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An original method for material characterization with acoustic waves is presented. The
measurement of the longitudinal and shear wave velocities in thin isotropic plates or shells is
performed locally on the same face without any mechanical contact. We exploit the resonance that
occurs at the minimum frequency thickness product of the first order symmetric �S1� and of the
second order antisymmetric �A2� Lamb modes. At these frequencies the group velocity vanishes,
whereas the phase velocity remains finite. Then, the energy, which cannot propagate in the structure,
is localized in a zone of diameter half the wavelength. The vibrations are excited in the
thermoelastic regime by a laser pulse and detected at the same point by an optical interferometer.
For these two Lamb modes we have computed the variations of the frequency thickness product
versus Poisson’s ratio. The resonance frequency ratio, which is independent of the plate or shell
thickness, provides an absolute and local measurement of Poisson’s ratio. Provided that the plate
thickness is known, each resonance frequency allows us to determine in a single shot the bulk
acoustic wave velocities VL and VT. Since it is based on frequency measurements, the method, tested
on a large number of materials, is very accurate. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2434824�

I. INTRODUCTION

Characterization of mechanical properties of materials is
important for testing their structural integrity. Nondestructive
evaluation of these properties is usually carried out with ul-
trasonic waves. When there is only access to one face of the
sample, pulse-echo techniques are widely used for determin-
ing bulk acoustic wave �BAW� velocities. Depending on the
structure to evaluate and on the frequency domain, different
techniques have been developed. For concrete applications
and in the kilohertz range, a mechanical impactor is used.
This impact-echo �IE� method, based on the concept of mul-
tiple reflections of longitudinal waves between the top and
bottom faces of the structural element under test, has been
developed over the past 20 years.1 For metallic or composite
structures, the ultrasonic emitter and receiver is a single lon-
gitudinal or transverse piezoelectric transducer working in
the megahertz range.2,3 Surface acoustic waves �SAWs� have
also been extensively exploited for near-surface evaluation
of materials. For a local investigation, scanning acoustic mi-
croscopes have been developed in the 10 MHz to 1 GHz fre-
quency range.4 All these techniques need a mechanical con-
tact with the structure or the material under test.

In the case of a plate or of a thin hollow cylinder, an-
other approach is to exploit Lamb waves, i.e., elastic waves
guided by the structure. The propagation of these symmetric
�S� and antisymmetric �A� modes is represented by a set of
dispersion curves giving the angular frequency � versus the
wave number k.5,6 Noncontact ultrasonic methods using the

generation and detection of zero-order symmetric �S0� and
antisymmetric �A0� Lamb modes by lasers in thin metal
sheets7 or in hollow cylinders8 have been investigated. The
characterization method, based on the observation of the
spreading of the wave train due to the dispersion of the A0

Lamb mode, needs a rather large propagation distance. The
measurement is not local and experiments show that the un-
certainty �2%–20%� increases with the wall thickness d
�typically 0.05–1 mm�. Using a space-time Fourier trans-
form and a fit of the A0 and S0 dispersion curves, Gao et al.
determine the thickness and the bulk acoustic wave veloci-
ties of a thin copper sheet with a better accuracy.9 Another
way of measuring dispersion curves consists in using phase-
mask technology.10 However, those methods need measure-
ment on a large area of the sample and so are nonlocal tech-
niques.

Some higher order Lamb modes exhibit an anomalous
behavior at frequencies where the group velocity Vg

=d� /dk vanishes while the phase velocity V�=� /k remains
finite. At this zero group velocity �ZGV� point the energy,
which cannot propagate in the plate, is trapped under the
source. This sharp and local resonance effect was first ob-
served with the first order symmetric �S1� Lamb mode. For
example, using focusing, air-coupled transducers, Holland
and Chimenti11 found an efficient transmission of airborne
sound waves through a thick plate at the S1-ZGV resonance
frequency. Gibson and Popovics demonstrated that the reso-
nance excited in concrete by mechanical impacts �IE
method� corresponds to the S1-ZGV frequency.12 Similar re-
sult was obtained, independently, by Prada et al. in the case
of a thin tungsten sheet mechanically excited at 45 MHz bya�Electronic mail: claire.prada-julia@espci.fr
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an intensity modulated laser diode and detected with an op-
tical interferometer at the same point of the plate.13 Recently,
it has been shown that the S1-ZGV resonance can also be
excited by a laser pulse and optically detected in the time
domain.14

Mechanical vibrations involved with the first order sym-
metric Lamb mode at the ZGV point are mainly of longitu-
dinal type. With a laser source, the same phenomenon in-
volving transverse vibrations can be observed for the second
antisymmetric �A2� Lamb mode. In this paper it will be dem-
onstrated that the simultaneous measurement of these two
�ZGV�-resonance frequencies provides an accurate and local
determination of Poisson’s ratio � and, if the plate thickness
d is known, of the longitudinal and transverse acoustic wave
velocities VL and VT.

II. ANALYSIS

Elastic properties of an isotropic material are character-
ized by two constants c11 and c12. However, Lamb wave
propagation can be expressed in terms of only one dimen-
sionless parameter, the bulk wave velocity ratio �=VL /VT or
Poisson’s ratio �:

� =
VL

VT
=�2�1 − ��

1 − 2�
. �1�

As an example, Fig. 1 shows the dispersion curves for
the first four symmetric and antisymmetric modes propagat-
ing in a steel-free plate of thickness d. The longitudinal and
transverse bulk wave velocities are equal to VL=5900 m/s
and VT=3200 m/s, respectively ��=0.2916�, and we have
plotted the variations of the frequency thickness product
�fd=�d /2�� versus the thickness to wavelength ratio �d /�
=kd /2��.

The fundamental modes A0 and S0 do not exhibit any
cutoff when the wave number k approaches zero. All the
other modes admit a cutoff frequency that occurs at

fc = n
V

2d
, �2�

where n is an integer and V is equal to VL or VT according to
the bulk acoustic wave involved in the mechanical vibration.
At these frequencies, multiple reflections between the top
and bottom faces of the plate result in a thickness resonance.
The group velocity Vg=d� /dk vanishes whereas phase ve-
locity V�=� /k and Lamb mode wavelength �=2� /k be-
come infinite. Such thickness vibration modes, uniformly
distributed on the plate surface, are badly coupled to a local
excitation resulting, for example, from a mechanical or a
laser impact. Conversely, at the minimum frequency f1 or f2

of the dispersion curve of the first order symmetric �S1� or
second order antisymmetric �A2� Lamb mode, the phase ve-
locity V� and the wavelength �=V� / f remain finite �Fig. 1�.
The conditions for the generation of local vibrations in a
plate are much more favorable.

Depending on the value of Poisson’s ratio �, the cutoff
frequency fc of the S1 Lamb mode is the smallest value of
VL /2d and VT /d. Since VT=VL /2 for an isotropic solid hav-
ing Poisson’s ratio �=1/3, we have

fc = VL/2d for � � 1/3,

and

fc = VT/d � VL/2d for � 	 1/3. �3�

In both cases, the S1-ZGV resonance occurs at a frequency f1

smaller than VL /2d:

f1 = 
1
VL

2d
with 
1 � 1. �4�

This parameter 
1 was incorporated in the American Society
for Testing and Materials �ASTM� standards as a shape
factor.12 The value of this resonance parameter, which de-
pends only on Poisson’s ratio �, can be deduced from the
dispersion curves. Figure 2 shows that 
1 varies from 0.975
to 0.60 as Poisson’s ratio � varies from 0 to 0.451. For higher
values of �, no minimum frequency exists15 and the S1 Lamb
mode resonance occurs at the cutoff frequency fc=VT /d:


1 = 2
VT

VL
=�2

1 − 2�

1 − �
for � � 0.451. �5�

FIG. 1. Lamb wave dispersion curves for a steel plate of thickness d and
bulk wave velocities equal to VL=5900 m/s and VT=3200 m/s. Vertical
scale: fd=�d /2�; horizontal scale: d /�=kd /2�.

FIG. 2. First order symmetric Lamb mode S1. Variation of the resonance
parameter 
1 vs Poisson’s ratio �.
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The cutoff frequency fc of the A2 Lamb mode is always
equal to 3VT /2d. As pointed out by Negishi et al., A2-ZGV
point exists only for ��0.31. The local resonance occurs at
a frequency f2 slightly smaller then 3VT /2d:

f2 = 
2
3VT

2d
with 
2 � 1. �6�

Figure 3 shows that the A2-resonance parameter 
2 varies
from 0.906 to 1 as Poisson’s ratio � varies from 0 to 0.31.
For higher values of �, no minimum frequency exists; the A2

Lamb mode resonance occurs at the cutoff frequency and

2=1.

The ratio f2 / f1 of the two resonance frequencies is inde-
pendent of the plate thickness d. Its depends only on Pois-
son’s ratio �:

f2

f1
= 3

VT

VL


2


1
= 3� 1 − 2�

2�1 − ��

2���

1���

. �7�

Figure 4 shows that this ratio decreases from 1.975 to 1.5 as
Poisson’s ratio � varies from 0 to 0.451. Since there is a one
to one correspondence between f2 / f1 and �, the measure-
ment of these two resonance frequencies provides an abso-
lute determination of Poisson’s ratio of the material. Then,
using a polynomial interpolation of the curves plotted in
Figs. 2 and 3, it is possible to calculate the resonance param-
eters 
1 and 
2. Provided that the plate thickness d is known,

Eqs. �4� and �6� allow us to determine the bulk acoustic wave
velocities VL and VT and then the elastic constants c11 and
c12. This procedure, based on frequency measurements, is
very accurate. Since the uncertainty on the resonance fre-
quencies can be as small as 0.02%, the error depends mainly
on the accuracy of the plate thickness measurement.

III. EXPERIMENTAL RESULTS

Using the experimental setup in Fig. 5, we have applied
this method to many materials covering a large range of
Poisson’s ratios. Lamb waves were generated by a
Q-switched Nd:YAG �yttrium aluminum garnet� laser pro-
viding pulses having a 20 ns duration and 4 mJ of energy.
The spot diameter of the unfocused beam is equal to 1 mm.
Prada et al. show that for a laser spot diameter equal to half
the S1-ZGV wavelength �1, the efficiency of the thermoelas-
tic generation is much larger than for other Lamb modes.16

Numerical simulations show that the variations of the wave-
length to thickness ratio �� /d� versus Poisson’s ratio � are
relatively small. For the S1 Lamb mode: �1 /d varies from 3.4
to 5 as � varies from 0 to 0.4. For the A2 Lamb mode: �2 /d
varies from 2.4 to 4 as � varies from 0 to 0.27. In conse-
quence, except for � values closed to the limits where the
ZGV resonances disappear, the optimal conditions are ap-
proximately fulfilled when the spot diameter is of the order
of twice the plate thickness.

Lamb waves were detected by a heterodyne interferom-
eter equipped with a 100 mW frequency doubled Nd:YAG
laser.17 This interferometer is sensitive to any phase shift
along the path of the optical probe beam. The calibration
factor �10 nm/V� for mechanical displacement normal to the
surface and the sensitivity �0.1 nm� were constant over a
large detection bandwidth �50 kHz–40 MHz�. Signals de-
tected by the optical probe were fed into a digital sampling
oscilloscope and transferred to a computer. As indicated in a
previous paper,14 the laser energy absorption heats the air in
the vicinity of the surface and produces a variation of the
optical index along the path of the probe beam. The resulting
phase shift induces a very large low frequency voltage,
which saturates the electronic detection circuit. This spurious
thermal effect and the low frequency oscillations correspond-
ing to the A0 Lamb mode are eliminated by interposing a
high-pass filter having a cutoff frequency equal to 1.5 MHz.

FIG. 3. Second order antisymmetric Lamb mode A2. Variation of the reso-
nance parameter 
2 vs Poisson’s ratio �.

FIG. 4. Variations of the resonance frequency ratio f2 / f1 vs Poisson’s ratio
�.

FIG. 5. Experimental setup.

034908-3 Clorennec, Prada, and Royer J. Appl. Phys. 101, 034908 �2007�

Downloaded 09 Feb 2007 to 193.54.80.96. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



First experiments were carried out on a set of steel plates
having lateral dimensions equal to 50 and 300 mm and cali-
brated thicknesses varying from 0.2 to 0.9 mm. The accu-
racy on the thickness is ±2 �m. Figure 6 is a typical example
of the filtered time response recorded on a 0.9 mm thick
plate. The spectrum shown in Fig. 7 was computed by a fast
Fourier transform �FFT� of the first 200 �s of the signal. The
two resonances are clearly observed. Assuming that the large
peak at 3.081 MHz corresponds to the S1-mode ZGV reso-
nance and the smaller one at 5.363 MHz to the A2-mode
ZGV resonance, we can deduce from Eq. �5� Poisson’s ratio
� and then the longitudinal and shear wave velocities.

The uncertainty f of the frequency measurement de-
pends on the Q factor of the resonance, which is limited by
the acoustic wave damping and by the time-window duration
� used for computing the FFT. For usual solids, in the mega-
hertz range, we observed that the Q factor is of the order of
1000, then with �=600 �s, we have f �1 kHz. For a
given resonance frequency, the accuracy on Poisson’s ratio �
and on the 
 parameter determination depends on the step p
used to compute the curves in Figs. 2–4 and on the accuracy
of the polynomial interpolation between the calculated

points. With p=0.001 and a cubic interpolation, the relative
uncertainty is of the order of 0.01%. Then, the relative un-
certainty is equal to 0.1% for the 
 parameters and 0.2% for
Poisson’s ratio. For the steel plate under test, we found

� = 0.2918 ± 0.0006,


1 = 0.9327 ± 0.001 and 
2 = 0.9982 ± 0.001.

The longitudinal and shear wave velocities are deduced from
the measured thickness �d=900±2 �m�:

VL = 5946 ± 20 m/s and VT = 3224 ± 10 m/s.

To partly confirm these results, the longitudinal wave veloc-
ity has been determined by classical pulse-echo technique
with a 25 MHz contact piezoelectric transducer. The ob-
tained value VL=5960±30 m/s is in good agreement with
the previous ones.

BAW velocities have been measured for a large number
of materials �copper, Duralumin, fused silica, steel, tantalum,
tungsten, zinc�. The plate thickness lies in the range of
0.3–1.1 mm. In all the experiments, the S1 and A2-ZGV
resonances appear, which allows us to determine the material
parameters in a single shot. For most materials, the height of
the A2 mode ZGV peak is one order of magnitude smaller
than the height of the S1-mode peak. As shown in Fig. 8, in
the case of the fused silica plate, the amplitudes of the two
peaks are comparable. This is due to the small value �0.172�
of Poisson’s ratio � compared to that of steel �0.2918�. Since
the minimum of the A2 Lamb mode dispersion curve is more
pronounced for such small � values �Fig. 9�, the localization
of the acoustical energy is improved.

Results are gathered in Table I. For each sample, we
have checked that the longitudinal velocity is in good agree-
ment �within 0.5%� with the value determined by classical
pulse-echo technique. For some metals �copper, tungsten,
zinc�, relatively large discrepancies ��3% � with values
given in the literature 18 can be ascribed to the variations of
their mechanical properties with the elaboration process. For
example, in the case of fused silica, a well defined material,

FIG. 6. Signal recorded at the same point on a steel plate of thickness d
=900 �m.

FIG. 7. Spectrum of the signal in Fig. 6. The peaks at 3.081 and 5.363 MHz
correspond to the ZGV resonance of the S1 and A2 Lamb modes,
respectively.

FIG. 8. Spectrum of the signal recorded on a fused silica plate of thickness
d=1.100 mm coated with a thin aluminum layer.
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our values �VL=6005 m/s and VT=3779 m/s� are closed
�within 0.5%� to the generally accepted ones: 5970 and
3765 m/s, respectively.

We observe that for a given acquisition time, the reso-
nance peak width depends on material. Since the group ve-
locity vanishes at the resonance, in a first order approxima-
tion, the energy is trapped within half a wavelength of the
corresponding mode. Consequently, the width of the reso-
nance is linked to the acoustic wave damping. This was
shown in a preliminary study where the resonance width was
used to determine the acoustic damping in Duralumin.14

The ZGV resonances have also been observed with the
source and detection points on opposite faces. This configu-
ration has the advantage of avoiding the spurious thermal
signal and ensures a better signal to noise ratio, allowing
measurements for thicker plate, resonating below 1 MHz.
However, in practice, only one side of the structure under
test might be accessible. In particular, this is the case for
hollow cylinders. Elastic waves guided by the wall of a hol-
low cylinder are similar to Lamb waves, even for high values
of the ratio b /a of external to internal radius. From the dis-
persion curves ��k� calculated for hollow cylinders of Pois-
son’s ratio 0.3,19 it can be shown that S1 and the A2 modes
exhibit a horizontal slope for b /a up to 2. These curves also
show that the parameters 
1 and 
2 vary with thickness.

However, we consider that for thin shells, the values ob-
tained for plates are good approximations. We have applied
the ZGV resonance method on a steel cylinder with a diam-
eter of 20 mm and thickness of 1.0 mm �b /a=1.1�. The
S1-ZGV and A2-ZGV resonances are very well detected, as
observed in Fig. 10. Since the propagation of Lamb waves is
not affected by the slight curvature of the surface, the veloci-
ties deduced from the resonance frequencies �VL

=5942 m/s and VT=3186 m/s� are closed to the values mea-
sured on the steel plate, given in Table I. Conversely to the
method proposed by Royer et al.8 no propagation around the
shell is required. Consequently, the ZGV resonance method
also applies to more complex structures than hollow cylin-
ders.

IV. CONCLUSION

We have shown that the ZGV resonance that occurs at
the minimum frequency of the S1 and A2 Lamb modes can be
used for measuring Poisson’s ratio and the longitudinal and
shear wave velocities in thin plates or shells. Since the vi-
brations are excited in the thermoelastic regime by a laser
pulse and detected at the same point by an optical interfer-
ometer, the measurement is local and is performed in a single
shot on the same face of the structure, without any mechani-
cal contact. This ZGV resonance method has been tested on

FIG. 9. Lamb wave dispersion curves for a fused silica plate ��=0.172�.
Compared to Fig. 1, the minimum of the A2 Lamb mode dispersion curve is
much more pronounced.

TABLE I. Poisson’s ratio �, resonance parameters 
1, 
2, and BAW velocities VL, VT determined by the ZGV
resonance method for selected isotropic solids.

Material � 
1 
2 VL �m/s� VT �m/s�

Copper 0.3245 0.9148 1.0000 4558 2323
Duralumin 0.3383 0.9036 1.0000 6370 3150
Fused silica 0.1720 0.9560 0.9643 6005 3779
Steel 0.2918 0.9327 0.9982 5946 3224
Stainless steel 0.2812 0.9367 0.9967 5635 3110
Tantalum 0.3314 0.9093 1.0000 4162 2090
Tungsten 0.2839 0.9357 0.9971 5395 2963
Zinc 0.2509 0.9450 0.9903 3607 2080

FIG. 10. Spectrum of the signal recorded on a steel hollow cylinder of
diameter of 20 mm and shell thickness of 1.0 mm.
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a large number of isotropic materials covering the usual
range of Poisson’s ratio. Since it is based on frequency mea-
surements, the method is very accurate and the determination
of Poisson’s ratio is independent of the plate or shell thick-
ness. For most of materials and taking into account the band-
width of the laser pulse spectrum and of the optical probe
�1–20 MHz�, this method can be applied on plates or shells
having thickness in the range of 0.2–3 mm. The ZGV reso-
nance could be observed in much thinner membranes by us-
ing a picosecond laser and a high frequency optical probe.
Compared to the temporal analysis used in picosecond
acoustics, an important advantage of the ZGV resonance
method is that it provides both the transverse and longitudi-
nal velocities with a good accuracy.
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