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The D.O.R.T. method~in French, De´composition de l’Ope´rateur de Retournement Temporel! is a
scattering analysis technique using arrays of transducers. The method was shown to be effective in
detecting and focusing on pointlike scatterers in Pradaet al. @J. Acoust Soc. Am.99, 2067–2076
~1996!#. Here the D.O.R.T. method is extended to other geometries, applying it to an air-filled
cylindrical shell embedded in water. It is shown that the diagonalization of the time-reversal
operator permits the various elastic components of the scattered field to be extracted. For the
considered cylinder, these components are mainly three circumferential waves (A0, A1, andS0
Lamb modes!. Each Lamb mode is shown to correspond to an invariant of the time-reversal
operator. The dispersion curves of these waves are calculated from the invariants. In particular, the
cutoff frequency of theA1 mode is found and provides the thickness of the shell. Finally, resonance
frequencies of the shell are deduced from the frequency dependence of the eigenvalues of the
time-reversal operator. ©1998 Acoustical Society of America.@S0001-4966~98!03408-0#

PACS numbers: 43.30.Jx, 43.40.Rj, 43.60.Pt@DLB#
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INTRODUCTION

Detection and identification of a scattering object by
mote sensing techniques is an important problem in a var
of applications. Among them, the reconstruction of inter
flaws in ultrasonic nondestructive testing and target clas
cation in underwater acoustics have been widely studied.
scattering of acoustic waves by an elastic body that has
mensions greater than a wavelength is a complex phen
enon. The incident wave is converted into several modes
propagate in and around the object. These waves radiate
the surrounding medium and contribute to the scattered fi
In order to understand the scattering process and relate
the characteristics of the scatterer, it is necessary to iden
and separate the various contributions to the signal. In s
cases, the modes propagate at different velocities so that
contribution to the signals occur at different times, and th
can then be distinguished with time-domain techniques us
highly resolved broadband pulses. However, signals fr
various modes may overlap in time, rendering their ident
cation difficult. This is the case for the problem that w
examine in this paper, the scattering of ultrasound from
air-filled cylindrical shell immersed in water. The goal
this paper is to show how the construction of the invaria
of the time-reversal process permits the separation and i
tification of the modes which contribute to the scattered fie
The construction of these invariants is an essential part of
D.O.R.T. method~in French, De´composition de l’Ope´rateur
de Retournement Temporel!.

Methods for identifying and separating the vario
modes that contribute to the signal backscattered from a
lindrical shell have been the subject of many theoreti
works.1,2 Experimental methods such as ‘‘The Method
Isolation and Identification of Resonance’’3 and the short
801 J. Acoust. Soc. Am. 104 (2), Pt. 1, August 1998 0001-4966/98
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pulse methods4,5 have proven to be useful. In these metho
the phase velocity of the wave is deduced from the vib
tional modes of the shell at its resonance frequencies. Op
remote sensing techniques have also been used to gen
and detect circumferential waves. These techniques have
great advantage of providing a local measurement of
field.6 More recently, this problem was studied with tim
reversal mirrors.7,8

Acoustic time-reversal mirrors have been widely us
since they were first described in 1989.9–15 A time-reversal
mirror consists of an array of transmit/receive transduce
Each element of the array is connected to its own electro
circuitry: a receiving amplifier, an A/D converter, storag
memory, and a programmable transmitter. All the chann
are processed in parallel for the transmission and recep
of the ultrasonic waves. Such a system is able to transmi
ultrasonic wave, to detect the backscattered wave, and
to synthesize a time-reversed version of this wave. This p
cess is performed in less than 1 ms, which can be consid
as real time for most scattering media. The time-rever
mirror converts a divergent wave into a convergent one. O
consequence is that it can be used to focus on a reflec
target through an inhomogeneous medium. If the medi
contains several scatterers, the process can be iterated
der to focus on the most reflective one.9,16

As shown by Thomas,7 this system can also be used
study scattering by an elastic shell. He has investigated
two-dimensional~2-D! problem of a thin, air-filled cylindri-
cal shell with dimensionsa510 mm, b/a50.95, and
ka'125 under normal incidence~a is the outer radii,b the
inner radii, andk the wave number in the loading medium!.
Two waves propagating around the shell were detected:
first can be considered as aS0 Lamb wave and the second a
an A0 Lamb wave. As the contributions of these circumfe
801/104(2)/801/7/$15.00 © 1998 Acoustical Society of America
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ential waves occur at different times, they could be selec
temporally with a proper time window and then time r
versed. This process allowed each wave to be gener
separately. The points at which the incident wave conv
into circumferential waves were determined and the ph
velocity of each wave was deduced from the distance
tween these points. This method is limited to the case
which circumferential waves do not interfere and thus can
time resolved. In the case considered by Thomas, the
quency range included the cutoff frequency of the sec
antisymmetrical Lamb waveA1 . This highly dispersive
wave interfers withA0 and S0 and could not easily be dis
tinguished in the scattered signals. As we shall see now,
D.O.R.T. method solves this problem and allows one to tr
all three modes simultaneously.

The D.O.R.T. method was derived from the theoreti
study of iterative time-reversal mirrors,16 and applies to de-
tection and focusing with large arrays of transducers. T
method shares some of the principles used in eigenve
decomposition techniques for passive source detection17,18

However, these last techniques assume statistically unco
lated sources and requires averaging of the measured
while the D.O.R.T. is active and deterministic.

The D.O.R.T. method consists of determining the inva
ants of the time reversal process. The calculation is p
formed offline after the measurement of the response fu
tions of the array in the presence of the scattering medium
is not a real-time procedure; however, it can still be appl
in many experimental situations. Its practical advantage
that it does not require the complex programmable emit
of the time-reversal mirrors. As already mentioned, the m
interest is that it allows one to separate scattered waves
overlap in time and cannot be separated by time window
This method was applied to selective focusing in media c
taining several targets.19,20 It was shown that forN pointlike
and well-resolved targets of different reflectivities, the nu
ber of independent invariants is equal toN. Furthermore,
each invariant provides a phase and amplitude law to
applied to the transducer array in order to focus selectiv
on one of the targets.

In the first part, we review the principles of the D.O.R.
method. In the second part, the D.O.R.T. method is app
to the detection of Lamb waves on a thin cylindrical shell
is shown that although the signals due to the various La
waves overlap in time, they can nonetheless be separ
into the contribution from individual modes. The dispersi
curves and the resonance spectrum of the various mode
determined experimentally.

I. PRINCIPLE OF THE D.O.R.T. METHOD

The D.O.R.T. method relies on a matrix formalism d
scribing the scattering experiment. For a given transdu
array and a given scattering medium, the time-reversal p
cess is characterized in the frequency domain by a com
matrix. This matrix is obtained from the interelement im
pulse response functions which can be measured straigh
wardly. As shown further, this matrix is Hermitian and i
eigenvectors are independent invariants of the time-reve
process. These invariants are related to the structure o
802 J. Acoust. Soc. Am., Vol. 104, No. 2, Pt. 1, August 1998 C
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scattering medium and they carry valuable information ab
this medium. The D.O.R.T. method consists of the deter
nation and analysis of these eigenvectors.

A. The transfer matrix and the time-reversal operator

An array ofN transducers placed in front of a time in
variant scattering medium is considered as a linear and
variant system ofN inputs andN outputs. TheN received
signalsr l(t), 1< l<N depend on theN transmitted signals
em(t), 1<m<N through the linear relation

r l~ t !5 (
m51

N

klm~ t ! ^

t
em~ t !, 1< l<N. ~1!

Here,klm(t) is the impulse response function from the e
mentm to the elementl. These interelement response fun
tions take into account all the propagative effects through
medium under investigation as well as the acousto-elec
responses of the two elements. In the Fourier domain, Eq~1!
simplifies using a matrix formula:

R~v!5K ~v!E~v!, ~2!

whereE(v) andR(v) are the vectors of the Fourier tran
forms of the transmitted and received signals.K ~v! is the
N3N transfer matrix of the system.

The matrix relation between transmitted and receiv
signals leads to an expression for the transmitted signal a
two successive time-reversal operations. LetE0 be the initial
input vector signal. The output signal is thenR05KE0.

The time-reversal operation is equivalent to phase c
jugation in the frequency domain, so that the new transmit
signal E1 is the phase conjugate of the previous receiv
signalR0

E15K* E0* .

The new received signal is then

R15KE15~K* KE0!* .

K*K is called the time-reversal operator.
As a consequence of the well-known reciprocity the

rem the response from element numberm to element number
l is equal to the response from element numberl to element
numberm, so that the matrixK is symmetrical. The symme
try of K implies thatK*K is Hermitian positive. In conse
quence, it can be diagonalized in an orthogonal basis and
real positive eigenvalues. An eigenvector corresponds to
invariant of the time-reversal operation. Two invariants c
respond to contributions to the scattered field that are in
pendent solutions of the wave equation. Each of these wa
can exist alone even though they are usually superimpose
the experiments.

B. The D.O.R.T. method

The first step of the D.O.R.T. procedure is the measu
ment of the interelement impulse responses of the syst
This measurement can be done with any multiplexed sys
by N3N transmit–receive operations. The components
the transfer matrixK are obtained by a Fourier transform o
each signal. The second step is the diagonalization of
802. Prada and M. Fink: Separation of acoustic scattered signals
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time-reversal operatorK*K at a chosen frequency. The e
genvalues distribution contains interesting information
the scattering medium. In the case of pointlike scatterers,
number of significant eigenvalues is exactly the number
scatterers provided they are resolved by the system. M
generally, this number corresponds to the number of in
pendent secondary sources in the medium.16,19,20 The third
step is to backpropagate each eigenvector. This can be
either numerically or experimentally. In our case, the pro
gating medium is homogeneous and the numerical ba
propagation can be computed.

C. Experiment with two scatterers in a symmetrical
geometry

The results presented in Sec. II can be illuminated by
results obtained in the simple case of two identical pointl
scatterers in a symmetrical geometry. The calculation of
eigenvectors for two pointlike scatterers was presented
recent paper.9 In the case of two identical scatterers plac
symmetrically with respect to the array of transducers,
expression of the eigenvectors simplifies. LetHil (v) be the
response of scatterer numberi ( i 51,2) to transducer numbe
l (1< l<N). We have shown that the two eigenvectors a

V15~H11* 1H21* ,...,H1N* 1H2N* !

and

V25~H11* 2H21* ,...,H1N* 2H2N* !.

They correspond to the phase conjugate of the sum and
ference of the responses of each scatterer to the array.

In the experiment, a linear array of 128 transduc
spaced 0.417 mm and of central frequency 3 MHz was u
The target was made of two wires placed perpendicula
the array in a symmetrical geometry at the depth of 92 m
and separated by 2 mm~Fig. 1!. The time-reversal operato
is measured for this configuration and its diagonalization a
MHz reveals two main eigenvectorsV1 andV2 . The modu-
lus of the components of those two vectors~Fig. 2! corre-
spond to the interference pattern of two sources oscillatin
phase (V1) and opposite phase (V2). The numerical back-
propagation ofV1 andV2 at the depth of the wires confirm
this interpretation@Fig. 3~a! and ~b!#: the field is focused a
the position of the wires, where the phase of the field is eq
for V1 and oppositeV2 .

FIG. 1. Experimental setup for two symmetrical wires.
803 J. Acoust. Soc. Am., Vol. 104, No. 2, Pt. 1, August 1998 C
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II. APPLICATION TO LAMB WAVES

A. Circumferential waves and time reversal

A circumferential wave propagating in a thin hollo
cylinder (b/a50.95) can be considered a Lamb wave. It
generated at a given angle of incidenceu with respect to the
normal to the surface. According to Snell’s law, this ang
satisfies the relation

sin~u!5
c0

cf
,

wherec0 is the sound velocity in water andcf is the phase
velocity of the Lamb wave. While propagating around t
cylinder, it radiates into the fluid at the opposite angle w

FIG. 2. Modulus of the components of the two eigenvectors versus a
element~transducer 73 failed!.

FIG. 3. Amplitude and phase of the field produced by transmission of
two eigenvectors.
803. Prada and M. Fink: Separation of acoustic scattered signals
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respect to the normal to the surface. For a plane wave
incident directionD, two Lamb waves are generated at poin
A and B symmetrical with respect toD ~Fig. 4!. These waves
radiate from B and A back to the source. From the direct
of observationD, the radiated wave appears to be emitt
from a pair of secondary sources in A and B. The dista
dAB between generation and radiation points A and B
given by the simple relation

dAB5D
c0

cf
,

whereD is the diameter of the cylinder.
Using an array of transducers, a wave can be focuse

the surface of the cylinder~Fig. 5!. As the wave is locally
plane within the focal zone the same approach as before
be used: A Lamb wave is generated at point A if the Sne
law is satisfied. Turning around the shell, the Lamb wa
radiates from the opposite point B toward the array. Af
one time reversal, this wave radiates towards the array f
point A. Thus it appears that this wave is invariant under t
successive time-reversal processes. Consequently, it sh
be associated to an eigenvector of the time-reversal ope
K*K . In fact, due to the symmetry of the system, the foc
ing in A and B are both associated to the two same eig
vectors just like in the case of two symmetrical pointli
scatterers~Sec. I D!.

B. Experiment

The array is linear and made of 96 rectangular transd
ers. The array pitch is 0.417 mm and the central frequenc

FIG. 4. Generation and radiation of a Lamb wave on a thin hollow cylind

FIG. 5. Lamb waves are invariants of the time-reversal process: A w
focused on point A generates a Lamb wave which radiates towards the
from point B. After two successive time-reversal processes of this La
wave, the transmitted wave is similar to the first one, consequently this w
is associated to an invariant of the time-reversal process.
804 J. Acoust. Soc. Am., Vol. 104, No. 2, Pt. 1, August 1998 C
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3 MHz with 60% bandwidth. The sampling frequency
received signals is 20 MHz. The steel cylinder of diame
20 mm and thickness approximately 0.6 mm is placed p
pendicular to the array of transducer at a depth of 80 m
symmetrically with respect to the array axis~Fig. 6!. For
such cylinder and frequency range, the radiation of th
Lamb waves should be observed:A0 , S0 , andA1 as shown
on the dispersion curves~Fig. 7!.

1. Analysis of the echo

A short pulse is launched by the center element of
array. The echo of the cylinder is recorded on the 96 e
ments~Fig. 8!. The first wavefront corresponds to the stro
specular echo. The signal observed later is the elastic pa
the echo. Between 15 and 25ms, two pairs of wavefronts
with interference fringes can be distinguished. Those wa
fronts correspond to the radiation of two circumferent
waves that have turned once around the shell. The one c
ing first is identified as theS0 Lamb mode and the second a
the A0 Lamb mode. Interfering with those well-define
wavefronts is the contribution of the highly dispersiveA1

wave.

2. Separation of the modes

To separate these contributions we now apply
D.O.R.T. method. After the measurement of the 96396 in-

.

e
ray
b
ve

FIG. 6. Experimental setup.

FIG. 7. Dispersion curves of Lamb waves for a steel plate.
804. Prada and M. Fink: Separation of acoustic scattered signals
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terelement impulse responses, the whole process remain
merical. Only the elastic part of the signal is used to calcu
the time-reversal operator~between 15 and 25ms!. At 3.05
MHz, the diagonalization of the time-reversal operator h
six main eigenvalues. The modulus of the components
each eigenvector~1–6! is represented versus the array e
ment ~Fig. 9!. The interference fringes are easily observ
They are equivalent at one frequency of the interference
tern observed on the echoes. As in the experiment on
wires ~1.4!, it means that an eigenvector corresponds to
interference of two coherent point sources.

The numerical backpropagation of each eigenvector
lows us to determine the distance between the sources~Fig.
10!. Each pair of sources corresponds to one particular La
wave. At this frequency, the first and second eigenvectors
associated to the waveS0 , the third and fourth to the wave
A1 , and the fifth and sixth to the waveA0 .

The same calculation is done at several frequencies f
2.2 to 4 MHz so that the dispersion curves for the th

FIG. 8. Echo of the shell received by all the elements of the array a
transmission by the central element.

FIG. 9. Modulus of the components of the first six eigenvectors~from top to
bottom 1-2, 3-4, 5-6!.
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waves can be plotted~Fig. 11!. These curves are very clos
to the theoretical curves obtained for a steel plate of thi
ness 0.6 mm. In particular, the determination of the cut
frequency of the waveA1 allows us to tell the thickness o
the shell.

3. Resonance frequencies of the shell

The eigenvalue associated to one particular wave
pends on the frequency, it is proportional to the level of t
contribution of the wave to the scattered field. The gene
tion and reradiation coefficients of the wave are respons
for these fluctuations. Moreover, if the dynamic and durat
of the recorded signals allow us to detect several turns of
wave around the shell, a fast modulation of the correspo
ing eigenvalue is induced, the maxima corresponding to
resonance frequencies of the shell. In the experiment,
waveA0 is attenuated so fast that only one turn can be
served. But several turns ofA1 and S0 waves contribute to
the scattered field. To take into account these multiple tu
the time-reversal operator was calculated using 40ms of the
signal. Then the eigenvalues were calculated from 2.2 to
MHz. The first six eigenvalues of the time-reversal opera
are represented versus frequency~Fig. 12!. The two curves

r

FIG. 10. Pressure patterns obtained by backpropagation of eigenvecto
3, and 5.

FIG. 11. Dispersion curves:Vf(v) theory and D.O.R.T. method.
805. Prada and M. Fink: Separation of acoustic scattered signals
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l1(v) andl2(v) correspond to the waveS0 . Their maxima
occur at the resonance frequencies of the shell correspon
to this wave. The width of the peaks is mainly due to t
length of the recorded signals which allow us to see o
three turns of theS0 wave around the shell. Similar observ
tions can be done for the waveA1 . This wave is associate
to the eigenvaluesl3 andl4 around its resonance freque
cies and tol5 andl6 near its antiresonance frequencies. T
resonnance peaks are well defined although the contribu
of the waveA1 is weaker than the one ofS0 .

To confirm this interpretation, the first eigenvaluel1(v)
is compared to the spectrum of theS0 wave. This last spec
trum was obtained by a time-reversal operation as descr
in Ref. 7. A signal of 40ms was used to perform the FFT s
that only three turns around the shell could be seen.
agreement between the two curves is good~Fig. 13!.

4. Limits

One limitation of the D.O.R.T. method is that the ge
eration points of the circumferential waves need to be
solved in space. In the case of two waves of close ph
velocities, the separation may not be possible. This expl
partly the reason why the velocity of theA1 wave could not
be measured closer to the cutoff frequency. As the ph
velocity increases, the two generation points get closer
are no more resolved by the system.

FIG. 12. Eigenvalues of the time-reversal operator obtained from the el
echo of the shell.

FIG. 13. First eigenvalues of the time-reversal operator~dot line! and ex-
perimental spectrum of theS0 wave~solid line!.
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Another limit that we encountered was due to the el
tronics of the system. The programmable generators we u
were built for the time-reversal mirror and could only deliv
20 V peak to peak on each channel. To measure the inte
ment responses, a more classical generator should be us
get up to 100 V on one channel. This would provide a mu
better signal-to-noise ratio. Together with the measurem
of longer signals, it should allow a more precise determi
tion of the resonance frequencies of the shell.

III. CONCLUSION

The D.O.R.T. method is a new approach to inverse s
tering. It allows one to sort various waves contributing to t
scattered field and provides information that was previou
unavailable. The method was applied to an air-fill
stainless-steel cylindrical shell. The circumferential pseu
Lamb wavesA0 , S0 , andA1 were separated. The dispersio
curves of these waves were obtained allowing determina
of the thickness of the shell. The eigenvalues of the tim
reversal operator provided the resonance frequencies as
ated withS0 andA1 waves and close resonance frequenc
of the two different modes were distinguished. Better resu
should be obtained in the future using electronic devices
provide a higher signal-to-noise ratio for the intereleme
response signals. Furthermore, the generalization of
method to separate transmit and receive arrays of transdu
will widen the domain of the application of this metho
which should now be applied to other types of scatter
problems.
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