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Abstract. This paper presents some techniques for the extraction of
transient components from a musical signal. The absence of a unique
definition of what a “transient” means for signals that are by essence
non-stationary implies that a lot of methods can be used and sometimes
lead to significantly different results. We have classified some amongst
the most common methods according to the nature of their outputs.
Preliminary comparative results suggest that, for sharp percussive tran-
sients, the results are roughly independent of the chosen method, but
that for slower rising attacks - e.g. for bowed string or wind instruments
- the choice of method is critical.

1 Introduction

A large number of recent signal processing techniques require a separate pro-
cessing on two constitutive components of the signals : its “transients” and its
“steady-state”. This is particularly true for audio signals, by which we mean
primarily music but also speech and some environmental sounds. Amongst all
applications, let us mention : adaptive audio effects (enhancement of attacks
[1], time-stretching[2], . . . ), parametric audio coding [3] (the transients and the
steady-state are encoded separately), audio information retrieval (transients con-
tains most of the rythmic information, as well as specific properties for timbre
identification). Furthermore, transients are known to play an important role in
the perception of music, and there is a need to define perceptually-relevant anal-
ysis parameters that characterize the transients.

However, there is a plethora of methods for the Transient / Steady-State
(TSS) separation, with little indication of their relative merits. This arises from
the fact that there is no clear and unambiguous definition of what a “transient”
is, not what “steady-state” means for musical signals that are by essence non-
stationary. In mathematical terms, this is an ill-posed problem, that can only
lead to some tradeoffs. Indeed, we shall see that every definition leads to a
specific decomposition scheme, and therefore different results in the separated
TSS components. The goal of this paper is to make a review of some commonly
used techniques, together with comparative results. Some of these methods are
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recent developments, but others, that are well described in the literature, are
mentioned here for the sake of completeness. Although we do not claim any
sort of exhaustivity, we hope that we have covered the most important ones
that have been successfully used for music. Obviously, a lot of other techniques
could be used, that are not described in this article, since they were developed
for other classes of signals (e.g. transient detection in duct flows, in underwater
acoustics, in engine sounds). Our choice is to focus on musical signals, with a
special emphasis on methods where the author had some hands-on experience,
and where the computational complexity is reasonable so that they could be
realistically applied to real full-band audio signals.

At this point, we should make it clear that the problem of TSS separation is
related to, but distinct from, other classical musical signal processing tasks that
are the classification of segments into transients or steady-state (for instance the
way it is done in subband audio codecs such as MPEG 1 layer III, for the decision
between the long and short window mode), or the binary TSS segmentation in
time. On the contrary, all methods suggested here assume an additive model for
the sounds, where transients and steady-state can in general exist simultaneously.
TSS separation is also different from the problem of note onset detection [4],
although it is clear that they share common methods.

The different methods can be grouped into 3 classes (even though this clas-
sification is certainly not unique), depending on the structure of their outputs
(see table 1).

The fist class of methods, amongst the simplest in their principle, are based
on linear prediction (section 2). They provide a decomposition of the sound into
its excitation signal and a resonating filter. If the filter has been well estimated,
most of the energy of the excitation signal is located at attack transients of
signals.

The second class of methods (section 3) do not define transients directly,
but rather extract from the signal its “tonal” part (also called sinusoidal part).
If this extraction is successfully applied, the residual signal exhibits, as in the
linear predictions methods above, large bursts of energy at attack transients. It
also contains some slowly-varying stochastic residual.

Finally, the last class of signals (section 4) assume some explicit model for
the transients, and the output of the model is 3 signals, that can be summed
to reconstruct the original : one for the Sinusoidal part, one for the transients,
one for the Residual (these models are often called STN models, for Sines +
Transients + Noise).

Some results are presented in section 5, where some of the above approaches
are compared on test signals. A tentative guide for the choice of a method most
suitable for the problem at hand is finally presented, based on their pros and
cons, that have to be balanced with computational complexity. The last section
of this article (section 6) presents conclusions and future directions for research.
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Table 1. Different transient extraction methods can be classified according to their
outputs. For each class of methods, the signal related to the transients is highlighted

Method Outputs Section

Linear prediction Resonance filter coefficients Excitation signal 2

Tonal extraction Tonal signal Non-tonal signal 3

STN models Tonal signal Transients signal Noise signal 4

2 Methods based on linear prediction

In this class of methods, the distinction between transient and steady-state is
related to the notion of predictability. A steady-state portion of the signal is one
where any part of this segment can be accurately predicted as soon as some
small sub-sequence (the training sequence) is known.

Linear prediction in the time domain is a widely-used technique, since it is
typically the core of most speech coding technologies. An the simplest auto-
regressive (AR) case, the underlying idea is to consider the sound as the result
of the convolution between an excitation signal and an all-pole filter. The Yule-
Walker equations allow the estimation of the best order-P filter, that minimizes
the energy of the prediction error. Once the filter is estimated, the excitation
signal is simply the result of the filtering of the signal by the inverse filter (which
only has zeros and therefore is stable). For steady-state parts of the sounds, the
excitation signal can usually be simply modeled, for instance as an impulse train
for voiced phonemes. More generally, this excitation signal will have a small
local energy when the signal is highly predictable (steady-state portions), but
energetic peaks when the audio signal is poorly modeled by the AR model. This
typically corresponds to non-predictible situation, such as attack transients (or
decay transients e.g. in case of a damper).

The obtained decompositions has a physical interpretation for source - filter
models : when the excitation has a flat frequency response (impulse or whte
noise), the AR filter is a good estimate of the instrument’s filter. In the more
general case when the excitation does not have a flat spectrum, it nevertheless
provides a qualitative description of temporal and spectral properties of the
sound, even though the physical interpretation is strictly lost.

Usually, this method gives good results when the signals are the result of some
(non-stationary) excitation, filtered and amplified by a resonator. However, it has
strong limitations : first, the order estimation (order of the filter) has to be known
or estimated beforehand, which can be a hard task. Second, the estimation of
the resonant filter will only be successful only if the training sequence does not
contain a large portion of transients, and this makes the estimation on successive
notes sometimes not reliable. However, this method is very well documented and
easy to use in high-level DSP environments such as Matlab, and can be quite
accurate on isolated notes.
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Further extensions can be designed, for instance with auto-regressive with
moving average (ARMA) models, but in this case the complexity is increased,
both for the parameter estimation and for the inverse filtering that recovers the
excitation signal.

3 Methods based on the extraction of the tonal content

In this class of methods, as in the linear prediction methods above, there is no
explicit model for the transients. The goal here is to remove from the signal its
so-called “tonal” or “sinusoidal” components. The residual is then assumed to
contain mostly transients.

3.1 Segmentation of the Short-Time Fourier Transform

A natural way of expanding the above extraction methods is by using time-
frequency analysis. The simplest implementation is the Short Time Fourier
Transform (STFT), which provides a regularly-spaced local frequency analy-
sis. Now, within each frequency subband, it is possible to perform the prediction
search within each frequency band. The simplest model is based on the so-called
“phase vocoder” [5], originally designed to encode speech signals. For the task of
TSS separation, each time-frequency discrete bin will be labelled as ”transient”
(T) or ”steady-state” (SS), and the underlying assumption is that we can ne-
glect the influence of time-frequency bins that have a significant contribution in
both domains. Note that we keep the terminology “steady-state” employed in
the original papers, although the word “tonal” would be here more appropriate.
After labeling, each signal, transient or steady-state, is reconstructed using only
the corresponding time-frequency bins.

The simplest criteria for the identification of tonal bins is based on phase
prediction in a given frequency bin k [5]. On steady-state portions of the sound,
the (unwrapped) phase φn (n stands for the index of the time window) evolves
linearly over time (hence the definition of instantaneous frequency as time deriva-
tive of the phase). Now, one looks at predicting the value of the phase φn in the
current window, knowing its past values. A first-order predictor gives :

φpred
n = 2φn−1 − φn−2 (1)

Now, φpred
n is compared to the measured φn, and the labeling is based on the

discrepancy between these two values :

Time-frequency bin (k, n) of type

{

SS if |φpred
n − φn| < ε

T otherwise
(2)

where ε is a small constant that defines the tolerance in prediction error, for
instance due to slight frequency changes, and it has to be adapted to the analysis
hop size (number of samples between two analysis windows). Obviously, this
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method can be seen as an extension of the linear prediction methods (section 2),
as here a -basic- predictor is applied in every frequency bin.

More recently, this method has been refined in a few directions. It has been
shown [2] that the results are significantly improved when processing the results
in different subbands (with increasing time resolution at high frequencies), as
well as by using an adaptive threshold for ε in equation 2. For onset detection
purposes, the method has been further extended by using a complex-valued
difference [6] that not only takes the phase difference into account, but also the
magnitude (attack onsets are usually characterized by large jumps in amplitude).

3.2 Methods based on parametric representations : Sinusoidal

models and refinements

Parametric representations assume a model for the signal, and the goal of the
decompositions is to find the set of parameters that allow, at least approximately,
to resynthesize the signal according to the model. For speech / music signals, it is
natural to assume that the signals are mostly composed of tonal -i.e. sinusoidal-
components, and here transients are defined as part of the non-tonal residual.

The simplest of this model was originally proposed by McAulay-Quatieri [7]
for speech signals, where the sound is seen as a linear combination of a (relatively
small) number J of sinusoids :

x(t) ≈

J
∑

j=1

Aj(t) sin (ϕj(t)) (3)

where ϕj(t) =
∫ t

0
ωj(τ)dτ + ϕj(0) represents the phase of the j-th partial. The

parameters (Aj , ωj , ϕj) for each partial sinusoid are assumed to evolve slowly
over time, hence their values only have to be estimated frame-by-frame.

When applied to music signals, the residual contains all the components that
do not fit into the model : stochastic components, or fast-varying transients.
For general music processing purposes, this model has been refined to take into
account the stochastic nature of the residual (Spectral Modeling Synthesis or
SMS [8]).

3.3 Methods based on subspace projection

High resolution methods allow a precise estimation of exponentially damped
sinusoidal components in complex signals. As in the linear prediction case, this
model is physically motivated since exponentially-damped vibrations are the
natural free response of oscillatory systems. The model is as follows :

x(t) =
K

∑

j=1

Ajz
t
j + n(t) (4)

where Aj is a complex amplitude, zj = eδj+i2πfj is a complex pole that represents
both the oscillation at frequency fj but also the damping through the δj term,
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and n(t) is a noise term that is assumed white and gaussian. The principle of
high resolution techniques is to estimate the values of all zj through numerical
optimization techniques. The obtained resolution is typically much higher than in
the simple Fourier case. Specific methods have been proposed, that offer a better
robustness to noise than the standard Pisarenko or Prony estimations methods.
In particular, ESPRIT [9] and MUSIC [10] reduce this task to an eigenvector
problem. When the number K of components is known, the span of the K

obtained eigenvectors is called the “signal space”, its complement is called the
“noise space”. Projecting the signal onto these 2 subspaces provides a natural
decomposition of the signal into its tonal and non-tonal components. YAST
[11], a recent variant of these methods for time-varying systems, is particularly
suitable for music signals since it allows a fast processing of large-size signals.
Note that the white noise hypothesis is generally not verified, in which case
the processing has to be performed in separate subbands. Also, the number of
components has to be known or estimated, and therefore the best estimates are
obtained on isolated notes, where the number of components does not change
over time.

4 Sines + Transients + Noise models

Three-components decompositions of the sounds have become very popular in
audio coding, especially in the framework of MPEG-4. The aim is to decompose
the file into three additive components, the tonal or sinusoidal component, the
transients, and a slowly-varying wide-band stochastic component called “noise”.
The extraction can be done sequentially, first by a tonal component extraction
as in section 3, and then by a transient processing on the non-tonal part. Alter-
natively, the separation can be done simultaneously, which usually gives better
results but requires more computational power.

4.1 Sequential estimation of tones with hybrid dictionaries

In this TNS framework, the simplest method for TSS is to estimate each com-
ponent at a time, first transient and then steady-state, or vice-versa. This is the
basis for hybrid methods, that make use of two different orthogonal transforms.
In the Transient Modeling Synthesis (TMS) scheme [3], the tonal part is first
extracted by taking the large coefficients of a Modified Discrete Cosine Trans-
form (MDCT). In a dual way, transients are analyzed in a pseudo-time domain
constructed by taking the Fourier transform of the discrete cosine coefficients.

In [12], the tonal part is first estimated using the largest Modified Discrete
Cosine Transform (MDCT) coefficients of the signal. Transients are then es-
timated by the largest Discrete Wavelet Transform (DWT) coefficients of the
signal.

These methods are very simple, but suffer from two drawbacks: first, each
component (T or SS) biases the estimate of the other component ; and second,
at each stage the choice of the threshold between large “significant” coefficients,
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and small “residual” coefficients is difficult. Although they may provide satisfac-
tory results in some simple cases, the above limitations call for a simultaneous
estimation of both TSS components, which is the topic of the next sections.

Simultaneous estimation by adaptive time-frequency resolution With
adaptive time-frequency analysis, it is possible to obtain estimation of differ-
ent components. the idea is to adapt locally the resolution of the transform to
the signal. The choice of the resolution is based on some sparsity measure, for
instance Shannon-like entropy measures. A simple version of this is the Best
orthogonal Basis algorithm [13], where a multiresolution transform that has a
tree-like structures (for instance, wavelet packets) adapts locally its resolution
in time or frequency.

More recently, this idea has been extended and applied to music TSS sepa-
ration, through “Time-frequency jigsaw puzzles” [14]. Here, this adaption step
is made even more locally, in so-called super-tiles of the time-frequency plane.
The algorithm is run iteratively until some convergence is reached. At every
iteration, the algorithm finds, in each super-tile, the optimal resolution, trans-
forms the signal accordingly, and subtracts the largest coefficients. As in many
methods above, the choice of the threshold that governs, for a set of transform
coefficients at a given resolution, what is “significant” and what is not is a critical
point based mostly on empirical evidence.

4.2 Simultaneous estimation by sparse overcomplete methods

The goal of sparse overcomplete methods is to decopose the signal x as a linear
combination of fixed elementary waves, called “atoms” :

x =
∑

k

αkϕk , (5)

where αk are scalars, and ϕk are the atoms drawn from a dictionary D. In finite
dimension, the dictionary D is said overcomplete when it spans the entire space
and has more elements than the dimension N of the space. In this case, there
is an infinity of decompositions of the form (5), and one would like to find one
that is sufficiently sparse, in the sense that a small number K ≪ N of atoms
provide a good approximation of the signal :

x ≈

K
∑

j=1

αkj
ϕkj

, (6)

If the dictionary is composed of two classes of atoms D = S ∪ T , where
S = {gi} is used to represent the tonal components of the sound (for instance
long-window Gabor or Modified Discrete Cosine Transform atoms), and T =
{wi} is used to represent the transient part of the sound (for instance short-
windows Gabor atoms, or wavelet atoms), a sparse approximation of the signal
will provide a natural separation between transients and tones. In this case,
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the noise is simply the approximation error, due to components that do not
belong to either class, and the tonal layer (resp. the transient layer) is the partial
reconstruction in the signal using only atoms in S (resp. atoms in T ).

However, for general overcomplete dictionaries, finding a good sparse ap-
proximation is a non-trivial task, and indeed it has been shown that finding
the optimal K-terms approximation of the signal x is a NP-hard problem [15].
Many recent signal processing techniques have emerged recently (Basis Pursuit,
Matching Pursuit, FOCUSS, . . . ), and we will here only a few of them that have
been specifically applied to the TSS problem.

Matching Pursuit and extensions The Matching Pursuit [16] is an iterative
method that selects one atom at a time. At every iteration, it selects the “best”
atom ϕk0

, i.e. the one that is the most strongly correlated with the signal:
k0 = argmaxk |〈x, ϕk〉|. The corresponding weighted atom is then subtracted
from the signal x ← x − 〈x, ϕk0

〉ϕk0
and the algorithm is iterated until some

stopping criteria is reached (e.g. on the energy of the residual). This algorithm
is suboptimal in the sense that, although it chooses at every iteration the atom
that minimizes the residual energy, there is in general no guarantee that the set
of selected atoms provide the best sparse approximation of the form (6). How-
ever, Matching Pursuit has become quite popular, mainly due to its simplicity,
but also because experimental practice shows that in most cases the obtained
decompositions are close to optimal (at least for the first few iterates).

For the sake of TSS separation, this algorithm has been extended into the
Molecular Matching Pursuit [17], that at every iteration selects a whole group
of neighboring atoms, called “molecule”. The dictionary D is, as in the above
hybrid model, the union of a MDCT basis (for tones) and a DWT basis (for
transients), and a molecule is only composed of one type of atoms. Besides
a reduced computational complexity, selecting molecules improves significantly
the TSS separation over the original matching pursuit: first, it prevents isolated
large atoms to be tagged as significant ; and second, it forces low-frequency
large-scale components, that by themselves could equally go into transients or
tones, into only one of these components according to the local context.

Global optimization techniques When the above results are not satisfactory,
it may be desirable to use algorithms that choose a globally optimal or near-
optimal solution, for a given optimality criteria. The problem can usually be
written as a minimization problem:

u = argmin
u
||x− Φu||22 + λ‖u‖pp (7)

where Φ is the (rectangular) matrix of our overcomplete basis, and λ is a scaling

parameter for the sparsity measure ‖u‖pp =
∑M

k=1
|uk|

p, with 0 < p ≤ 1.
The resolution of this problem typically involves very high computational

costs. Many such techniques have been proposed in the literature, such as Basis
Pursuit or FOCUSS. Amongst them, the Fast Iterated Reweighted SParsifier
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(FIRSP) [18] has been successfully applied to audio TSS separation. The princi-
ple is to use the reweighted least squares algorithm for the optimization problem
(7) with p→ 0 (this enforces a strong sparsity). For a practical implementation,
this problem is reset in the Expectation Maximization (EM) framework. In gen-
eral, this requires at every iteration the inversion of the matrix Φ, which can be
very costly for large matrices.

However, this algorithm is of real practical use when the dictionary is the
union of orthonormal bases, since in this case each EM iteration is replaced
by a series of Expectation Conditional Maximizations within each orthonormal
subspace, and the above matrix inversion reduces to a scalar shrinkage. Here,
the strongly reduced computational complexity makes it a realistic choice for
processing long audio segments. Further details can be found in [18, 19]. For
TSS separation, the union of 4 orthonormal bases has been used, a long-window
Modified Discrete Cosine Transform (MDCT), a long-window Modified Discrete
Sine Transform (MDST), a short-window MDCT and a short-window MDST.
After a few FIRSP iterations, the transients’ energy is mostly concentrated on
the short-windows transforms, and the SS in the long-windows transforms. Note
that other orthogonal transforms can be used, for instance discrete wavelets for
the transients ; however, preliminary results suggest that results are quite similar
on most typical test signals.

Simultaneous estimation by adaptive time-frequency resolution With
adaptive time-frequency analysis, it is possible to obtain estimation of differ-
ent components. the idea is to adapt locally the resolution of the transform to
the signal. The choice of the resolution is based on some sparsity measure, for
instance Shannon-like entropy measures. A simple version of this is the Best
orthogonal Basis algorithm [13], where a multiresolution transform that has a
tree-like structures (for instance, wavelet packets) adapts locally its resolution
in time or frequency.

More recently, this idea has been extended and applied to music TSS sepa-
ration, through “Time-frequency jigsaw puzzles” [14]. Here, this adaption step
is made even more locally, in so-called super-tiles of the time-frequency plane.
The algorithm is run iteratively until some convergence is reached. At every
iteration, the algorithm finds, in each super-tile, the optimal resolution, trans-
forms the signal accordingly, and subtracts the largest coefficients. As in many
methods above, the choice of the threshold that governs, for a set of transform
coefficients at a given resolution, what is “significant” and what is not is a critical
point based mostly on empirical evidence.

5 Comparative results

We have compared extraction results for 3 recent methods

– the YAST high-resolution method (paragraph 3.3). The signal is processed
in 2500 Hz equal-width subbands, with 10 to 20 sinusoidal components par
subband;
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– the adaptive phase-vocoder approach (paragraph 3.1), described in [2];
– the jiigsaw puzzle approach (paragraph 4.2), in the variant TFJP2 described

in [14].

Two soundfiles were tested, that have very different transient behavior: a
glockenspiel, where the attacks are very sharp (the energy rising time is of a few
ms); and a trumpet, where the energy rises on much longer time-scales (typically
50 ms, but this can extend to much higher values).

Separation results are presented in figures 1 and 2. On the glockenspiel exam-
ple (figure 1), the results are quite similar for all three methods : the transient
components exhibits sharp, high-amplitude peaks at note onsets. This is the
typical case where all the definitions roughly agree on what a transient is.

On the contrary, the trumpet example exhibits very significant differences
between the two methods. The YAST algorithm provides large energy bursts at
the onset of notes, and smaller ones at their termination. The adaptive phase
vocoder tends to capture more of the subtle variations within a note (see for
instance the vibrato in the 6th note starting at about 1.5 s). Results of the
jigsaw puzzle method are more difficult to interpret: even though its energy is
well located on each onset, the amplitude of each onset transient varies somehow
unexpectedly (see for instance the difference between the two notes starting at
about 1s and 1.3 s). This lack of shift invariance is probably due to a particular
choice of super-tiles.

It should be emphasized that these results are only indicative of the rela-
tive merits of each method. Results are highly signal-sensitive, at there is no
guarantee that the performance of one algorithm will be similar on two signals
that apparently belong to the same class. Furthermore, most of these methods
requires a precise fine-tuning of the parameters, and for some of them the results
are very sensitive to a particular choice of parameters.

However, we have tried in table 2 to summarize the main advantages and
drawbacks of every method presented above. It should be emphasized that this
comparison is only relevant within a category : linear prediction methods (de-
scribed in section 2), Tonal extraction (described in section 3) or STN models
(described in section 4). For each category, the balance between computational
complexity and relevance of the results should help us in the choice of the most
appropriate method for the problem at hand.

6 Conclusion

This paper is a first attempt to review and classify some techniques for the
estimation of transients in music signals. Preliminary tests have been conducted;
although a systematic comparative test is yet be performed, with more methods
and more sound examples. However, a recurrent difficulty for such comparison
is the lack of a common platform for testing : one of our medium-term goals
is to develop such a software that could act as a unique front-end for some
of the numerous methods above. Eventually, the main problem for the task
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Fig. 1. Glockenspiel signal : comparison of three transients extraction techniques. From
top to bottom:original signal, tonal part obtained by YAST, transients obtained by
YAST, tonal part obtained by the adaptive phase-vocoder, transients obtained by the
adaptive phase-vocoder, tonal part obtained by the jigsaw puzzles, transients obtained
by the jigsaw puzzles.
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Fig. 2. Trumpet signal : comparison of three transients extraction techniques. From
top to bottom: original signal, tonal part obtained by YAST, transients obtained by
YAST, tonal part obtained by the adaptive phase-vocoder, transients obtained by the
adaptive phase-vocoder, tonal part obtained by the jigsaw puzzles, transients obtained
by the jigsaw puzzles.
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Table 2. Tentative classification of relative computational complexity (from −−: very
complex to ++: very fast), pros (P) and cons (C) for each method, as well as their
most natural field of application.

Method Complexity Pros, Cons & applications

P Source-filter interpretation
Linear + C Relevant only for flat

prediction spectrum sources
→ Physical models, lossless coding

Model for sines only: transients in residual

P musically relevant
Adaptive + C redundancy

phase-vocoder → Audio effects,
Preprocessing

P Explicit signal model
Sinusoidal model +− C No model for the residual

/ SMS → Parametric coding,
Audio effects

P High precision
Subspace methods − C Often requires hand-tuning

→ Signal analysis, Preprocessing

Model for sines and transients

P Fast algorithms
STN sequential estimation ++ C Difficult interpretation

in orthonormal bases Threshold choices
→ Transform coding

STN simultaneous estimation P General method
by adapted fime-frequency +− C Threshold choices,

tiles no shift-invariance
→ Analysis, Source separation ?

P Generates sparse data
STN simultaneous estimation (and structured for MMP)

by Matching Pursuit / − C Optimality not guaranteed
Molecular MP → Parametric coding

Source separation

STN simultaneous estimation P Very general, optimality criteria
by global optimization − to −− C Potentially very slow

(BP, FIRSP, . . . ) → Analysis, Transform coding ?
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of comparing many TSS techniques is that one has to define one (or more)
optimality criteria for deciding when a method is better than another. Some
transientness criteria such as described in [1, 20] may be a first step towards
relevant efficiency criteria.

One of our findings is that, unsurprisingly, the problem of TSS separation is
indeed very different according to the nature of the signal. For sharp percussive
sounds, the separation results are roughly independent of the chosen method
-the simpler the better !-, but for slower rising attacks - e.g. for bowed string or
wind instruments - the choice of method is critical. Finally, the biggest challenge
is probably to link all these techniques to some perceptually relevant features,
since numerous studies on music perception and timbre identification confirm
the utmost importance of fast-varying transients. In the future, there is a need
to develop a deeper understanding of the different time-scales involved in human
perception. Finding perceptually-relevant signal parameters for transients is in
our opinion one of the forthcoming challenges in the musical signal processing
field.
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