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Abstract

We consider sparse representations of audio based around the modulated complex lapped transform (MCLT) and a

generalized iteratively reweighted least squares algorithm which can be interpreted as a variation of expectation

maximization. We compare this mildly overcomplete representation to the more traditional modified discrete cosine

transform (MDCT) in terms of coding cost and explore the possibility of extending it to a dual-resolution analysis using

a pair of MCLT transforms, illustrating its potential application for audio modification.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Sparse signal representations are becoming
increasingly popular in signal processing [1–4],
independent component analysis (ICA) [5–7] and
machine learning [8,9]. Typically the aim is to
exploit the redundancy in an overcomplete dic-
tionary to obtain a more compact representation of
the signal. In contrast to traditional Frame theory
[10], sparse decompositions are typically generative,
concentrating on the synthesis equations.
e front matter r 2005 Elsevier B.V. All rights reserve
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A number of criteria for sparsity have been
proposed and a variety of algorithms for solving
the resulting optimization problem have been
developed. In [4] we introduced an iterative re-
weighted least squares (IRLS) based algorithm to
generate sparse modulated complex lapped trans-
form (MCLT) synthesis coefficients. The MCLT is
a 2� overcomplete subband decomposition com-
posed of the union of 2 orthonormal bases recently
introduced by Malvar [11]. The algorithm in [4] is
equivalent to the regularized FOCUSS algorithm
[3] and the adaptive sparseness model for regres-
sion of Figueiredo [9], tailored specifically to the
structure of the MCLT.
In this paper we present a new sparsifying

algorithm, initially proposed in [7], that avoids the
d.

www.elsevier.com/locate/sigpro


ARTICLE IN PRESS

M.E. Davies, L. Daudet / Signal Processing ] (]]]]) ]]]–]]]2
expensive matrix inversion that dominates the
computational cost of most previous sparsifying
methods (e.g., [1,3,4]) which is replaced by a
sequence of scalar shrinkage operations. The
algorithm generalizes the IRLS framework and
also has an interpretation as a generalized expecta-
tion-maximization (EM) algorithm. Furthermore
the framework is applicable to a wide class of
structured overcomplete dictionaries beyond the
MCLT, where the dictionary can be described as
the concatenation of orthonormal bases.

The rest of this paper is set out as follows. In the
next section we discuss the concept of sparse
approximation. We then introduce our sparse
subband decomposition, based on the MCLT.
Using the fact that the MCLT is the union of two
orthonormal bases, we construct a new algorithm
which we have coined fast iterated re-weighted

sparification (FIRSP). In Section 4 we explore
numerically the efficacy of our technique on a
simple audio example where we also examine the
coding costs for the sparse MCLT approximation.
In Section 4.4 we extend the system, introducing a
dual-resolution MCLT dictionary that can effi-
ciently describe both transient and tonal compo-
nents of an audio signal. We conclude by illustrating
its potential for audio signal manipulation.
1While the sparsity measure for p ! 0 does not correspond

to an l0 norm, in practice, it appears to provide a good

approximation for it.
2. Sparse overcomplete approximations

Let F 2 CN�M define an overcomplete diction-
ary (M4N). Our aim is to determine an approx-

imate overcomplete representation, Fu ¼ x þ e, of
a signal x such that the coefficients, u, are sparse
and approximation error, e, is small. Note that
even when the approximation error is constrained
to zero, overcompleteness provides us with the
flexibility to search for a maximally sparse
representation [1].

Unfortunately, there are currently a plethora of
sparsity measures with little indication of their
relative merits. One interesting class, that has been
examined in the FOCUSS family of algorithms [3],
aims to minimize the following cost function:

u ¼ argmin
u

1

2v
jjx � Fujj22 þ l

XM

k¼1

jukj
p, (1)
where v is the variance of e and l is a scaling
parameter for the sparsity measure

PM
k¼1 jukj

p.
This measure is sometimes called the lp pseudo-
norm of u and has been shown to induce sparsity
as long as 0opp1. Here, by sparse we mean
(following [2]) that the solution has no more than
N non-zero coefficients. In practice we are looking
for approximations that have K5N non-zero
coefficients.
This optimization problem also has various

probabilistic interpretations [4,3,9], where the
coefficient prior is modeled as a generalized
Gaussian. The value of p can then be interpreted
as the degree of sparsity of the prior placed on un.
p ¼ 1 is equivalent to a Laplacian prior, while in
the limit p ! 0 Eq. (1) becomes:

u ¼ arg min
u

1

2v
jjx � Fujj22 þ

XM

k¼1

ln jukj (2)

corresponding to an improper prior on un.
1

The Laplacian prior (p ¼ 1) is also equivalent to
the basis pursuit de-noising (BPDN) solution
proposed by Chen et al. [1] and has the interesting
property that it is unique in both guaranteeing a
sparse solution (in the mild sense that KpN) while
also guaranteeing that the cost function is convex
and therefore has a unique minimum [1]. In
contrast, for po1, the cost function typically has
a large number of local minima. While the
algorithms presented in Section 3 below can
equally be applied with any value of p we have
so far found that the benefits of a guaranteed
single minimum do not compensate for the
mildness of the sparsity model. For this reason
we will predominantly concentrate on the more
severe model associated with p ! 0. In Section 3.3
we will discuss further the arguments for and
against this choice of p.

2.1. The MCLT as an overcomplete dictionary

As we are interested in representing audio
signals we must first select an appropriate dic-
tionary within which to work. For example it is
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well known that audio signals can be well
represented using modulated time-frequency trans-
forms such as Gabor dictionaries [12]. In con-
trast, however, state-of-the-art codecs for audio
signals typically use the modified discrete cosine
transform (MDCT) which is a critically sampled
orthonormal transform. Apart from not being
overcomplete there is also a lack of explicit phase
information in the MDCT transform. This intro-
duces a problem when trying to perform a variety
of linear and nonlinear signal processing tasks
within the transform domain (e.g., filtering, thresh-
olding, quantization).

Recently Malvar [11], introduced the MCLT to
provide a transform with explicit phase informa-
tion while being intimately linked to the MDCT.
For our purposes we are most interested in the
MCLT synthesis dictionary elements (‘atoms’)
which for the pth frame are defined as

fp;k½n	 ¼ fc
p;k½n	 þ ifs

p;k½n	, (3)

where

fc
p;k½n	 ¼ hp½n	

ffiffiffiffiffiffi
1

M

r

� cos ðn � apÞ þ
M þ 1

2

� �
k þ

1

2

� �
p

M

� �
,

fs
p;k½n	 ¼ hp½n	

ffiffiffiffiffiffi
1

M

r

� sin ðn � apÞ þ
M þ 1

2

� �
k þ

1

2

� �
p

M

� �
,

hp½n	 ¼ � sin ðn � apÞ þ
1

2

� �
p

2M

� �
,

ap is the start of the pth frame, k is the frequency
index which varies from 0 to M � 1 and M is the
frame length.

A signal x½n	 can be represented using this
dictionary by a weighted sum of the dictionary
elements, x½n	 ¼

P
p;k up;kfp;k½n	, where un;k are the

complex synthesis coefficients. However, since we
are only interested in real signals we can use the
alternative reconstruction formula:

x½n	 ¼ 2
X
p;k

cp;kf
c
p;k½n	 þ sp;kf

s
p;k½n	, (4)
where up;k ¼ cp;k þ isp;k. Thus the MCLT takes the
form of the union of the MDCT and the modified
discrete sine transform (MDST).
It is important to emphasize these two com-

plementary views of the MCLT.
(1)
 The MCLT can be viewed as a 2� over-
complete complex transform, similar to a short
time Fourier transform (STFT) with 2� over-
sampling in the frequency domain.
(2)
 A second interpretation is, as an overcomplete
transform that is the union of two real
orthonormal bases (MDCT and MDST) where
the imaginary coefficient values simply segre-
gate those for the second orthonormal basis.
This often makes algorithmic computation
substantially simpler as in the reconstruction
formula (4).
We will find subsequently that both view-
points will be useful at different stages of our
analysis.
2.2. Phase-invariance and sparsity

An important consideration in generating
sparse MCLT approximations for audio is that
the model should be approximately shift-inva-
riant. That is: the probability of a signal should
not change dramatically when the signal is
translated in time. For a 2� overcomplete complex
subband filterbank, shift-invariance can be ap-
proximated by imposing phase-invariance within
each subband (e.g., [13,11]). This concept is
similar to that of shiftability proposed by Simon-
celli [14]. Since the MDCT is a real valued
subband filter there is no such equivalent approx-
imation.
A phase-invariant probability model can

be imposed by selecting a prior that is only a
function of the magnitude of the coefficient,
puðup;kÞ / f ðjup;kjÞ, for some function f . In con-
trast, if the real and imaginary components
are treated independently we would be introduc-
ing a strong phase preference: i.e., preferring
either sine or cosine components to arbitrarily
phased signals.
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3. IRLS-based schemes for sparse approximations

One approach to optimizing the cost function
given in Eq. (1) is to use an IRLS based algorithm.
These algorithms have attractive convergence
properties when po1 (see [15]). We begin by
giving a brief description of the basic IRLS
algorithm, along with its interpretation in terms
of EM [16]. We then consider an efficient extension
that allows us to exploit the orthogonal structure
in the MCLT dictionary.

3.1. The basic IRLS scheme

Let W 2 RM�M be a non-negative diagonal
weighting matrix. A weighted least squares esti-
mate for u can be obtained through matrix
inversion as follows:

u ¼ ðvW�1 þ FHFÞ�1FHx (5)

solving the following problem:

u ¼ arg min
u

1

2v
jjFu � xjj22 þ

1

2
uHW�1u. (6)

We can also use this to solve Eq. (1) by iteratively
adapting the weighting matrix as a function of the
previous estimate for u. For example, to minimize
Eq. (2), we choose the weighting matrix at the ith
iteration to be:

W ðiÞ ¼ diagðjuði�1Þ
n j2Þ. (7)

As stated previously, Eq. (1) has a well defined
probabilistic interpretation as an instance of the
popular EM algorithm.

3.1.1. A probabilistic derivation

The interpretation of the IRLS algorithm as an
EM for hierarchical Gaussian models dates back
to the original paper on EM by Dempster et al.
[16].

Recall our model: Fu ¼ x þ e. We will assume
that the residual vector e is a set of independent
zero mean Gaussian samples with variance v. The
coefficients un will also be assumed to be indepen-
dent and drawn from a sparse distribution that can
be represented as a hierarchical Gaussian model:
pðunjwnÞ ¼ Nuf0;wng. That is: each coefficient has
its own variance wn which in turn is drawn from a
distribution pðwnÞ. The log posterior for this
model, given the values wn becomes:

log pðu; vjx;wÞ ¼ �
N

2
log v �

jjx � Fujj22
2v

�
1

2
uH diagðwÞ�1u þ const. ð8Þ

Our aim is to obtain a MAP estimate for u. To do
this we can apply the EM algorithm to marginalize
out the coefficient variances, wn. This requires
taking the expectation of Eq. (8) with respect to
pðwjuÞ. Denoting Efwnjung by w̄n the EM M-step
becomes:

ûðiþ1Þ
¼ ðvdiagðw̄ðiÞÞ

�1
þ FHFÞ�1FHx (9)

which is clearly a weighted least squares update.
The re-weighting procedure corresponds to the
E-step and it is the choice of pðwnÞ that governs
the nature of the re-weighting and the sparsity
of the marginal distribution for un.
Recall that the lp pseudo norms are equivalent

to using a generalized Gaussian prior on the
coefficients, un. That the generalized Gaussian can
be constructed as a hierarchical Gaussian model
was shown in [17]. Two values of p are of
particular interest. Choosing p ¼ 1 is equiva-
lent to using the exponential prior for wn,
pðwnÞ ¼ g=2 expf�wng=2g, where g is the hyper-
parameter that controls the scale. This results in
the following E-step:

w̄n ¼ Efwnjung ¼
1

g
junj (10)

which is equivalent to assuming Laplacian priors
on un giving the BPDN cost function.
Alternatively Figueiredo [9] has proposed the

use of a non-informative prior: pðwnÞ / w�1
n on the

variance parameters, which is equivalent to letting
p ! 0. This has two key advantages. First there is
no additional hyper-parameter to estimate and
second it results in a much more severe re-
weighting matrix:

w̄n ¼ Efwnjung ¼ junj
2 (11)

(or w̄n ¼ 2junj
2 if un is complex, as in the

MCLT).
If desired the EM framework also provides a

means of estimating the noise variance, v, within
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the maximization step:

v̂ðiÞ ¼
1

N
jjx � FûðiÞ

jj22. (12)

Subsequently, however, we will fix the value of v to
control the desired level of approximation.

Finally, we note that since the IRLS can be
formulated as an EM algorithm we automatically
know that it will exhibit the usual monotonic
convergence property of EM [16].

3.2. A generalized IRLS scheme

The main drawback with the IRLS solution is
that it requires an M � M matrix inversion to
solve the weighted least squares equations at every
iterate. This makes it prohibitively expensive for
practical use. A similar problem occurs in the
quadratic programming solutions to BPDN. Chen
et al. [1] proposed using a conjugate gradient
algorithm to estimate this inverse, however it turns
out that full matrix inversion is both unnecessary
and of no great advantage to an appropriate
partial solution to the weighted least squares
problem.

In EM theory it is well known that the
maximization step can be replaced by any opera-
tion that guarantees to increase the likelihood
function (decreases the cost function). One
such generalization is the expectation conditional
maximization (ECM) algorithm [18]. This replaces
the maximization step by a sequence of condi-
tional maximization (CM) steps that act on
partitioned subsets of the parameter space. The
nature of the EM theory means that there is a
great deal of flexibility in the ordering of the
various CM steps and the corresponding E step as
discussed below.

For the MCLT dictionary the natural parti-
tion to consider is the splitting of the dictionary
into the two orthonormal bases: F ¼ ðFc;FsÞ. Fc

and Fs thus correspond to the inverse MDCT
and inverse MDST, respectively. We will see that
the computational advantage of such a splitting
is that it avoids the expensive matrix inverse
calculation.

Consider the weighted conditional least squares
problem where we freeze the values of s and
optimize for c:

c ¼ ðvW�1 þ FT
c FcÞ

�1FT
c ðx � FssÞ. (13)

Since Fc is orthonormal FT
c Fc ¼ I and therefore

the matrix inversion reduces to a diagonal
shrinkage operator [12]:

cn ¼
wn

v þ wn

� �
� ½FT

c ðx � FssÞ	n (14)

where ½�	n refers to the nth element of the vector
and, with a slight abuse of notation, we are now
using a one-dimensional indexing of the MDCT
coefficients. An equivalent expression can be
calculated for the CM of s given c.
The iteration is finally completed by determining

the re-weighting calculation which has the same
form as for the basic IRLS algorithm.
In the implementation used in the examples

below the re-weighting step is performed after each
CM. One full iteration is therefore composed of
two CM steps and two re-weighting steps.
Examining this iteration we see that the computa-
tional cost is dominated by the need to map from
one transform domain to another (the cost of the
shrinkage and weight calculations are trivial by
comparison). Thus overall one iteration takes
approximately 4� the computation for a single
MDCT, which is orders of magnitude faster than
the basic IRLS or alternative strategies such as
BPDN.
Despite the fact that we are no longer solving

the full weighted least squares, the convergence of
the algorithm is not drastically reduced (see
Section 4 below). Similar observations for the
ECM algorithm have been made in other applica-
tions [18].
It is worth noting that there is a great deal of

flexibility in the order in which we perform the E
and CM steps. For example we could perform
repeated M-steps until convergence followed by an
E-step. This would have the advantage that the
asymptotic mapping could be derived analytically
and be similar to the work of Sardy et al. [19].
However, it does not reduce the computational
complexity.
Finally, the FIRSP algorithm is in theory

applicable to any dictionary that is the union of
orthonormal bases (for example see Section 4.4).
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Furthermore the generalized IRLS approach can
also be extended to other classes of dictionary (for
details see [15]).
0 100 200 300 400 500 600 700 800 900 1000
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Fig. 1. The real part of the k ¼ 20 atom (solid) is plotted along

side the imaginary part of the k ¼ 21 atom (dotted) within the

same analysis window. There is strong coherence between the

neighboring atoms as these functions become in phase at the

center of the frame.
3.3. Alternative strategies for sparse approximation

Before we illustrate the performance of the
proposed algorithm we consider two alternative
strategies for generating sparse approximations,
namely: orthogonal matching pursuit (OMP) and
BPDN. These two are of particular interest due to
a number of recent theoretical results that link the
OMP and BPDN solutions and the L0 maximally
sparse solution (the one with the fewest non-zero
coefficients). That is: when the dictionary is
sufficiently incoherent the unique OMP and
BPDN solutions coincide with the maximally
sparse solution (see for example [20,21]).

Unfortunately, there are two drawbacks. First
the computation time for OMP and BPDN can be
prohibitatively slow. Even when BPDN is imple-
mented using the above scheme it proves to be too
slow to produce competitive results.

The second, possibly more serious drawback is
that such guarantees only hold when the diction-
ary being used is sufficiently incoherent:

m :¼ max
iaj

jhfi;fjij51

and the signals being analyzed have a sufficiently
sparse representation. While it has been shown that
there exist large overcomplete dictionaries that are
very incoherent there is no guarantee that such a
dictionary exists in which the signals of interest are
sparse. Indeed the dictionary choice must be data
driven to ensure that we are likely to be able to
obtain a sparse representation. For audio, Gabor-
like dictionaries (such as the MCLT used here) seem
well-suited to this task, at least for the tonal
components within the signal. Unfortunately, the
MCLT transform has a coherence m � 0:5. The
most correlated atoms within the MCLT dictionary
occur between neighboring frequency bins within the
same synthesis frame, as illustrated in Fig. 1. This
implies that here the OMP and BPDN approaches
may well not find the maximally sparse solution.

Instead we choose a fast converging algorithm
and accept that we may only find a local minimum.
In practice the local minimum that is found
appears to always be a good one (and in our
experience better than the BPDN solution in terms
of number of non-zero coefficients as a function of
signal-to-noise ratio (SNR)).
4. Numerical experiments

To illustrate the FIRSP algorithm and the
power of MCLT based overcomplete representa-
tions of audio we now present some numerical
experiments. We begin by showing the speed with
which the algorithm can generate a sparse solution
to a real world (44.1 kHz sampling rate) audio
signal. We then explore the potential benefits that
may be realized from using such a sparse
representation in audio coding. Finally, we show
how the basic MCLT dictionary can be extended
to a dual-resolution time-frequency representation
while still being amenable to processing with the
FIRSP algorithm.

4.1. A simple audio example

We first apply the algorithm to a short extract
(approx. 6 s) from a guitar solo. The audio was
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Fig. 2. MCLT ‘‘spectrogram’’ of the guitar data (left) and the generative sparse MCLT approximation.
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Fig. 3. A sorted plot of MCLT coefficient amplitude for each

iteration of the FIRSP algorithm (solid lines—iterations

increasing from right to left) and the magnitude of the basic

MDCT coefficients are also shown (dashed).
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sampled at 44.1 kHz and we used an MCLT with a
frame size of 1024. Fig. 2 (left) shows the MCLT
‘‘spectrogram’’ for the audio signal. The signal was
then processed using a fixed v ¼ 10�5 and 10
iterates of the FIRSP algorithm. In contrast to the
initial redundant basis only 6% of the complex
coefficients remained non-zero. The resulting
approximation had a SNR of: 38 dB. The gen-
erative MCLT ‘‘spectrogram’’ for the sparse
coefficients is also shown in Fig. 2 (right).

The evolution of the algorithm is best seen by
plotting the size of the coefficients sorted in order
of magnitude for each iterate, as in Fig. 3. Clearly
most of the coefficients shrink to zero in a small
number of iterats.

4.2. Coding costs for the sparse MCLT

We next make a preliminary examination of the
coding costs associated with the sparse MCLT in
comparison with the traditional MDCT trans-
form. We will concentrate on relatively simple
coding structures and emphasize that we are not
arguing that the following coding strategies are
competitive with state-of-the-art audio coding.

As with traditional transform coding, a high
degree of sparsity in the coefficients means that a
substantial part of the coding cost can be taken up
coding the significance map (the map identifying
which coefficients are non-zero) [12]. We therefore
consider the coding rate, R in two parts:

R ¼ Rsig_map þ Rcoef ,

where Rsig_map measures the total bit budget
required to code the significance map and Rcoef

measures the number of bits required to code the



ARTICLE IN PRESS

10-2 10-1 100
10

15

20

25

30

35

40

45

50

55
Coding Cost vs. SNR

Coding cost (bits per sample) for the significance map

S
N

R

MDCT
MDCT run-length encoded
sparse MCLT
sparse MCLT run-length encoded

Fig. 4. A plot of signal-to-noise ratio against the significance

map coding cost for: the MDCT with independent coding

(solid); the sparse MCLT with independent coding (dashed); the

MDCT with run-length encoding (dot-dashed); and the sparse

MCLT with run-length encoding (dotted).

M.E. Davies, L. Daudet / Signal Processing ] (]]]]) ]]]–]]]8
quantized non-zero coefficients. We begin by
considering the cost of coding the significance
map.

4.2.1. Coding the significance map

If we treat the significance of each coefficient as
independent, we can estimate the rate, Rsig_map, as
the sample entropy, Hsig_map, of the significance
map:

R ¼ Hsig_map þ Rcoef ,

where Hsig_map ¼ �ðps log ps þ ð1� psÞ logð1� psÞÞ

and ps is the probability of a coefficient being
non-zero.

To measure Hsig_map for the sparse MCLT
approximation we used the same audio sample
examined in the last section. Again the frame
size was set to 1024 but this time 50 iterations
of the FIRSP operator were applied to gua-
rantee absolute convergence. We calculated the
SNR for a range of sparse approximations using
different v and plotted these against the coding
cost for the significance map. For comparison
we also included the SNRs for the best
K-coefficient MDCT approximation for the signal
over the same sparsity range. The graphs in Fig. 4
show that there is approximately a 5 dB gain
in using the sparse MCLT approximation over the
MDCT for a wide range of bit rates. Note that
both the MDCT and the MCLT have the same
size significance maps and are thus directly
comparable.

Further improvements in coding can be ob-
tained by incorporating structure within the
significance map into the coding strategy. Looking
at Fig. 2 we see that the significance map exhibits
strong persistence in time for each subband (other
structure due to onsets and harmonicity is not
considered here). The MDCT also exhibits this
type of structure but to a lesser extent.

A relatively simple way to code this structure is
to use run length encoding along each subband
followed by entropy coding. This has a dramatic
effect on the coding cost, as shown in Fig. 4. Here
it can be seen that both the MDCT and the sparse
MCLT gain substantially from run-length encod-
ing with a slightly bigger improvement (in
percentage terms) for the MCLT approximation.
4.3. Coding the non-zero coefficients

So far, of course, we have ignored the coding
cost of the quantized non-zero coefficients values,
Rcoef . As above, we consider a relatively simple
coding strategy that treats each coefficient inde-
pendently. We can then estimate the coding cost
to be:

R ¼ Rsig_map þ psHcoef ,

where Hcoef is the sample entropy of the non-zero
quantized coefficients values (measured per sig-

nificant coefficient). To do this we now need to
introduce quantization schemes for the two
methods. For the MDCT we have used a uniform
quantizer with a double-sized zero bin [12]. To
construct a similar quantizer for the complex
MCLT coefficients we chose to use an uncon-
strained polar quantizer (UPQ) [22]. The coeffi-
cient amplitude is the same as the MDCT
quantizer. The phase components is then uni-
formly quantized but with the number of phase
quantization bins, ny, being dependent on the
amplitude value such that: nyðkÞ ¼ 6ðk þ 1

2
Þ for

the kth amplitude region (with the exception of the
zero bin, k ¼ 1, where there is no phase).
This UPQ is designed to space the regions
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Fig. 5. A plot of signal-to-noise ratio against the total coding

cost for: the MDCT (solid) and the sparse MCLT (dashed) with

independent significance map coding; and the MDCT (dot-

dashed) and the sparse MCLT (dotted) with run-length

encoding for the significance map.

Table 1

Coding cost breakdown for non-zero coefficients (entropies in

bits per significant coefficient)

MDCT MCLT

Number of non-zero coefficients 9353 5915

Total number of coefficients 262144 262144

Amplitude entropy 3.59 3.77

Sign/phase entropy 1.00 4.60

Coefficient entropy 4.59 8.37

Total cost per sample, Rcoef 0.164 0.189

M.E. Davies, L. Daudet / Signal Processing ] (]]]]) ]]]–]]] 9
approximately uniformly to enable subsequent
efficient use of entropy coding. When calculating
the sample entropy of the MCLT, to avoid the
problem of limited data, we calculated the sample
entropy for the coefficient amplitudes only and
then assigned a cost of log2 nyðkÞ bits for the phase.

For the MCLT we also need to select an
appropriate quantization resolution for a given
approximation level v. For this we use the
following informal argument. The signal x is fully
represented by the coefficients, u, and the residual,
e. A possible coding strategy is to code both
separately to the same resolution. However, while
u is expected to be sparse and therefore provide
good energy compaction, the residual, e is assumed
Gaussian and is therefore a less efficient represen-
tation. A natural choice of quantization resolution
is to select a level such that with high probability
the residual term is coded as zero (thereby
requiring zero bits). Interestingly this is the same
requirement that has been proposed for threshold
selection in signal de-noising [12] where it can be
shown that setting T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2v loge N

p
should with

high probability be just above the level of the
noise. We adopt this value here, setting the
amplitude bin size to T . We also note that
experimentally this does indeed appear to be close
to optimal choice.

The results for the total coding cost are
presented in Fig. 5. While there is still a small
amount of coding gain for the MCLT at very low
bit rates (not of general interest for practical
audio, due to poor sound quality), in general the
MCLT performs slightly worse than the MDCT.
To see why this is we look in detail at the coding
cost for SNR � 27 dB ðv ¼ 10�4Þ where the rate-
distortion performance is similar for both meth-
ods. The breakdown of the coefficient coding cost
is displayed in Table 1. From the table we can see
that the cost of coding the amplitude in either case
is virtually identical. It is therefore the additional
phase cost that negates the sparsity coding gain for
the MCLT.

While our current results show no big coding
gain for the sparse MCLT it still looks a
competitive representation from these initial find-
ings. Furthermore, for the MCLT, we should
expect there to be more exploitable structure
within the coefficient values themselves. For
example when a subband is occupied by a single
partial from a note, the temporal phase within that
subband will be highly predictable (cf. the phase
vocoder). Similarly we might expect that the
amplitude will vary smoothly in time along the
note. It is more difficult to see how this structure
could be exploited within the MDCT transform
where, due to the lack of explicit phase informa-
tion, there will be a complicated fluctuation in
coefficient values within a subband. The MCLT
structure also makes the inclusion of perceptually
weighted cost functions substantially simpler.
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Fig. 6. Time domain plots of: (a) the original signal; (b) the

approximated transient component; (c) the approximated tonal

component; and (d) the residual error.
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4.4. A dual-resolution time-frequency

approximation

Sparse overcomplete time frequency representa-
tions also have a great potential in providing
access to higher level information about an
audio signal, such as distinguishing between
steady state tones and note onsets. This in turn
can be extremely useful for signal processing
applications such as audio modification, source
separation, note detection/recognition, and auto-
matic music transcription. Here we show that the
framework developed in this paper easily extends
to allow an additive dual-resolution signal approx-
imation.

The MCLT dictionary can easily be extended to
include multi-resolution representations, at the
cost of a larger dictionary, by taking the union
of multiple MCLT dictionaries with differing
frame sizes. Here we consider two distinct resolu-
tions: an MCLT with a frame size of 2048 samples
(approximately 46ms) and a frame size of 256
samples (approximately 6ms). Since we still have a
union of orthonormal bases we are able to apply
the same fast iterative sparsification algorithm
presented in Section 3.2. Unfortunately a naive
implementation of this can result in very slow
convergence. One solution appears to be a
judicious choice of initial condition. If we initialize
the coefficients by sharing the signal energy
equally between all 4 bases then convergence is
painfully slow (several hundred iterates!). This is
because the signal induces large coefficients in
all bases. The transfer of energy is then achieved
by small repeated shrinkage operations. We found
that a better initialization was to begin with
only the long frame MCLT representation and
apply a couple of iterates of the shrinkage
operator. The short frame MCLT bases were then
included and used initially to model the residual of
the long frame approximation. This has the effect
of initializing the second set of coefficients to fit the
signal that is most poorly represented by the sparse
long frame MCLT (with a similar flavor to the
hybrid coding scheme used in [23]). The resulting
algorithm appeared to converge in 30–50 iterates.
An alternative approach, proposed in [1], that is not
explored here would be to initialize the coefficients
with the best basis algorithm, the matching pursuit
(see e.g., [10]) or any other (fast) approximate
sparse representation.
To demonstrate our dual-resolution approxima-

tion we applied the algorithm to part of an MPEG
standard test signal. This is a particularly good
signal for our purposes since it contains strong
ringing tones as well as sharp transients. Fig. 6
shows plots of: the original signal, the tonal
component (formed from the long frame MCLT),
the transient component (formed from the short
frame MCLT) and the residual. The appro-
ximation parameter, v, was set at 10�5 and the
algorithm was run for 50 iterates. We can see that
the addition of the short frame MCLT has allowed
us to not only approximate the transients of the
signal much better, but more importantly, it has
provided us with a separation of the transient
components which are localized in time but not
frequency and steady state components which
are localized in frequency but not time, as
illustrated in Fig. 7. This representation, although
not perfect, simultaneously provides us with an
excellent time and frequency resolution for the
signal transient and tonal components. We now
show how the decomposition can subsequently be
used for audio modification.
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Fig. 7. The significance map for the transient components (top left); the significance map for the tonal components (top right); the

combined significance map (bottom left); and, for comparison, the spectrogram for the original signal (bottom right).
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4.4.1. Note extraction

A difficult task in such an audio signal is the
extraction of a single note. If we were using a fixed
resolution time frequency approximation (irre-
spective of sparsity) then without additional high
level information the extraction of a single note
would have to be done using some form of time-
frequency mask. However, this will introduce
distortions whenever notes overlap in the time
frequency domain. For our signal this would be
most acute where the tones intersect with the
transients.
In contrast, because we have a fully additive
representation that maps the transient and the
tonal components to different spaces, we can
extract notes even where transient and tonal
components intersect.
To demonstrate this we manually grouped TF

elements from both the transient and steady state
dictionaries associated with the seventh note in the
signal. To extract the note we simply zero these
coefficients (applying two masks separately to the
short and long frame coefficients. Fig. 8 shows plots
of (a) the signal with the note removed and (b) the
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note itself. The resulting audio sounded as though
the note had never been present. That we have not
compromised overlapping notes can be seen in Fig. 9
where the spectrograms of the sparse approximation
with and without the seventh note are shown. There
is clearly huge potential for extending this to more
complex modifications. For example we could easily
move the note position (to possibly correct a mis-
timed note) or alter its sound before replacing it.
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Fig. 8. Time domain plots of: (a) the sparse reconstruction; (b)

the reconstruction with the seventh note removed; and (c) the

removed note.
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Fig. 9. The spectrograms for: the sparse approximation (top); an
5. Conclusions

In this paper we have introduced an efficient
means of generating a sparse approximation for
audio signals in the form of an overcomplete
subband representation. The method is sufficiently
fast to enable the processing of full CD quality
(44,100 samples per second) audio data, without
downsampling. Indeed the proposed method is
orders of magnitude faster than competitive
techniques such as BPDN.
We further examined the potential of this

representation as the basis of a sparse coding
strategy. The high degree of sparsity means that
there are substantial savings in encoding the
significance map for the signal. However, the full
coding cost is a function of both the significance map
and the cost of coding the values of the significant
coefficients. While we have made some preliminary
observations in this direction, to make a full and fair
comparison with state-of-the-art audio coders we
would need to develop a complete coding scheme,
which is beyond the scope of this paper. The
approach advocated here tentatively provides a
structure that lies in-between traditional transform/
subband coding, such as MP3, and low rate
parametric codes, such as the MPEG HILN coder,
with the possibility of gaining benefits from both
approaches.
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d the same signal with the seventh note removed (bottom).
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Finally we have shown that the generalized
IRLS framework is very flexible and, in particular,
can be extended to include multi-resolution time-
frequency approximations. These could be used to
further improve the coding of audio signals or, as
demonstrated here, be used in signal separation
and modification applications.

Our current research is focusing on a number of
open questions and problems that have arisen
from this work and we end by mentioning a
number of these that we feel are of particular
interest to the field.

How overcomplete should a dictionary be? Cur-
rently in the work on overcomplete representations
there has been little said about how overcomplete
the dictionary should be (2� ? 10� ? 100� ? . . .).

What are good measures of quality for a

dictionary? A fair amount of attention has been
paid to the incoherence of a dictionary and how it
effects the complexity of determining sparse
representations. However, we believe that there is
a need for a finer tool to determine the perfor-
mance of a given dictionary. In particular, such a
measure should also probably be signal dependent
(see for example [24]).

Extensions to other signal types. We have
recently also considered the use of generalized
IRLS algorithms to images [15]. Here, the
equivalent dictionary to the MCLT is Kingsbury’s
dual tree complex wavelet transform, however
other dictionaries might prove more appropriate.

Extensions to structured priors. We saw in Section
4.2.1, that even more parimonious representations
can be obtained by exploiting the structure of the
significance map. So far this structure has been
treated separately to the generation of the sparse
approximation. However, it would be interesting to
develop algorithms that simultaneously generated
structured and sparse approximations.
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