I - 04 ' ' ' '
We see thatk'™ uce—qws Wt BWy Wiy BWy Wy, i the ossl — g&' le"a“t *J
sum of threeN X N matrices of rank 1 which implies that the === | °’:f tinder limit o
rank of KdUcedjs 3 as long asr and 8 are nonzero. 0.3 * ol smar eyincer it &
) ) o 2R 1| small cylinder limit *
Whatever the emitted signal, the measurement of the —025
scattered field is a linear combination of these three projected 5:02-
vectors. The array response matrix can then be expressed in %
this new basis and the singular vectatgi=1,2,3) are lin- 0.151
ear combinations of the, (n andm are used for the indexes 0.1}

S, X, 0ry), U= xsWst X, Wy + xyWy. We denotel,, the sca-

lar product between the vectorszvn and w,: W,nm
= (W W) =2 W () Wi(i) ='WpWy.  In - general, the Rttt

SVD of K reduces to solving for the eigenvalues and eigen-

vectors of a X3 matrix, expressed in the new basis of the b

Wn FIG. 4. Coefficients of normal modes,R, (no dimensioh versuskoa:
aW aW aW. comparison be_tween the_ exact value anq the approximation fqr sm_aII ebjects
ss SX Xs Xs (only the two first coefficients are taken into accqufihe approximation is
BWsy  BWyy  BWyy || Xx|=N| Xx|. (16) valid for koa less than 0.5. In the case of stéa), the two coefficientsR,
and R, are of the same order, whereas, in the case of niiprthe second
,BWsy ,BVny BWyy Xy Xy coefficient R, is small because of the small density contrast.
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TABLE I. Physical parameters of steel and nylon. i
A= XI theo fuwem—""
p(gem® co(mmus?) cr(mmus?) a B Pla 10 " tzthh“
..... theo
3
Steel 7.8 5.75 3 0.99 155 1.56 e A theo
Nylon 1.15 25 1.05 0.62 0.14 0.23 1072
Water 1 1.48
< mmmemEEES e, - 4
. - ~~~’~ "'¢
107 ~-*
singular values is analogous to that for the sphere studied by
Chambers and Gautes&hThree singular values are possible
because there are three independent scattering modes: a 107 s - .
- 0.5 1 1.5 25
monopole mode from the compressibility contrast, and two frequency z)

dipole modes from the density contrast. The three singular

(@)

states of the array response matrix represent three orthogonal

combinations of the projected scattering modes. 10
If the aperture of the array is symmetric around the
axis, the matrix elementé/s, andW,, are zero, and simple
analytic expressions can be found for the singular values o
g 10°F
1 :
)\1,3:§(awss+ BWyx) §
2 10“a :::-,." level
W W, — W
x| 1= \/14QBMSX2 , (18)
(aWsst BW,,)
No=BW,, (19 03 ! fr!c'csluency (l%ﬂ-[z) 3

(b)

FIG. 6. Singular values , (logarithm scalgfor a steel cylinder of diameter
0.2 mm versus frequencya) theoretical, the first singular value, varies
slowly in the frequency range. The ratig /\, lies between 1% and 3%t)
experimental: the first singular value, is clearly measured. The second
one,\,, and the noise are of same ordabout 1%.

SinceWssWX)(zwgX by the Schwarz inequality, the quantity
under the radical is always positifeand thus, the singular
values are real, as required. For our applicationg{V,
—Wﬁx)/(aWSS+BWXX)2<1, and we can approximate the
singular value numbers 1 and 3 as

)\zipp% aWsst BWyy, (20)
The two singular vectordJ; and U; are symmetric
\ 3PP W Wi — W2, - around thex axis, while U, is antisymmetric. Thus, for a
3 ~ap aWget BW,, (22) symmetric experiment, one singular state represents a dipole

oriented parallel to the array, while the other two are or-
thogonal combinations of the monopole and a dipole ori-
ented normal to the arrayFig. 3.

Note that the singular values are ordergg=A,=\;. The
singular vectors can be written in terms of thg

U1,3: aWg,Wg+ (7\1,3_ aWsgw,,  Up= Wy. (22
Ill. EXPERIMENTAL RESULTS
10° : : : Experiments have been carried out in a water tank on
two materials, steel and nylon, and for different cylinders of
= 02
I —_— |U1| theo
* [0 lexp
-1| * 1
10 0.15
. 01t
.»‘f """ -
102 S . ) o .
05 1 1.5 2 2.5 3 0.05
frequency (MHz)
FIG. 5. Coefficientse,R,, (no dimensioh of the normal modeglogarithm 0

scalg for a steel cylinder of diameter 0.2 mm versus frequency between 0.5 20 A0 cer numblr 80

and 3 MHz. The two first coefficient8, (monopol¢ and 2R, (dipole) are

predominant in the frequency range. The third onR, Zquadrupolg is FIG. 7. Modulus of the first singular vectfld,| along the array at 1.5 MHz.
small and non-negligible for frequencies above 1 MHz. The small objectThe difference between theofgontinuous ling and experiment*) is due

approximation is not valid for that case. to the reception level dispersion of the array elements.
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JR— |U1|theo
o |U1| corrected
0151 = [U;lexp %ﬁe
S0.1%
0.05¢
0 . . .
20 40 1630 80
transducer number
()
0.2
— |U2| theo
T* * (UjJexp 5 %
0.158%% o lu) correctd¥

A (arb. unit)

20 tran4s'%ucer numggr 80

f}'ézuency 2(MHz) 25
(b) (d)

FIG. 8. Results for steel 0.32 mr(a) coefficientse ,|R,,| of normal modeglogarithm scalgversus frequency. The five first coefficients are taken into account
in the simulationyb) simulated(with frequency respongend experimental singular valuag (logarithm scalgversus frequency. The experimental second
singular value is visible between 1.7 and 2.5 MHz; modulus of the first singular iétotc) and of the second singular vectas,| (d) along the array at

2 MHz: theoretical(continuous ling experimental*), and reception sensitivity corrected values).

diameters between 0.2 and 0.5 mm. The transducer array hé&rmula given by Flaset al'® The physical parameters of the

96 elements with central frequency 1.5 MHz, and the arrayylinders are given in Table |. For comparison to experimen-

pitch is 0.5 mm. For each experiment, the distafcee- tal results, the simulation also takes into account the fre-

tween the wire and the array is 50 mm. As the cylinderquency response on transmit and receive and the directivity

diameters are less than half a wavelength, they have a lowf each transducer element. The directivity has been mea-

scattering power. In order to get a reasonable signal to noissured with a needle probe, and taken into account in the

ratio we used the Hadamard—Walsh basis to acquire the arraymulations.

response matrix as explained by Fagoeet all® This emis- _ _ . .

sion basis is very convenient and, in principle, it increasef" Steel cylinder, diameter 0.2 mm, & quas-isotropic

the signal level by a factor of/N, N being the number of scatterer

elements. We also used chirps in order to use the whole The first experiment was carried out on the thinnest steel

bandwidth of the transduce(8.9-2.5 MH3. cylinder (diameter 0.2 mm The coefficients of the normal
The two first coefficients:|R, for steel and for nylon modese,R, for such a cylinder are show(frig. 5. The two

are shown in Fig. 4. The exact value and the small objectirst coefficientsR, and 2R, are predominant in the fre-

approximation ofe,R,, are compared fokpa under 0.8. The quency range. The third oneR2, is small and the others are

expression of approximate coefficients are negligible. We cannot consider that wire as a small object
2.2 2.2 because of the weight of the quadrupole ter®, 2 In Fig.
7Tkoa 7Tk0a

B. (23) 6(a), we can see the theoretical singular values calculated for
the experimental geometry. The first singular valyds pre-

The above parabolic approximati¢terms are proportional dominant, the second one is very small, and the others are

to (kpa)?] is valid for koa lower than 0.5. For bigger values negligible. The ratio\,/\, lies between 1% and 3%, in the

of kpa the deviation increases. We also remark that in thérequency rang¢Fig. 6@)]. In the experimental results the

case of nylon, thgs coefficient is small because of the small second singular value represents the noise level and we can

density contrastTable I). The frequency band of our system see in Fig. @) that the noise level is about 3% at the central

lies between 0.9 and 2.5 MHz, which corresponds to 0.4requency. So, it is impossible to measure properly the sec-

<koa<1.9. Thus, for the simulations of singular values andond singular vector.

vectors, the values o€,R, are calculated with the exact As the theoretical first singular value varies slowly in the

|R0|app:T a, 2| R1|app:T

794  J. Acoust. Soc. Am., Vol. 117, No. 2, February 2005 Minonzio et al.: Cylinder characterization with time reversal operator



o [— IR — U] theo
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d s U. | corrected
osio M
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(a) (¢

* A, exp
+ A, exp
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A, exp =
= A, theo
=== A, theo
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wWON e AN W
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0.051
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frequency (MHz)
(b) (d)
FIG. 9. Results for nylon 0.24 mnfa) coefficientse,|R,| of normal modeglogarithm scalgversus frequency() simulated(with frequency respongand

experimental singular values, (logarithm scalg versus frequency; modulus of the first singular ve¢tdyl (c) and of the second singular vectds,| (d)
along the array at 2.1 MHz.

frequency range, we choose to use this experiment to calireception correction factor is also acceptable. Figuii® 8
brate our system. The ratio between experimental and theshows that the second experimental singular value gen-
retical first singular values is used to characterize the freerally below the noise level. However, between 1.7 and 2.5,
guency response of the system. For the measurement on thds clearly above noise, so that we can see the second ex-
other cylinders, the theoretical singular values are multipliecberimental singular vectdd, at 2 MHz [Fig. 8d)].

by this ratio to compare them to the experimental ones. We

also correct for element sensitivity variations in the array. AsC. Nylon cylinder, diameter 0.24 mm

we can see for the amplitude of the first singular vetigr Th ¢ . ¢ ied out | lind
(Fig. 7), the reception sensitivity varies from one transducer _ .. € next experiment was carfied out on a nylon cylinder
to another. At each frequency, we determine a correction facQf diameter 0.24 mm. W? can see n F|ga_)9_the cogfﬂment
tor from the experimental and theoretical first singular vec-Of normal modes. The dipole mode coefficieiRy] is very

tors. For the other cylinders, this correction factor was ap_small, due to the small density contrast. The quadrupole term

plied frequency by frequency to the array response matri>?.| R,| has a peak at 2.1 MHz. The peak of the first §|ml_JIated
before computing the SVD. singular value at 2.1 MHz corresponds to a combination of

the monopole, the symmetrical dipole, and quadrupole, the
qguadrupole contribution being domindfiiig. Ab)]. The sec-
B. Steel cylinder, diameter 0.32 mm ond experimental singular value is clearly above the noise

IeYeI between 1.2 and 2.5 MHz. So, it is possible to calculate

"nghf s;a((j:ior;ﬁl Ti%sg;em;ntAha\?v bee: Camﬁf;&;;; 2 SR first two singular vectord; andU, [Figs. 9c) and(d)].
cylinder of diameter 9. - S We can see € The reception correction is as efficient as for the steel
cannot consider the object as a small scatterer because of tB%Z-mm cylinder

weight of the quadrupole termR2. The good agreement
between the experimental and simulated first singular value
N\, shows that the frequency response obtained with th
smaller steel cylinder is acceptalleig. 8b)]. Figure &c) The next experiment was carried out on a nylon cylinder
shows the first singular vectaf;. The experimental datd) of diameter 0.35 mm. We can see in Fig(dahe coefficient
show the same reception sensitivity variation as the case aff normal modes. The dipole mode coefficienRg is still

the first steel cylinde(Fig. 7). The corrected daté)) are in  very small, due to the small density contrast. The quadrupole
good agreement with the simulated singular vector. Thus, theerm 2R,| has a peak at 1.52 MHz. The following ternk2

. Nylon cylinder, diameter 0.35 mm
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2 07t
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041 F
"3 % *» |U)| steel 032 mm
0.3 o [U,[nylon 0.35 mm I
0 20 ' ' %0 %% 20 40 60 80 100

#nsducer nSSber transducer number

() U]
FIG. 10. Results for nylon 0.35 mnta) coefficientse,|R,| of normal modeglogarithm scalgversus frequencyb) simulated(with frequency responsand
experimental singular values, (logarithm scalgversus frequency. The experimental third singular value is above noise around 1 and 2.5 MHz; modulus of
the first singular vectofU,| (c), of the second singular vectfid,| (d) and of the third singular vectdtJ;| (e) along the array at 1.05 MHZf) comparison
of the modulus of the first singular vecty,| at 1.5 MHz, for a steel wir¢0.32 mm*) and a nylon wirg(0.35 mm:O). Curves are normalized; maxima of
the vectors are equal to 1. For a equivalent diameter, the shape difference is due to the coefficients of normal modes. The nylon vector is skeaspegithan th
one because of the predominant weight of the quadrupole.

is not negligible. The peak of the first simulated singularstill noisy, but has a reasonable shape. In Fidf)1®e com-
value at 1.52 MHz corresponds to the quadrupole dominarpare the first singular vector for ste.32 mnm and nylon
peak [Fig. 10b)]. For the two nylon cylinders, that peak (0.35 mn) at 1.5 MHz. The nylon vector is sharper than the
corresponds to the same valuekgh equal to 1.12. But, in  steel one because of the predominant weight of the quadru-
that case the peak lies in the middle of the frequency winpole. The first singular vectod, is a combination of the
dow. The difference between experimental and theoreticainonopole, the symmetrical dipole, and quadrupole. In the
peak levels is about 30%, and may be due to a dissipationase of nylon at that frequency, the quadrupole contribution
phenomenon, which is not taken into account in the theory.is dominant.

We can see in Figs. 16 and (d) that there is good
agreement between corrected and simulated values for t
first two singular vectort); andU,. The third singular value
\3 is barely above noise around 1.2 MHz. We observe in Fig.  The last experiment was carried out on a nylon cylinder
10(e) that the third singular vectdiUs| after correction is  of diameter 0.46 mm. We can see in Fig(dXthe coefficient

P‘E Nylon cylinder, diameter 0.46 mm
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FIG. 11. Results for nylon 0.46 mnfa) coefficientss,,|R,| of normal modeglogarithm scalgversus frequencyb) simulated(with frequency respongand
experimental singular values, (logarithm scalgversus frequency. The experimental third singular value is above noise around 1.9 MHz; modulus of the first
singular vecto U, (c), of the second singular vectpd,| (d), of the third singular vectofU;| (e) along the array at 1.9 MHz.

of normal modes. The dipole mode coefficiehRg presents

a resonance at 2 MH@r phase jumjp The quadrupole term E
2|R,| has a peak at 1.14 MHz, correspondindka equal to £,
1.12. The following term fR3| has a peak at 1.8 MHz. The <10
experimental singular values are in good agreement with

noise level

simulated onefFig. 11(b)], except for the little peaks at 1.17
and 1.74 MHz. Again, the disagreement is probably due to 107
the dissipation phenomenon, which was not taken into ac-
count in the simulation.

We can see in Figs. 14), (d), and(e) the three singular
vectorsU,, U,, andU,. There is a good agreement betweenFIG. 12. The first singular values, (n=1,2,3) for the three nylon wires

corrected and simulated values. The third singular valgie are plotted versukya. Experimental values: 0.24-mm diameter wirg,
.35-mm diameter wir€°), 0.46-mm diameter wir€x). Theoretical values:

is barely above the noise at 1.9 MHz. Figure 12 shows th . . ; . ;
. . . irst singular value(continuous ling second singular valu@ashed ling

first three smgular values,, for the three nylon WITES VEISUS  the third singular valuetdotted ling. It appears that, if the material of the
koa. There is a good agreement between experiment anglinder is known, its diameter can be deduced from the singular values.

TN
\\‘\\\- Kj theo

15 2
koa
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