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The decomposition of the time-reversal operator provides information on the scattering medium. It
has been shown@Chambers and Gautesen, J. Acoust. Soc. Am.109, 2616–2624~2001!# that a small
spherical scatterer is in general associated with four eigenvalues and eigenvectors of the
time-reversal operator. In this paper, the 2D problem of scattering by an elastic cylinder, imbedded
in water, measured by a linear array of transducers is considered. In this case, the array response
matrix has three nonzero singular values. Experimental results are obtained with linear arrays of
transducers and for wires of different diameters smaller that the wavelength. It is shown how the
singular value distribution and the singular vectors depend on the elastic velocitiescL , cT , the
densityr of each wire, and on the densityr0 and velocityc0 of the surrounding fluid. These results
offer a new perspective towards solution of the inverse problem by determining more than scattering
contrast using conventional array processing like that used in medical ultrasonic imaging. ©2005
Acoustical Society of America.@DOI: 10.1121/1.1811471#
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I. INTRODUCTION

The analysis of acoustic scattering is an important t
for object identification. It has applications among nond
structive evaluation, medical imaging, or underwater aco
tics. The DORT method is a new approach to scatter
analysis that was developed in 1994. It was derived from
theoretical analysis of acoustic time-reversal mirror~TRM!
used in the pulse echo mode. DORT is the French acron
for Décomposition de l’Ope´rateur de Retournement Temp
rel. It consists of the determination of the invariants of t
time-reversal operator~TRO!. It was applied to detection an
selective focusing through nonhomogeneous multiple tar
media.1,2 It has also been applied to nondestructi
evaluation,3 and characterization of a cylindrical she
through the analysis of the circumferential Lamb mode4

While the time-reversal mirror has been shown to be v
interesting for spatial and temporal focusing in shallo
water,5–7 the DORT method has also shown high poten
for highly resolved detection in a water waveguide.8–10 This
method applies to all type of linear waves and it appear
be interesting for electromagnetic scattering and inve
problem.11,12

a!Correspondence address: Lawrence Livermore National Laboratory,
Box 808, L-154, Livermore, CA 94551.
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For all these applications, a good understanding of

invariants of the time-reversal operator is required. So

experimental results obtained in a former study revealed

multiplicity of the invariant of the time-reversal operator fo

a rigid cylinder immersed in water.13 In the present paper, we

study these invariants for elastic cylinders theoretically a

experimentally. In Sec. II, we derive an expression for t

array response matrixK in two dimensions for the case of
linear array and an elastic cylinder in a fluid medium. T
singular value decomposition~SVD! is applied toK to de-
termine the number of singular values generated by the
inder. For the particular case of low frequency~small cylin-
der!, analytic expressions for the singular values and singu
vectors are obtained and used to interpret the acoustic s
tering mechanism that generates each eigenstate of the
reversal operator. We use the approach found in recent an
ses of time reversal for spheres.14,15 We will develop the
theory for a discrete array at a single frequencyv and then
give the final results. In Sec. III, experimental results for th
steel and nylon cylinders are described. It is shown that
analysis of singular values and singular vectors of the tra
fer matrixK offers the possibility to characterize cylinders
subwavelength diameter.

O.
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II. THEORY

A. Reduced array response matrix for an isotropic
scatterer

First of all, an array ofN transmit–receive transduce
insonifying a static scattering medium is considered as a
ear, time-invariant system ofN inputs andN outputs. It is
characterized at each frequencyv by the array response ma
trix K ~v!. The matrixK* ~v!K ~v! is called the time-reversa
operator,1 TRO ~the notation* means complex conjugate!. Its
eigenvectors can be interpreted as invariants of the ti
reversal process.

As discussed in several papers,16 if the scattering me-
dium contains a single isotropic scatterer, the array respo
matrix is easily written as the product of three elements:

~i! a propagation vector of sizeN31, written H, that
describes the transmission and the propagation f
the N transducers to the scatterer. The coefficientHi

of the vector corresponds to the Fourier transform
the impulse response from transducer numberi to the
scatterer.

~ii ! a scattering coefficientc, which corresponds to the
reflectivity of the scatterer.

~iii ! a backpropagation vector which istH due to the reci-
procity principle. The notationt is used for the trans
pose operation.

The array response matrix is then

K5Hc tH. ~1!

We see that in the case of a single isotropic scatte
things are very simple: the expression above provides
rectly the singular value decomposition~SVD! of K . In this
particular case, there is one nonzero singular valuec, and one
singular vectorH.

We now introduce a reduced array response matrix
will be used in the following analysis. Assumingk0F@1,
whereF is the distance between the scatterer and the a
andk0 is the wave number in water~Fig. 1!, we can use the
far-field form ~large argument! of the propagation Green’
function in two dimensions in the expression for eleme
numberi of the propagation vector

FIG. 1. Geometry of the experiment:F is the distance between the elast
cylinder and the array. The cylinder is perpendicular to the plane inson
by theN-elements array.
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Hi~v!5A 2

ipk0

eik0r i

Ar i

. ~2!

For that case, the 2D cylindrical Green’s function is the Ha
kel function. Note thatr i is the distance from the scatterer
the transducer numberi. Each element of the array respon
matrix is then

Ki j ~v!5p0

2

ipk0

eik0r i

Ar i

eik0r j

Ar j

c, ~3!

wherep0 is the amplitude of the pressure emitted by a tra
ducer. We introduce the matrix of the phase termsT. It con-
tains theN phase elementeik0r i corresponding to the propa
gation between the transducer numberi and the scatterer, i.e.
a diagonal coefficient isTii 5eik0r i. T is unitary and diago-
nal. It is possible to write the array response matrix as

K ~v!5p0

2

ipk0
TK reduced~v!T. ~4!

An element of the reduced array response matrix is t
written

Ki j
reduced~v!5

c

Ar i r j

. ~5!

In the case of a single isotropic scatterer, this redu
matrix is real and symmetrical. Thus, the singular value
composition is reduced to diagonalization. We shall see
this reduction is always possible in the far-field approxim
tion and we shall use it for simplicity in the case of anis
tropic scatterer.

B. Reduced array response matrix for an elastic
cylinder

The pressure field scattered by an elastic cylinder, e
for a small cylinder, is not isotropic. In far-field condition
the field scattered from a plane wave is given, in polar co
dinatesr andu, by a sum of partial waves18,19

Psca~r ,u!5p0A 2

ipk0r
eik0r (

n50

`

enRn cos~nu!, ~6!

whereRn are the scattering coefficients,u is the angle at the
origin between the field point and direction of the incide
plane wave, andr is the distance between the scatterer a
the field point ~Fig. 1!. The Neumann coefficients aree0

51 anden52 for n>1. As before, we have used the fa
field form of the field, replacing the Hankel functions wit
their asymptotic expressions for large arguments. The s
tering coefficients are the coefficients found in Flaxet al.18

These are functions of the physical parameters of the cy
ders, densityr1 , radiusa, transverse and longitudinal wav
speeds (cT andcL), and the physicals parameters of the flu
surrounding, velocityc0 and densityr0 .

Each term of the sum corresponds to a partial wave
normal mode. The first termR0 produces a monopole wav
that is circularly symmetric. The second term 2R1 cos(u)
produces a dipole partial wave, the third term 2R2 cos(2u) a
quadrupole partial wave, and so on. Thus, the values of

d
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FIG. 2. Normal modes in polar coordinates and their projections onto the array: The normal modess, x, andy are orthogonal, whereas the projectionsws, wx,
andwy are not. The projected modesws andwx are symmetric around thex axis, whereaswy is antisymmetric.
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Rn coefficients determine the shape of the scattered field.
h denote the position along the axis of the array, withh i the
position of transducer numberi. The position vectors for
transducersi andj arer i5@h i

2F# andr j5@h j

2F#, with the angle

between them given by cos(wij)5(r i "r j )/r i r j5(F2

1h ih j )/r i r j . If the radiusa of the cylinder is much smalle
than the distance to the array (a!F), the field emitted from
transduceri is a plane wave at the cylinder, and the scatte
field received by transducerj will be given by Eq.~6! with
u5p2w i j . Using cos(nu)5(21)n cos(nwij), the reduced ar-
ray response matrix for the case of a single elastic scatte
cylinder can be written as

Ki j
reduced~v!5

1

Ar i r j
(
n50

`

enRn~21!n cos~nw i j !. ~7!

We notice that the expressions for the reduced array
sponse matrices for isotropic or anisotropic scatterers
similar, in far-field conditions. We introduce the scatteri
coefficientCi j equal to the sum(n50

` enRn(21)n cos(nwij),
whereCi j is an element of theN3N matrix C. Thus, the
general form for an element of the reduced array respo
matrix is

Ki j
reduced~v!5

Ci j

Ar i r j

. ~8!

Note that the matrixC reduces to a scalarc in the case of an
isotropic scatterer. It is independent of the positions of
transducersi andj with respect to the scatterer andK reducedis
rank 1. For the elastic cylinder,C is a matrix defined by the
infinite sum. The rank ofK reduceddepends on the number o
significantRn . We shall see that if onlyR0 andR1 are sig-
nificant,K reducedis rank 3.
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C. Reduced array response matrix for a small elastic
cylinder

Though the sum is formally over an infinite number
terms, the coefficients forn@k0a are exponentially smal
and the sum can be truncated with little error.15 For the case
of a thin cylinder (k0a!1,kLa!1,kL5v/cL), the scattering
for n>2 can be ignored18 and the scattered pressure b
comes

Psca~r j ,w i j !5p0A 2

ipk0r j
eik0r j S R022R1 cosw i j

1oS 2p
a

l D D . ~9!

The two first scattering coefficients are20

R05 i
pk0

2a2

4 S r0c0
2

r1~cL
22cT

2!
21D 5 i

pk0
2a2

4 S B0

l1m
21D ,

~10!

R152 i
pk0

2a2

4

r12r0

r11r0
. ~11!

In this approximation an element of the reduced scatter
matrix becomes~omitting the term2 i @pk0

2a2/4#)

Ki j
reduced~v!5

1

Ar i r j
S a1b

F21h ih j

r i r j
D . ~12!

The constantsa andb are20

a5S 12
B0

l1m D , b52
r12r0

r11r0
, ~13!
791zio et al.: Cylinder characterization with time reversal operator
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FIG. 3. The three singular vectorsU1, U2, andU3 are calculated analytically with the small cylinder approximation along the array~h coordinate!. Their
modulus are ploted for different distancesF between the scatterer and the array: 30 mm~--!, 50 mm~s!, and 80 mm~* !. The variations with the distance ar
weak.
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wherel andm are the Lame´ elastic constants of the cylinde
and B0 is the bulk modulus~inverse of compressibility! of
the fluid. For a 2D-elastic medium, the bulk modulus isB
5l1m @B5l1(2/3)m for a 3D-elastic medium#. The term
proportional toa represents scattering by the compressibi
contrast. It produces a monopolar radiation pattern tha
circularly symmetric. The term proportional tob represents
scattering by the density contrast, which produces dipo
radiation pattern~Fig. 2!.

D. Analysis of reduced array response matrix for a
small elastic cylinder

An element of the matrix can be rewritten as the sum
three separable terms

Ki j
reduced5a

1

Ar i

1

Ar j

1b
F

r i
3/2

F

r j
3/2

1b
h i

r i
3/2

h j

r j
3/2

. ~14!

Let ws, wx, andwy be the three vectors which correspond
the projection of the normal modes on the TRM~Fig. 2!. The
elements numberi of these vectors, corresponding to th
transducer numberi, are

ws~h i !5
1

r i
1/2

, wx~h i !5
F

r i
3/2

, wy~h i !5
h i

r i
3/2

. ~15!

We see thatK reduced5aws
tws1bwx

twx1bwy
twy, is the

sum of threeN3N matrices of rank 1 which implies that th
rank of K reducedis 3 as long asa andb are nonzero.

Whatever the emitted signal, the measurement of
scattered field is a linear combination of these three proje
vectors. The array response matrix can then be express
this new basis and the singular vectorsUi ( i51,2,3) are lin-
ear combinations of thewn ~n andm are used for the indexe
s, x, or y!, Ui5xsws1xxwx1xywy. We denoteWnm the sca-
lar product between the vectorswn and wm: Wnm

5^wnuwm&5( i 51
N wn( i )wm( i )5 twn"wm. In general, the

SVD of K reduces to solving for the eigenvalues and eig
vectors of a 333 matrix, expressed in the new basis of t
wn

F aWss aWsx aWsy

bWsx bWxx bWxy

bWsy bWxy bWyy

G F xs

xx

xy

G5lF xs

xx

xy

G . ~16!
792 J. Acoust. Soc. Am., Vol. 117, No. 2, February 2005
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If the position of the cylinder is symmetrical with respect
the array, the matrix simplifies to

F aWss aWsx 0

bWsx bWxx 0

0 0 bWyy

G F xs

xx

xy

G5lF xs

xx

xy

G . ~17!

Thus, the reduced array response matrix for a thin c
inder may have as many as three distinguishable sing
values and singular vectors. If the density contrastb is zero,
there is only one singular value. The interpretation of t

FIG. 4. Coefficients of normal modesenRn ~no dimension! versusk0a:
comparison between the exact value and the approximation for small ob
~only the two first coefficients are taken into account!. The approximation is
valid for k0a less than 0.5. In the case of steel~a!, the two coefficientsR0

and 2R1 are of the same order, whereas, in the case of nylon~b!, the second
coefficient 2R1 is small because of the small density contrast.
Minonzio et al.: Cylinder characterization with time reversal operator
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singular values is analogous to that for the sphere studie
Chambers and Gautesen.14 Three singular values are possib
because there are three independent scattering mode
monopole mode from the compressibility contrast, and t
dipole modes from the density contrast. The three sing
states of the array response matrix represent three orthog
combinations of the projected scattering modes.

If the aperture of the array is symmetric around thex
axis, the matrix elementsWsy andWxy are zero, and simple
analytic expressions can be found for the singular values

l1,35
1

2
~aWss1bWxx!

3S 16A124ab
WssWxx2Wsx

2

~aWss1bWxx!
2D , ~18!

l25bWyy . ~19!

SinceWssWxx>Wsx
2 by the Schwarz inequality, the quantit

under the radical is always positive14 and thus, the singula
values are real, as required. For our applications (WssWxx

2Wsx
2 )/(aWss1bWxx)

2!1, and we can approximate th
singular value numbers 1 and 3 as

l1
app'aWss1bWxx , ~20!

l3
app'ab

WssWxx2Wsx
2

aWss1bWxx
. ~21!

Note that the singular values are ordered:l1>l2>l3 . The
singular vectors can be written in terms of thewn

U1,35aWsxws1~l1,32aWss!wx, U25wy. ~22!

FIG. 5. CoefficientsenRn ~no dimension! of the normal modes~logarithm
scale! for a steel cylinder of diameter 0.2 mm versus frequency between
and 3 MHz. The two first coefficientsR0 ~monopole! and 2R1 ~dipole! are
predominant in the frequency range. The third one, 2R2 ~quadrupole!, is
small and non-negligible for frequencies above 1 MHz. The small ob
approximation is not valid for that case.

TABLE I. Physical parameters of steel and nylon.

r ~g•cm23! cL (mm•ms21) cT (mm•ms21) a b b/a

Steel 7.8 5.75 3 0.99 1.55 1.5
Nylon 1.15 2.5 1.05 0.62 0.14 0.23
Water 1 1.48
J. Acoust. Soc. Am., Vol. 117, No. 2, February 2005 Minon
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The two singular vectorsU1 and U3 are symmetric
around thex axis, while U2 is antisymmetric. Thus, for a
symmetric experiment, one singular state represents a di
oriented parallel to the array, while the other two are
thogonal combinations of the monopole and a dipole o
ented normal to the array~Fig. 3!.

III. EXPERIMENTAL RESULTS

Experiments have been carried out in a water tank
two materials, steel and nylon, and for different cylinders

.5

t

FIG. 6. Singular valuesln ~logarithm scale! for a steel cylinder of diameter
0.2 mm versus frequency:~a! theoretical, the first singular valuel1 varies
slowly in the frequency range. The ratiol2 /l1 lies between 1% and 3%;~b!
experimental: the first singular valuel1 is clearly measured. The secon
one,l2 , and the noise are of same order~about 1%!.

FIG. 7. Modulus of the first singular vectoruU1u along the array at 1.5 MHz.
The difference between theory~continuous line! and experiment~* ! is due
to the reception level dispersion of the array elements.
793zio et al.: Cylinder characterization with time reversal operator
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FIG. 8. Results for steel 0.32 mm:~a! coefficients«nuRnu of normal modes~logarithm scale! versus frequency. The five first coefficients are taken into acco
in the simulation;~b! simulated~with frequency response! and experimental singular valuesln ~logarithm scale! versus frequency. The experimental seco
singular value is visible between 1.7 and 2.5 MHz; modulus of the first singular vectoruU1u ~c! and of the second singular vectoruU2u ~d! along the array at
2 MHz: theoretical~continuous line!, experimental~* !, and reception sensitivity corrected values~s!.
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diameters between 0.2 and 0.5 mm. The transducer array
96 elements with central frequency 1.5 MHz, and the ar
pitch is 0.5 mm. For each experiment, the distanceF be-
tween the wire and the array is 50 mm. As the cylind
diameters are less than half a wavelength, they have a
scattering power. In order to get a reasonable signal to n
ratio we used the Hadamard–Walsh basis to acquire the a
response matrix as explained by Fole´got et al.10 This emis-
sion basis is very convenient and, in principle, it increa
the signal level by a factor ofAN, N being the number of
elements. We also used chirps in order to use the wh
bandwidth of the transducers~0.9–2.5 MHz!.

The two first coefficients«nRn for steel and for nylon
are shown in Fig. 4. The exact value and the small ob
approximation ofenRn are compared fork0a under 0.8. The
expression of approximate coefficients are

uR0uapp5
pk0

2a2

4
a, 2uR1uapp5

pk0
2a2

2
b. ~23!

The above parabolic approximation@terms are proportiona
to (k0a)2] is valid for k0a lower than 0.5. For bigger value
of k0a the deviation increases. We also remark that in
case of nylon, theb coefficient is small because of the sma
density contrast~Table I!. The frequency band of our syste
lies between 0.9 and 2.5 MHz, which corresponds to
,k0a,1.9. Thus, for the simulations of singular values a
vectors, the values ofenRn are calculated with the exac
794 J. Acoust. Soc. Am., Vol. 117, No. 2, February 2005
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formula given by Flaxet al.18 The physical parameters of th
cylinders are given in Table I. For comparison to experime
tal results, the simulation also takes into account the
quency response on transmit and receive and the direct
of each transducer element. The directivity has been m
sured with a needle probe, and taken into account in
simulations.

A. Steel cylinder, diameter 0.2 mm, a quasi-isotropic
scatterer

The first experiment was carried out on the thinnest s
cylinder ~diameter 0.2 mm!. The coefficients of the norma
modes«nRn for such a cylinder are shown~Fig. 5!. The two
first coefficientsR0 and 2R1 are predominant in the fre
quency range. The third one, 2R2 , is small and the others ar
negligible. We cannot consider that wire as a small obj
because of the weight of the quadrupole term 2R2 . In Fig.
6~a!, we can see the theoretical singular values calculated
the experimental geometry. The first singular valuel1 is pre-
dominant, the second onel2 is very small, and the others ar
negligible. The ratiol2 /l1 lies between 1% and 3%, in th
frequency range@Fig. 6~a!#. In the experimental results th
second singular value represents the noise level and we
see in Fig. 6~b! that the noise level is about 3% at the cent
frequency. So, it is impossible to measure properly the s
ond singular vector.

As the theoretical first singular value varies slowly in t
Minonzio et al.: Cylinder characterization with time reversal operator



FIG. 9. Results for nylon 0.24 mm:~a! coefficients«nuRnu of normal modes~logarithm scale! versus frequency;~b! simulated~with frequency response! and
experimental singular valuesln ~logarithm scale! versus frequency; modulus of the first singular vectoruU1u ~c! and of the second singular vectoruU2u ~d!
along the array at 2.1 MHz.
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frequency range, we choose to use this experiment to c
brate our system. The ratio between experimental and th
retical first singular values is used to characterize the
quency response of the system. For the measurement o
other cylinders, the theoretical singular values are multipl
by this ratio to compare them to the experimental ones.
also correct for element sensitivity variations in the array.
we can see for the amplitude of the first singular vectorU1
~Fig. 7!, the reception sensitivity varies from one transdu
to another. At each frequency, we determine a correction
tor from the experimental and theoretical first singular v
tors. For the other cylinders, this correction factor was
plied frequency by frequency to the array response ma
before computing the SVD.

B. Steel cylinder, diameter 0.32 mm

The second measurement has been carried out on a
cylinder of diameter 0.32 mm. As we can see in Fig. 8~a!, we
cannot consider the object as a small scatterer because o
weight of the quadrupole term 2R2 . The good agreemen
between the experimental and simulated first singular va
l1 shows that the frequency response obtained with
smaller steel cylinder is acceptable@Fig. 8~b!#. Figure 8~c!
shows the first singular vectorU1. The experimental data~* !
show the same reception sensitivity variation as the cas
the first steel cylinder~Fig. 7!. The corrected data~0! are in
good agreement with the simulated singular vector. Thus,
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reception correction factor is also acceptable. Figure 8~b!
shows that the second experimental singular valuel2 is gen-
erally below the noise level. However, between 1.7 and 2
it is clearly above noise, so that we can see the second
perimental singular vectorU2 at 2 MHz @Fig. 8~d!#.

C. Nylon cylinder, diameter 0.24 mm

The next experiment was carried out on a nylon cylind
of diameter 0.24 mm. We can see in Fig. 9~a! the coefficient
of normal modes. The dipole mode coefficient 2uR1u is very
small, due to the small density contrast. The quadrupole t
2uR2u has a peak at 2.1 MHz. The peak of the first simula
singular value at 2.1 MHz corresponds to a combination
the monopole, the symmetrical dipole, and quadrupole,
quadrupole contribution being dominant@Fig. 9~b!#. The sec-
ond experimental singular valuel2 is clearly above the noise
level between 1.2 and 2.5 MHz. So, it is possible to calcul
the first two singular vectorsU1 andU2 @Figs. 9~c! and~d!#.
The reception correction is as efficient as for the st
0.32-mm cylinder.

D. Nylon cylinder, diameter 0.35 mm

The next experiment was carried out on a nylon cylind
of diameter 0.35 mm. We can see in Fig. 10~a! the coefficient
of normal modes. The dipole mode coefficient 2uR1u is still
very small, due to the small density contrast. The quadrup
term 2uR2u has a peak at 1.52 MHz. The following term 2R3
795zio et al.: Cylinder characterization with time reversal operator
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FIG. 10. Results for nylon 0.35 mm:~a! coefficients«nuRnu of normal modes~logarithm scale! versus frequency;~b! simulated~with frequency response! and
experimental singular valuesln ~logarithm scale! versus frequency. The experimental third singular value is above noise around 1 and 2.5 MHz; mod
the first singular vectoruU1u ~c!, of the second singular vectoruU2u ~d! and of the third singular vectoruU3u ~e! along the array at 1.05 MHz;~f! comparison
of the modulus of the first singular vectoruU1u at 1.5 MHz, for a steel wire~0.32 mm:* ! and a nylon wire~0.35 mm:s!. Curves are normalized; maxima o
the vectors are equal to 1. For a equivalent diameter, the shape difference is due to the coefficients of normal modes. The nylon vector is sharper the steel
one because of the predominant weight of the quadrupole.
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is not negligible. The peak of the first simulated singu
value at 1.52 MHz corresponds to the quadrupole domin
peak @Fig. 10~b!#. For the two nylon cylinders, that pea
corresponds to the same value ofk0a equal to 1.12. But, in
that case the peak lies in the middle of the frequency w
dow. The difference between experimental and theoret
peak levels is about 30%, and may be due to a dissipa
phenomenon, which is not taken into account in the theo

We can see in Figs. 10~c! and ~d! that there is good
agreement between corrected and simulated values for
first two singular vectorsU1 andU2. The third singular value
l3 is barely above noise around 1.2 MHz. We observe in F
10~e! that the third singular vectoruU3u after correction is
796 J. Acoust. Soc. Am., Vol. 117, No. 2, February 2005
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still noisy, but has a reasonable shape. In Fig. 10~f!, we com-
pare the first singular vector for steel~0.32 mm! and nylon
~0.35 mm! at 1.5 MHz. The nylon vector is sharper than t
steel one because of the predominant weight of the qua
pole. The first singular vectorU1 is a combination of the
monopole, the symmetrical dipole, and quadrupole. In
case of nylon at that frequency, the quadrupole contribut
is dominant.

E. Nylon cylinder, diameter 0.46 mm

The last experiment was carried out on a nylon cylind
of diameter 0.46 mm. We can see in Fig. 11~a! the coefficient
Minonzio et al.: Cylinder characterization with time reversal operator
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FIG. 11. Results for nylon 0.46 mm:~a! coefficients«nuRnu of normal modes~logarithm scale! versus frequency;~b! simulated~with frequency response! and
experimental singular valuesln ~logarithm scale! versus frequency. The experimental third singular value is above noise around 1.9 MHz; modulus of t
singular vectoruU1u ~c!, of the second singular vectoruU2u ~d!, of the third singular vectoruU3u ~e! along the array at 1.9 MHz.
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of normal modes. The dipole mode coefficient 2uR1u presents
a resonance at 2 MHz~p phase jump!. The quadrupole term
2uR2u has a peak at 1.14 MHz, corresponding tok0a equal to
1.12. The following term 2uR3u has a peak at 1.8 MHz. Th
experimental singular values are in good agreement w
simulated ones@Fig. 11~b!#, except for the little peaks at 1.1
and 1.74 MHz. Again, the disagreement is probably due
the dissipation phenomenon, which was not taken into
count in the simulation.

We can see in Figs. 11~c!, ~d!, and~e! the three singular
vectorsU1, U2, andU3. There is a good agreement betwe
corrected and simulated values. The third singular valuel3

is barely above the noise at 1.9 MHz. Figure 12 shows
first three singular valuesln for the three nylon wires versu
k0a. There is a good agreement between experiment
J. Acoust. Soc. Am., Vol. 117, No. 2, February 2005 Minon
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FIG. 12. The first singular valuesln (n51,2,3) for the three nylon wires
are plotted versusk0a. Experimental values: 0.24-mm diameter wire~•!,
0.35-mm diameter wire~°!, 0.46-mm diameter wire~3!. Theoretical values:
first singular value~continuous line!, second singular value~dashed line!,
the third singular values~dotted line!. It appears that, if the material of the
cylinder is known, its diameter can be deduced from the singular value
797zio et al.: Cylinder characterization with time reversal operator
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simulation for the three wires. As the noise level is about 1
we can see that the second experimental singular valu
clearly measured fork0a above 1, and the third one is clear
measured fork0a above 1.8. Furthermore, it appears that
the material of the cylinder is known, its diameter can
deduced from the singular values.

IV. CONCLUSION

Initially, the DORT method was used assuming a on
to-one correspondence between point-like scatterers and
gular vectors of the array response matrix. In Sec. II,
have shown that a subwavelength elastic cylinder is ass
ated with at least three singular vectors and singular val
The singular vectors are a linear combination of norm
modes projected onto the array. These combinations
given analytically in the small cylinder limit: the three sin
gular vectors are a combination of the cylindrical mode a
two dipolar modes.

In Sec. III, this paper presents the first experimental
sults showing the multiple singular values for subwavelen
scatterers. Five different scatterers were compared at
quencies between 0.9–2.5 MHz: a 0.2- and a 0.32-mm s
cylinder and 0.24-, 0.35-, and 0.46-mm nylon cylinders. E
perimental results are in good agreement with theory w
several normal modes were taken into account. Different
haviors of nylon and steel are clearly shown. For the s
cylinders, the second eigenvalue was much smaller than
first and contributed little to the scattering. For the nyl
cylinders, the second eigenvalue was significant but was g
erated by a combination of the monopole and quadrup
terms. The dipole term was negligible since the density c
trast was small. These results show how the material pro
ties of the cylinder affect the decomposition of the TR
This opens a new approach to target characterization and
inverse problem based on the analysis of the TRO.
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