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Elastic plates or cylinders can support guided modes with zero group velocity (ZGV) at a nonzero
value of the wave number. Using laser-based ultrasonic techniques, we experimentally investigate
some fascinating properties of these ZGV modes: resonance and ringing effects, backward wave
propagation, interference between backward and forward modes. Then, the conditions required for
the existence of ZGV Lamb modes in isotropic plates are discussed. It is shown that these modes
appear in a range of Poisson’s ratio about the value for which the cutoff frequency curves of modes
belonging to the same family intercept, i.e., for a bulk wave velocity ratio equal to a rational number.
An interpretation of this phenomenon in terms of a strong repulsion between a pair of modes having
a different parity in the vicinity of the cutoff frequencies is given. Experiments performed with
materials of various Poisson’s ratio demonstrate that the resonance spectrum of an unloaded elastic

plate, locally excited by a laser pulse, is dominated by the ZGV Lamb modes.
© 2008 Acoustical Society of America. [DOI: 10.1121/1.2918543]
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I. INTRODUCTION

Material characterization using elastic waves is an active
domain of applied research. Ultrasonic thickness gauges,
which operate by measuring the round-trip interval for a lon-
gitudinal wave pulse to traverse the plate or wall under in-
spection, are routinely used for industrial process control.'
To be accurate, this pulse echo method requires the use of
high frequency piezoelectric transducers for launching bulk
waves having wavelength much smaller than the plate thick-
ness. It suffers limitations on rough or curved surfaces and
also due to the significant increase of attenuation with fre-
quency. Guided waves emerged as an alternative to this con-
ventional point-by-point nondestructive evaluation for fast
inspection of large structures.” In a specific approach, devel-
oped simultaneously with noncontact laser ultrasonics tech-
niques, the dispersion characteristics of some Lamb modes
are exploited for extracting the mechanical properties or the
thickness of a given plate. It needs lower frequency waves
but requires many local measurements of the normal dis-
placement along several wavelengths on the surface of the
plate.3 Consequently, this method is slow and limited to ho-
mogenous plates.

Resonance techniques have the advantage to operate at
lower frequencies (bulk wavelength of the order of plate
thickness). Among them, the “impact echo” method has been
developed for civil engineering applications.4 The vibration
excited by a point-like shock is detected close to the impact.
This local investigation technique is, however, limited to
thick structures. For ultrasonic applications, the use of
electro-magneto-acoustic  transducers allows noncontact
evaluation of metal sheets.” Like in the pulse echo technique,
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the sheet is assumed to be uniform over a large number of
thicknesses leading to a poor spatial resolution. For a long
time, engineers considered only bulk wave propagation in
the direction normal to the plate and did not pay much atten-
tion to the guided nature of elastic waves propagating in the
plate. In many cases, the role of Lamb modes is not signifi-
cant because the lateral dimensions of the source are larger
than the Lamb mode wavelength. However, in the case of
sources having dimensions of the order of the plate thick-
ness, Lamb modes are generated and must be considered.
The propagation of elastic waves in a plate or in a cy-
lindrical shell has been extensively investigated during the
last century. The dispersive properties of guided modes in a
free standing plate are well understood.®’ Fifty years ago,
Tolstoy and Usdin pointed out that for the §; Lamb mode,
group velocity vanishes at a particular point of the dispersion
curve.® They also predicted that this zero group velocity
(ZGV) point “must be associated with a sharp continuous
wave resonance and ringing effects.” However, they did not
discuss the manner to generate such a resonance. Although
the derivation of the transient response of a plate to a point
source was achieved by Weaver and Pao in 1982,° it is only
recently that the importance of zero group velocity Lamb
modes in the measurements with short distances between
excitation and detection points has been pointed out through
some numerical studies'’ and experimental works. 10
Since at a ZGV points the phase velocity and then the
wavelength remains finite, the energy can be locally trapped
in the source area without any transfer to the adjacent me-
dium. In a narrow range of frequency above this ZGV point
and for a given energy propagation direction (from the
source to the observation point), two waves can propagate
spatially with opposite phase velocities and wave vectors.
This backward propagation has been experimentally ob-
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served in elastic cylinders or plates immersed in water.' ' In
these conditions, the surrounding fluid causes a large damp-
ing of the ZGV resonance.

Using broadband, focusing air-coupled transducers, Hol-
land and Chimenti'' found that the mechanical softening due
to this resonance allows efficient transmission of airborne
sound waves through a thick plate. However, laser based
ultrasonic techniques, developed for noncontact evaluation
of materials, provide an invaluable tool for investigating
these ZGV resonances. Direct evidence of this phenomenon
was observed by Prada, Balogun, and Murray, with an am-
plitude modulated laser diode and a Michelson inter-
ferometer.'*'* By scanning the modulation frequency, they
show that the thermoelastic source is efficiently coupled to
the first symmetric (S;) Lamb mode at the ZGV point and
that the same effect can be observed for the second anti-
symmetric (A,) Lamb mode. Recently, the “ringing effect,”
predicted by Tolstoy and Usdin, has been excited by a laser
pulse and optically detected in the time domain.'> With the
same experimental setup, we demonstrated that these reso-
nances can be used for locally measuring the mechanical
properties of isotropic materials.'®

This paper is organized as the following: The nature of
ZGV Lamb modes is investigated through laser based ultra-
sonic (LBU) measurements in Sec. II. These experiments,
performed on the S;-Lamb mode, give a clear evidence of
the propagation of a backward wave. The conditions of ex-
istence of ZGV-Lamb modes versus Poisson’s ratio are es-
tablished in Sec. III. An interpretation, valid for all ZGV
modes in terms of a strong repulsion between a pair of
modes in the vicinity of the cutoff frequencies is given. In
Sec. 1V, it is shown that the local vibration spectrum of an
elastic plate is dominated by the ZGV resonances and that
these resonances can be exploited for locally measuring the
mechanical properties of isotropic materials in plates and
hollow cylinders.

Il. EXPERIMENTAL EVIDENCE OF S1 ZGV LAMB
MODE RESONANCE AND BACKWARD WAVE

Before discussing the whole set of ZGV Lamb modes,
we investigate the fascinating behavior of these particular
modes through measurements and analysis of the S} ZGV
mode generated and detected on a Duralumin plate.

Lamb modes (frequency f, wavelength \) are repre-
sented by a set of curves giving the angular frequency w of
each symmetric (S) and antisymmetric (A) mode versus the
wave number k. Figure 1 shows the dispersion curve of the
lower order modes for a Duralumin plate of thickness d (lon-
gitudinal wave velocity V;=6.34 km/s and transverse veloc-
ity Vy=3.14 km/s). We have plotted the variations of the
frequency thickness product fd=wd/2 versus the thickness
to wavelength ratio d/N=kd/2m. The Ay and S, modes ex-
hibit free propagation to zero frequency, whereas higher or-
der modes admit a cutoff frequency f. when the wave num-
ber k approaches zero. Conversely to other modes, the first
order symmetric (S;) mode exists for small wave numbers at
values of fd below the cutoff frequency (f.d=V;
=3.14 MHz mm). The slope of the dispersion curve is nega-
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FIG. 1. Dispersion curves for a Duralumin plate of thickness d and bulk
wave velocities equal to V;=6.34 km/s and V;=3.14 km/s. Vertical scale:
fd=wd/ 2, horizontal scale: d/\N=kd/ 2.

tive and the frequency begins to increase at a point (kyd
=1.58, f,d=2.866 MHz mm) where the frequency undergoes
a minimum and then the group velocity dw/dk vanishes. In
contrast with the cutoff modes, at this ZGV point, the
S,-mode phase velocity remains finite (Vy=11.25 km/s). In
a narrow range between this minimum frequency f,; and the
cutoff frequency f,, the dispersion curve is double valued.
For wave numbers k <<k(, phase and group velocities are of
opposite signs: backward propagation occurs. In the
literature,' "% the negative slope branch is classified as part
of the S, mode and is labeled S,;,, where b stands for “back-
ward wave.” As shown in Kaduchak et al.,19 the distinction
between S; and S,, modes appears clearly by solving the
Rayleigh Lamb equation for a complex wave number. In-
deed, the S,, branch is connected to the S, branch by a
purely imaginary branch. Furthermore, for a water loaded
plate, due to leakage, the two branches S| and S,, are sepa-
rate.

For nondissipation, both in the material and across the
waveguide boundaries, it has been shown that the energy
velocity is equal to the group velocity.21 At the frequency f,
the energy of the S;-Lamb mode is trapped under the source
resulting in ringing and resonance phenomena. This behavior
is observed in solids having a Poisson’s ratio »<<0.45, i.e.,
for most usual materials.

Since any mechanical contact with the plate is respon-
sible for an energy leakage, these effects are not easily ob-
served with standard piezoelectric transducers. On the con-
trary, laser-based ultrasonic (LBU) techniques are
appropriate for investigating ZGV modes. They eliminate
coupling issues in the generation and detection of the waves,
and their high temporal resolution enables studying the reso-
nance spectrum of the plate over a large frequency range.

A. Experimental setup

As shown in Fig. 2, Lamb waves were generated by a
O-switched Nd:YAG (yttrium aluminium garnet) laser pro-
viding pulses having a 20 ns duration and 4 mJ of energy.
The spot diameter of the unfocused beam is equal to 1 mm.
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FIG. 2. Experimental setup.

Local vibrations were measured by a heterodyne interferom-
eter equipped with a 100 mW frequency doubled Nd:YAG
laser (optical wavelength A=532 nm). This interferometer is
sensitive to any phase shift A¢ along the path of the optical
probe beam, and then to the mechanical displacement u nor-
mal to the surface. As previously shown,” the calibration
factor (10 nm/V), deduced from the phase modulation A
=47u/ A of the reflected beam, was constant over the detec-
tion bandwidth (50 kHz—20 MHz). Signals detected by the
optical probe were fed into a digital sampling oscilloscope
and transferred to a computer.

As discussed in Balogun et al.,14 for a laser spot diam-
eter equal to half the ZGV mode wavelength A, the efficiency
of the thermoelastic generation of this mode is much larger
than for other Lamb modes. Numerical simulations show that
the wavelength to thickness ratio (A\y/d) does not vary much
with Poisson’s ratio v. For the S;-Lamb mode: \,/d varies
from 3.4 to 5 as v varies from 0 to 0.4. Except for v values
close to the limits where the ZGV resonance disappears, the
optimal conditions are approximately fulfilled when the spot
diameter is of the order of twice the plate thickness. So, for a
0.5-mm-thick Duralumin plate (¥=0.34), there is no need to
focus the Nd:YAG laser beam.

B. S1 mode ZGV resonance

Since the acoustic energy of ZGV modes does not
propagate, it is judicious to use superimposed source and
detection points. However, the laser energy absorption heats
the air in the vicinity of the surface and produces a variation
of the optical index along the path of the probe beam. The
resulting phase shift induces a very large low frequency volt-
age, which saturates the electronic detection circuit of the
optical probe. This spurious thermal effect is eliminated by
interposing a high-pass filter before the amplifying stage.
The cutoff frequency of this filter was chosen equal to
1 MHz.

Experiments were carried out on a commercially avail-
able Duralumin plate of average thickness d=0.49 mm and
lateral dimensions equal to 100 and 150 mm. Figure 3 shows
the fast Fourier transform of the first 300 us of the signal
measured by the optical probe. The spread spectrum corre-
sponds to the Ay, Lamb mode. In the low frequency range,
this flexural mode gives rise to large displacement ampli-
tudes for the out-of-plane component. However, the promi-
nent feature is a sharp peak at 5.86 MHz. From the theoret-
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FIG. 3. Spectrum of the signal measured on a 0.49-mm-thick Duralumin
plate.

ical dispersion curve of the S; mode (f,d=2.866 MHz mm)
and taking account of the average plate thickness, the reso-
nance is expected to occur at a frequency f,=5.85 MHz,
very close to the experimental value. The relative difference,
smaller than 0.2%, can be ascribed to the uncertainty range
in the material parameters and in the plate thickness. The
small peak at 9.6 MHz corresponds to the thickness reso-
nance at fd=4.71 MHz mm of the A, Lamb mode in Fig. 1.

C. Backward-wave propagation and dispersion
curves

As discussed in several papers,”’18 at the ZGV fre-
quency the S, and S,;, modes interfere, having opposite wave
vectors. In order to confirm the origin of this resonance, we
have measured, with the aid of LBU techniques, the distri-
bution of temporal and spatial frequencies of the out-of-
plane displacement. The interference phenomena and the
backward S,, branch can be clearly identified by investigat-
ing the wave propagation along the Duralumin plate.

The laser source to probe distance r was varied from 0
to 10 mm in 10 um steps. At each source to receiver dis-
tance, the normal displacement u(r,7) was recorded during
300 us with a 50 MHz sampling frequency. The measured
signals are time Fourier transformed into U(r,f). In Fig. 4,
the amplitude |U(r,f)| plotted for f varying from 5.85 to
5.93 MHz, reveals a standing mode due to the interference of
two waves propagating in opposite directions, and generated
with comparable amplitudes. The distance between adjacent
nodes is equal to about half a wavelength of the §; and S,,
modes (A=V,/fy=1.92 mm). It can be observed that the
resonance frequency slightly increases with the distance to
the source. At the ZGV resonance frequency f, the acoustic
energy does not propagate, and as Lamb modes at frequen-
cies lower than f; are evanescent, only propagative Lamb
waves at frequencies higher than f, contribute at distances
from the source larger than A,

This existence of counter propagative modes is con-

firmed by calculating the spatial Fourier transform U(k,f)
=[U(r,f)e™dr. The power spectrum is computed at a fre-
quency (5.89 MHz) slightly higher than the ZGV resonance
frequency, for which the modes are propagative. The spec-
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FIG. 4. (Color online) Spatial distribution of the displacement amplitude
resulting from the interferences of the two counter-propagating waves S,
and Sy.

trum, plotted in Fig. 5, is composed of two main peaks. The
peak at a negative value of k, similar to the larger one in the
positive wave number domain, clearly demonstrates the
backward propagation. Due to the up-shift of the operating
frequency, the positive and negative k values are not exactly
opposite. The wave numbers (-=2.95 mm~' and 3.77 mm™")
correspond to the expected ones for the S; and S,;, modes
around the ZGV point (kyd=1.58 and d=0.49 mm— k,
=3.22 mm™!). The other two peaks in Fig. 5 can be ascribed
to the S, and Ay Lamb modes.

Applying this signal processing in a large range of fre-
quencies allows us to plot the dispersion curves. As previ-
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FIG. 5. Spatial Fourier transform of the normal displacement at 5.894 MHz.
The negative wave number is clearly put in evidence.
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FIG. 6. Measured (dots) and predicted (continuous lines) dispersion curves
for the 0.49-mm-thick Duralumin. The high velocity branches are obtained
with the unfocused laser source, while the low phase velocity branches are
obtained by focusing the laser beam.

ously indicated, the laser source beam was unfocused, pro-
viding a 1 mm spot size, approximately equal to half the S,
ZGV wavelength \,. This allows an efficient generation of
this mode and of most modes of wavelength larger than
2 mm. In order to complete the dispersion curves with the
modes of smaller wavelength, a second set of measurements
was performed using a 50 um source diameter. At each tem-
poral frequency, spatial Fourier transform was applied to the
data taken over all spatial steps. The spatial frequencies of
the laser generated acoustic modes were then determined by
identifying the peaks in the power spectrum. The obtained
dispersion curves are plotted in Fig. 6.

These experimental results highlight the main features of
the §;-ZGV Lamb mode, such as resonance effect, backward
wave propagation, interference between backward and for-
ward modes. Such an unusual behavior is often qualified as
“anomalous.”” In fact, the occurrence of a ZGV mode is not
a unique phenomenon. For an isotropic plate of any Pois-
son’s ratio, it exists in a large range of frequencies, involving
nearly all the Lamb modes. In the next section, the condi-
tions required for the existence of ZGV Lamb modes are
investigated and an interpretation in terms of a strong repul-
sion between a pair of modes in the vicinity of the cutoff
frequencies is proposed.

lll. EXISTENCE OF ZGV LAMB MODES

Elastic properties of an isotropic material are character-
ized by two constants c¢;; and c;,. However, Lamb wave
propagation can be expressed in terms of only one dimen-
sionless parameter, the bulk wave velocity ratio k=V,/V; or
the Poisson’s ratio v.

2
v=K2—2, with k= 1| 2U=" (1)
2(k*—-1) 1-2v

An important distinction in the behavior of plate modes
occurs for small k values (kd << 1). As shown in Fig. 1, only
the fundamental modes A, and S, exhibit free propagation to
zero frequency. The higher modes admit a cutoff frequency

f. for k=0 and the dispersion curves start from the frequency
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axis with a zero group velocity. However, these cutoff modes
do not correspond to ZGV modes like the one discussed in
the previous section for which k£ # 0.

At cutoff frequencies, multiple reflections of longitudi-
nal or shear waves between the top and bottom faces of the
plate give rise to a thickness shear resonance (modes S,, or
Ayne1) or to a thickness stretch resonance (modes S,,,.; or
A,,). For symmetric modes, the even solutions are such that

fed=nVy, modeS,, (n=1) (2)

and the odd solutions are such that
Vi
f.d=02m+ 1)?, mode S,,,,; (m=0), (3)

where n and m are integers. For antisymmetric modes, the
even solutions are such that

fd=nV,, modeA,, (n=1) 4)

and the odd solutions are such that

1%
f.d=2m+ 1)77, mode A,,,,, (m= 0). (5)

For example, in Fig. 1, the cutoff frequency of mode S,
occurs at V;/2d and that of mode S, at V;/d. Following Ref.
24, the index of each Lamb mode in the previous classifica-
tion and in Fig. 7 is equal to the number of nodes in the plate
thickness both for shear (in-plane) displacements (modes S,,,
and A,,,,;) and normal (out-of-plane) displacements (modes
S>me1 and A,,). This numbering, different from that found in
many textbooks, is fundamental for understanding the condi-
tions of occurrence of the ZGV modes.

In the same family and for modes of different parity, the
order of cutoff frequencies and then of dispersion curves
depends on the bulk wave velocity ratio k=V;/ V7, i.e., on
the Poisson’s ratio v. For example, the curves for mode $
and S, interchange their relative positions for the critical val-
ues k=2 and v=1/3. This exceptional case, when two
branches of the dispersion curves of the same symmetry in-
tersect at cutoff, was first pointed out by Mindlin.” For v
equal to 1/3, the S| and S, branches intersect the frequency
axis at the same point with nonzero slopes, of equal magni-
tude and opposite signs.17

In the following, we show that such coincidence of two
cutoff frequencies plays a fundamental role in the existence
of a ZGV mode corresponding to a minimum frequency f,
for a nonzero wave number k,. Extensive numerical calcula-
tions have been performed in order to determine the ZGV
modes versus Poisson’s ratio v. For a shear wave velocity,
arbitrarily chosen as V;=3.0 km/s, and a given Poisson’s
ratio varying by 0.001 step from O to 0.5, the longitudinal
wave velocity V; is computed. Using well-known Rayleigh—
Lamb equations, the group velocity is calculated by numeri-
cal differentiation and the minimum frequencies f,, corre-
sponding to ZGV points are determined by the zero crossings
of the group velocity. Results are presented in Fig. 8 as a
universal plot, first used by Meitzler'” for the S, and S,
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FIG. 7. Mechanical displacements and cutoff frequencies for the first few
symmetric (a) and antisymmetric (b) Lamb modes in an isotropic plate of
thickness d, for k=0 (from Fig. 5.38, Ref. 24).

modes, of the dimensionless quantity F=fd/Vy (with f=f,
or f,) varying in the range 0<F <5, versus Poisson’s ratio
in the usual range 0<v<<0.5.

According to Egs. (2)-(5), horizontal lines at levels
0.5,1,1.5,2,..., correspond alternatively to cutoff frequen-
cies of A,,,,1 and S,,, Lamb modes and dashed curves labeled
0.5V IV, ViV, 1.5V Ve, ..., correspond alternatively to
cutoff frequencies of S,,,,; and A,, Lamb modes. From the
minimum frequency curves (thick lines) it appears that ZGV
modes exist only in the vicinity of crossing points of cutoff
frequency curves for modes belonging to the same family:
symmetric or antisymmetric. The difference between the
minimum frequency and the nearest cutoff frequency is the
largest at the coincidence points. These observations lead to
explain the ZGV phenomenon as resulting from a strong re-
pulsion between a pair of modes in the vicinity k=0. The
smaller the frequency gap at k=0, the stronger the repulsion.

For example, let us consider a pair of symmetric modes
of different parity like S5 and Sg. As shown in Fig. 9, the
difference between their cutoff frequencies, respectively
2.5V, /d and 4V;/d, depends on the Poisson’s ratio v. For
v=0.13, this difference is relatively large and the modes are
weakly interacting [Fig. 9(a)]. For »=0.155, a stronger inter-
action leads to a nearly flat lower branch [Fig. 9(b)]. Since
the wave velocity ratio is equal to the critical value k=1.6
for v=0.179, the cutoff modes are degenerated and the very
strong repulsion creates a zero group velocity mode in the
lower branch at k=k [Fig. 9(c)], similar to the one observed
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in Fig. 1. For »=0.20, the Ss-mode cutoff frequency passes
beyond the Sg-mode ones and the weaker coupling gives rise
to a less pronounced trough [Fig. 9(d)].

Due to the symmetry through the median xy plane of the
plate, symmetric and antisymmetric Lamb modes are un-
coupled for any k. A dispersion curve for a symmetric (anti-
symmetric) mode may cross a curve for an antisymmetric
(symmetric) mode. It is not the case for modes belonging to
the same family.26 However, in Fig. 7 it can be observed that

45 45 45
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FIG. 9. Dispersion curves of S5 and Sg modes for selected Poisson’s ratio v.
(a) Weakly interacting modes. (b) Stronger interaction leading to a nearly
flat lower branch. (c) Poisson’s ratio such as the cutoff modes degenerate
(k=1.6): the very strong repulsion creates a zero group velocity mode at
k=ky. (d) S5 and Sy cutoff frequencies separate: The weaker repulsion gives
rise to a less pronounced trough.

208  J. Acoust. Soc. Am., Vol. 124, No. 1, July 2008

5 T r 4 \S
7 / 1 10
RN a
A |-~ Vil I / b
—~ 8 - I S LA
- - I, RE R
> .- ) / I
3 S - "T85V N, it o
—— 7 - |
= 4l . L1 lils
> 4 p R 178
= .- !
5 VN, o [t
3 - A
> A —/————— - ‘ 7 ! A7
o 6 PR / ! I
7] - I ]
4 25 vL/vTV/ L [y
5 3/ f r ’TSG
g Ss ¥ o
= 2V N - oy
~ [l 7 ! L A
PR e e S
0 T4 e I
% ’).’ / | s
£ 2 T5V NV, P— ST
< g [ [ } !
X T3 | I
) |- yy
S P |8
% A VL/VT "] v
o M- [ ,
R I S
L | _Z 2
S 70'57VL/’VT4 :’ =
1 A
T 1
[
[
O L |
-1 -0.5 0 0.5

Poisson’s ratiov

FIG. 10. (Color online) Dimensionless cutoff frequencies and minimum
frequency of Lamb modes versus the Poisson’s ratio in the physical range
—1=v=0.5. The third ZGV branch results from the coupling between S;
and S, Lamb modes for a negative Poisson’s ratio v=—1/7.

for k=0 even and odd modes of the same family are also
uncoupled. This property is general because it has its origin
in the reflection symmetry through the transverse yz plane,
shared for k=0 by any waveguide uniform along the
X-propagation direction.”’ Then the difference between cutoff
frequencies of a pair of symmetric (antisymmetric) Lamb
modes can be made arbitrarily small. For a nonzero wave
number, the propagation along the +x or —x direction breaks
this symmetry. Odd and even modes belonging to the same
family are not yet orthogonally polarized. Both longitudinal
and transverse components are involved in the mechanical
displacement of each mode, introducing a wave coupling.
This phenomenon leads to a strong repulsion between the
dispersion curves of the two neighboring modes, responsible
of the negative-slope region and zero group velocity point of
the lower branch in Figs. 9(c) and 9(d).

From these considerations, the following rules for se-
lecting ZGV modes can be stated:

1- since symmetric and antisymmetric modes are uncoupled
for any wave number, the ZGV phenomenon occurs only
between modes of the same family,

2- in the same family no coincidence exists between cutoff
frequencies of modes having the same parity, then ZGV
modes results only from the repulsion between S,,,,; and
S5, Lamb modes or A,, and A,,,,; Lamb modes,

3- for symmetric ZGV modes, the repulsion, i.e., the differ-
ence fy—f., is maximum for the critical Poisson’s ratio v
given by Eq. (1) with:
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TABLE 1. Symmetric Lamb modes (frequency thickness product fd <5V;). Critical bulk wave velocity ratio V,/V; and Poisson’s ratio v for the 12 ZGV

modes plotted in Fig. 8.

Symmetric Ss/S10
ZGV S3/84 871810 Ss/Sg S3/86 S3/8g S3/81 S1/84 NTAYS S/8g S1/810
modes NTAY
VI Vy 4/3 10/7 8/5 2 8/3 10/3 4 6 8 10
v —-0.1429 0.0196 0.1795 0.3333 0.4182 0.4505 0.4667 0.4857 0.4921 0.4949

\4 2
KS=<_VL) = (©)
T/s m+1

4- for antisymmetric ZGV modes, the repulsion is maximum
for the critical bulk wave velocity ratio:

(VL) 2m+1
Ky=|—| = .
A VT A 27’!

()

k4 and kg are rational numbers, that is, ratios of even inte-
gers to odd integers.

For the first symmetric ZGV mode (m=0,n=1— kg
=2) the repulsion between the S; and S, Lamb modes is
maximum for v;=1/3. For the first antisymmetric ZGV
mode (m=1,n=1— k4,=3/2) the repulsion between the A,
and A; Lamb modes is maximum for »,=1/10. As pointed
out by Negishi,28 the existence range of these so-called §
and A,-ZGV modes are relatively wide with extinction points
of v=0.45 and 0.32, respectively. As shown in Fig. 8, higher
order ZGV modes exist over narrower ranges of Poisson’s
ratio v and frequency X thickness product fd. It should be
noted that symmetric (S3/Sg or S5/S;) and antisymmetric
(Ag/Ag)-ZGV modes correspond to the same values v; and
v, than fundamental (S,;/S,) and (A,/A3)-ZGV modes, re-
spectively. The reason is that the indices of the pair of modes
are multiplied by an odd number, 3 or 5, leading to un-
changed bulk wave velocity ratio: xg;=2 and k4,=3/2. Such
high order ZGV modes can be considered as harmonics of
the fundamental ones S;/S, and A,/A;.

For v<<0.14, a minimum frequency is exhibited in Fig.
8, just below the cutoff frequency (fd=2V;) of the S, mode.
It can be predicted that this branch corresponds to the cou-
pling with the S; mode. According to Eq. (1), the bulk wave
velocity ratio k=4/3 leads to a negative Poisson’s ratio v=
—1/7. As shown in Fig. 10, where the minimum frequencies
are plotted in the whole physical range of Poisson’s ratio
from —1=v<0.5, other ZGV modes with cutoff frequency
coincidences for negative v values have no extension in the
usual material range from 0<v<0.5.

Limiting the frequency thickness product fd to 5V; and
for 0=v<<0.5, 12 symmetric ZGV modes can be found in
Fig. 8. The critical values of the bulk wave velocity ratio and
of the Poisson’s ratio are given in Table I. The ranges of

existence [ Vi, Vmax) Of these modes are gathered in Table II.
In the same domain of variations for fd and v, only seven
antisymmetric ZGV modes exist. Their characteristics are
given in Tables III and IV.

It should be noted that Eq. (6) was given by Werby and
Uberall for symmetric Lamb modes.’ However, these au-
thors developed only the simplest case V;=2V;, reported
earlier,” and many of their conclusions concerning the exis-
tence and the extinction points of ZGV Lamb modes are in
contradiction with results of the present work.

Then, in an isotropic plate, the existence of zero group
velocity modes is not a rare phenomenon. All Lamb modes,
except the first three S, A, and A, exhibit such a behavior.
This effect, which cannot be qualified as “anomalous” as it is
often the case in the literature, is predicted by using simple
rules. Since the negative slope branches in the dispersion
curves result from a strong repulsion, in the vicinity of the
cutoff frequencies, between two modes having the same
symmetry, the frequency minima always occur for small
wave numbers. According to this physical meaning, ZGV
modes should be labeled with the name of the two coupled
Lamb modes: S,,,;/S,, for the symmetric ones and
Ay, /Ay, for the antisymmetric ones.

In the next section, using LBU techniques, we investi-
gate the local vibrations of an elastic plate of uniform thick-
ness and we establish a link between the experimental reso-
nance spectrum and the predicted ZGV Lamb modes.

IV. LOCAL RESONANCE SPECTRUM OF A PLATE AND
MATERIAL CHARACTERIZATION

Local resonance techniques, such as the “Impact Echo”
method developed for concrete applications, are of a great
interest for nondestructive evaluation of materials. Therefore
it is important to understand the transient response of a slab-
like structure to a mechanical or a laser impact. The term
“local resonance” means that the distance between the source
and the detector is less than the wavelength. At higher fre-
quencies and in our experiments using LBU techniques, the
lateral extension of the source is of the order of the plate
thickness and the point-like detection is localized in the
source area.

TABLE II. Range of existence versus Poisson’s ratio [ ¥, Vmax] for the first ten symmetric ZGV Lamb modes.

ZGV mode  S3/S;  S./Sis  Ss/Sy  Si/S,  Si/S¢  Ss/Sw S3/Ss  Si/Sw Si/Si  Si/Se
Vorin -0973 -0012 0.156 -0.540 0323 0330 0417 0451 0466 0485
Vi 0149 0072 0223 0451 0365 0346 0426 0453 0477 0.487
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TABLE III. Antisymmetric Lamb modes (frequency thickness product fd <5V;). Critical bulk wave velocity
ratio V;/V; and Poisson’s ratio v for the seven ZGV Lamb modes plotted in Fig. 8.

Antisymmetric AglAg
7GV modes A, A4l A, Ayl Ag A,/ As A,/ A, AylAg
ViV 3/2 74 9/4 512 772 972
v 0.1000 0.2576 0.3769 0.4048 0.4556 0.4740
Experiments have been performed according to the pro- )
cedure described in Sec. IT A on plates of thickness d in the Jo=pfc with f.=p 2d’ (8)

millimeter range, made of various materials (steel, nickel,
zinc, fused silica and Duralumin). The time Fourier trans-
form was computed with the first 60 us of the signals mea-
sured by the optical probe at the same point. Figure 11 shows
the relative magnitude of the frequency spectrum (in dB)
versus the frequency normalized to the shear wave velocity
(vertical scale: F=fd/Vy) for two of them: fused silica and
Duralumin. The central part in Fig. 11 reproduces the theo-
retical ZGV branches in the range 0 < F<5. The upper limit
corresponds to the higher frequencies in the laser pulse spec-
trum (f,,x= 15 MHz), the plate thickness (d=1 mm) and
the transverse wave velocity (V=3 km/s). Vertical dotted
lines are drawn for the Poisson’s ratio of fused silica (on the
left) and Duralumin (on the right). In both cases, each inter-
section of these lines with a ZGV branch corresponds to a
clear resonance peak. Taking into account that for Duralumin
the Poisson’s ratio ¥=0.338 is very close to the critical value
vy =1/3, the first, third, and fourth peaks correspond to the
fundamental (S,/S,)-ZGV mode and to its harmonics S3/S;
and Ss/S, (see Table I). The second one at F=1.5, for which
the intersection is close to the extinction point of the
(A,/A3)-ZGV mode, is less intense than the other peaks for
which the intersection nearly coincides with the maximum
repulsion between the coupled modes. For fused silica (v
=0.172) the first and second peaks are of the same order of
magnitude. The third one, at F'=2, is weak since the inter-
section lies outside the zone of existence of the (S3/S,)-ZGV
mode.

Similar results obtained with other materials lead to the
conclusion that the local resonance spectrum of a plate is
entirely governed by the zero-group-velocity Lamb modes.
This conclusion is based on two points: first, the high excit-
ability of such ZGV modes by a laser source of lateral di-
mensions of the order of the plate thickness. Second, the
energy of other laser-excited Lamb modes flows outside the
source area, at their nonzero group velocity, in less than
1 us. Then, only ZGV modes, trapped under the source, give
rise to a local vibration of the plate detectable over a long
time.

For a given pair of Lamb modes, the ZGV resonance
frequency f| is slightly smaller than the cutoff frequency f..:

where p is an integer and V is equal to V; or V7, according to
Egs. (2)—(5). The dimensionless parameter 8 was first incor-
porated as a “shape factor” in the American Society for Test-
ing and Materials standards in order to correct the wall thick-
ness measured by the impact echo method.* Tts value, less
than unity, depends only on the Poisson’s ratio 12

For a given homogeneous material, the resonance fre-
quency is sensitive to the plate thickness d. We have shown
that relative variations as small as 0.02% can be measured,
without any mechanical contact, from the shift of the reso-
nance frequency of the §; ZGV mode."” The lateral reso-
lution, in the millimeter range, is one order of magnitude
better than the one obtained with electromagnetic acoustic
transducers.’ Moreover, the ZGV resonance method is not
limited to metallic materials.

The material damping can be also estimated from the
half-power bandwidth Af|, of the resonance peak and from
the phase velocity V,, at the ZGV point. Assuming a Vis-
coelastic mechanism, the attenuation coefficient a (m™) is
related to the acoustic quality factor Q=f,/Af:

a= =7 ©)

For an accurate determination of the attenuation coefficient,
the signal acquisition time window must be larger than the
inverse of the bandwidth. This method, first applied with the
S, mode," can be extended to other ZGV modes, providing
the attenuation coefficient at higher frequencies.

Figure 11 and experiments performed on other materials
show that many ZGV resonances can be excited in a single
shot and detected locally on a plate. The ratio of two reso-
nance frequencies is independent of the plate thickness d. It
depends only on the Poisson’s ratio v, the value of which can
be determined accurately from frequency measurements. Us-
ing LBU techniques, this method has been tested on a large
number of isotropic materials. The Poisson’s ratio and the
bulk wave velocities were determined locally in thin plates
or shells.'® In these experiments, only the first two reso-
nances at the minimum frequencies of §; and A, Lamb

TABLE IV. Antisymmetric ZGV Lamb modes. Range of existence versus Poisson’s ratio [ Vin Vmaxl-

ZGV mode AylAs Agl Ay Ayl A, Ayl Ag Ayl As Ayl A, Ayl Ay
Vynin -0.740 0.073 0.241 0.375 0.400 0.455 0.474
Vi 0.319 0.148 0.296 0.387 0.427 0.461 0.476
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FIG. 11. (Color online) Local vibration spectrum of a fused silica plate of thickness d=1.1 mm (on the left) and of a Duralumin plate of thickness d
=1.0 mm (on the right). Resonance peaks occur at the intersection of the minimum frequency curves of Lamb modes, plotted in the central part. The vertical
dotted lines correspond to the Poisson’s ratio of fused silica (v=0.172) and of Duralumin (v=0.338).

modes are used. From the previous analysis, it is clear that
this characterization method can be generalized to higher or-
der ZGV modes. Taking into account these modes having a
narrow range of existence (see Tables II and IV) for the
correlation between the experimental and theoretical local
resonance spectra would dramatically improve the determi-
nation of the elastic parameters.

It should be recalled that in all experiments, the vibra-
tions are excited locally in the thermoelastic regime and that
the measurements are performed on the same face of the
sample, without any mechanical contact.

V. CONCLUSION

Using laser-based ultrasonic techniques, we have experi-
mentally investigated the resonance and ringing effects asso-
ciated with the S; ZGV Lamb mode in an isotropic plate. The
spatial distribution of the mechanical displacement has been
optically measured on the surface of the plate. The spatial
Fourier transform, computed at the ZGV resonance fre-
quency, exhibits two peaks for opposite wave numbers.
Backward and forward wave propagation, clearly revealed in
these experiments, explained the observed standing wave
pattern.

We developed a simple analysis based on the coinci-
dences of Lamb modes cutoff frequencies, which demon-
strates that the occurrence of zero group velocity (ZGV)
Lamb modes is not a rare phenomenon. Numerical calcula-
tions show that the frequency X thickness product undergoes
a minimum in a range of Poisson’s ratio about the critical
value for which the cutoff frequency curves of modes of
similar symmetry intercept. An interpretation of this phe-
nomenon in terms of mode coupling has been given. Using a
classification where the index of each mode is equal to the
number of nodes at the cutoff frequency in the plate thick-
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ness, ZGV Lamb modes result from the coupling of a pair of
modes having a different parity, such as S,,,,; and S,, or A,,
and Ay,

Vibrational spectra measured on plates made of various
materials lead to the conclusion that the local resonance
spectrum of an unloaded elastic plate is entirely governed by
the zero-group-velocity Lamb modes. We indicate how these
ZGV resonances can be exploited for measuring the plate
thickness, the attenuation coefficient, the Poisson’s ratio, and
the bulk wave velocities of thin plates. Since the vibrations
are excited in the thermoelastic regime by a laser pulse and
detected at the same point by an optical interferometer, these
measurements are local and performed in a single shot on the
same face of the plate, without any mechanical contact.
Moreover, this ZGV resonance method, based on frequency
measurements, is very accurate. ZGV modes have also been
observed in anisotropic or multilayered plates and in cylin-
drical shells. We expect that most results presented in this
paper can be generalized to these various structures.
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