
1

Audio sparse decompositions in parallel
Let the greed be shared !

Laurent Daudet, Member, IEEE

Abstract—Greedy methods are often the only practical way of
solving very large sparse approximation problems. Among such
methods, Matching Pursuit (MP) is undoubtedly one of the most
widely used, due to its simplicity and relatively low overhead.
Since MP works sequentially, however, it is not straightforward
to formulate it as a parallel algorithm, to take advantage of
multi-core platforms for real-time processing. In this paper, we
investigate how a slight modification of MP makes it possible
to break down the decomposition into multiple local tasks,
while avoiding blocking effects. Our simulations on audio signals
indicate that this Parallel Local Matching Pursuit (PLoMP) gives
results comparable to the original MP algorithm, but could
potentially run in a fraction of the time — on-the-fly sparse
approximations of high-dimensional signals should soon become
a reality.

The last two decades have witnessed the advent of sparsity
as a major paradigm in many areas of signal processing.
Sparsity is the key to success for most of state-of-the-art
multimedia compression schemes, such as still image coding
(for instance JPEG-2000 [1]), and audio coding (MPEG-2/4
Advanced Audio Coding (AAC) [2]). Basically, sparsity ex-
ploits the fact that there exist bases in which, for most natural
signals, only a few of the transform coefficients are sufficient
to provide a good approximation. To be more precise, given
a signal, by sorting its transform coefficients by absolute de-
caying order, one observes a fast decay, typically a power law
with some large negative exponent. This ability to concentrate
most of the energy of the signals into only a few of the
transform coefficients naturally leads to an increased coding
efficiency. For instance, in the JPEG-2000 image coder based
on an orthogonal 2-D dyadic wavelet transform, only portions
of the image that correspond to sharp transitions (at objects’
edges for instance) will lead to large wavelet coefficients :
most of the bit budget is spent in these regions. Similarly,
in the Modified Discrete Cosine Transform (MDCT) domain,
i.e. the cosine-based filterbank of AAC, the large coefficients
represent the perceptually dominant sinusoidal harmonics of
the musical content. With a smart quantization of these few
large transform coefficients, and an efficient indexing of their
parameters, these coders achieve a high compression ratio at
virtually no loss of perceptual quality (typically at 1:20 or
more for JPEG-2000, and 1:6 for MPEG-2/4 AAC).

But why does it work – where does this energy compaction
come from? This is basically due to the fact that the transform
basis elements “look like” elementary components of the

Laurent Daudet is Professor at the Université Paris Diderot - Paris 7,
Institut Langevin “Waves and Images” (LOA), 10 rue Vauquelin, 75005
Paris, France. This research was supported by the French GIP ANR under
contract ANR-06-JCJC-0027-01 “DESAM”. Part of this research was done
during an Audio research residency at the Banff Centre, Canada. Email:
laurent.daudet@espci.fr

analyzed signals: 2-D wavelets look like the edges of objects
in images, discrete cosines look like the harmonics of musical
notes. Only a few of these elementary building blocks are
thus sufficient to well approximate the signals. It should be
emphasized that the corresponding algorithms have a relatively
low complexity: in the orthonormal bases described above
(discrete wavelets / MDCT), selecting the set of significant
coefficients involves a simple thresholding.

However, with all these nice properties also comes a major
flaw: orthogonal bases are usually too rigid to accommodate
even basic invariance properties of our signals. For instance,
standard wavelet image codecs do not have shift- nor rotation-
invariance: if the object pictured is slightly moved and/or tilted
then its transform representation is fundamentally different.
Similarly, in the audio domain, the MDCT is not shift-
invariant: depending on the exact position of the signal with
respect to the analysis frames, the transform coefficients may
be radically different and so is the compression efficiency.
Furthermore, the single frame length of the MDCT is in-
appropriate to simultaneously represent both the very sharp
attack transients at the onset of percussive notes (where very
short windows are desirable), and the long harmonics of tones
(where a high frequency resolution is needed, hence long
frame sizes).

To achieve higher sparsity, the key is to use decomposi-
tion spaces that have more basis vectors than orthonormal
bases, and thereby more flexibility. These extended bases are
called overcomplete, or redundant bases. Would you like time-
shift invariance in your audio transform? The discrete Gabor
Transform, as known for 1-D signals as Short-Time Fourier
Transform, is nearly shift-invariant at the cost of (at least)
doubling the size of the basis. Would you like shift-invariance
in your image coder? The dual-tree complex wavelet [3] offers
you this (approximately), but it is now 4-times overcomplete.
With such overcomplete bases, sparsity is improved: basically,
the larger the basis (the more redundant) the more likely it
is that, for every local feature of the signal, there will be
one basis vector that nearly fits. Overcompleteness brings
flexibility and generality in the class of signals that are well,
sparsely, represented. Recently, prototype codecs have been
developed in many fields of multimedia, for example image
[4], audio [5], [6] or video [7]. At very low bitrates (i.e., very
high compression ratio), these new codecs outperform standard
codecs based on orthogonal transforms. Besides coding, there
are also many applications that benefit from this sparse energy
compaction property [8], for instance information extraction
[9], [10], source localization [11] or source separation [12],
[13].

So why are these sparse overcomplete transforms not used in

2

widespread, standardized codecs? This is primarily due to their
computational cost. Most modern multimedia applications now
require on-the-fly encoding, and here the processing time
for audio in [5] is typically 100 times slower than real-
time, or the codec of [4] needs up to one hour for just one
still image! As we shall see, as soon as the transform basis
becomes overcomplete, selecting the coefficients is not as easy
as the simple thresholding used in the orthogonal case: now
the coefficients are no more mutually independent, and thus
selecting one coefficient affects all the others. The delicate
art of sparse approximation is a constant struggle against
combinatorial complexity, as described in the next section.

The study presented in this paper is a proof of concept
that, in the framework of sparse overcomplete decompositions,
real-time processing of large streams of multimedia data can
potentially be achieved with very simple parallel algorithms
based on the simple and effective Matching Pursuit algo-
rithm. The paper is organized as follows. Section I presents
a short overview of the main complexity issues behind the
sparse approximation problem, which can be skipped by the
reader already familiar with sparse representations. Section
II introduces the class of greedy methods for sparse decom-
positions, and discuss why these are good candidates for
parallelization. In section III, we introduce different strategies
for local Matching Pursuits. Preliminary results, described
in section IV, illustrate the potential of our new Parallel
Local Matching Pursuit (PLoMP) algorithm. Finally, section
V contains concluding remarks.

I. SPARSE OVERCOMPLETE DECOMPOSITIONS : A MASSIVE
COMBINATORIAL PROBLEM

Let us introduce some notation : let x ∈ RN be a length-
N real signal. We would like to find an optimal (sparsest)
decomposition of x, as a linear combination of few elemen-
tary “atoms”1 gγ that belong to a large, overcomplete set,
called dictionary D = {gγ , γ ∈ Γ}. In general, dictionaries
are collections of elementary waveforms, that are chosen to
represent the local characteristics of the class of signals under
study. In the simplest case, dictionaries are concatenations of
orthonormal bases (e.g. Fourier sinusoids + Dirac impulses, or
Local Fourier bases with different window sizes). Dictionaries
can also be learned from a set of signals [15].

Here, we want to approximate x as a weighted sum of a
known number K of atoms, for instance corresponding to our
bit budget:

x ≈
K−1�

k=0

αγkgγk (1)

This is illustrated on Fig. 1, with a signal represented by
a linear combination of 6 atoms from the dictionary: the
problem consists of finding the optimal scale - time - frequency
parameters for each atom in this set, and the corresponding
weights α.

1The term atom is a slight abuse of language, as it literally implies that
the decomposition is unique, which in general is not true with overcomplete
dictionaries. However, this analogy with physics dates back from the 1947
pioneering work of D. Gabor on the acoustical quanta [14] and is still
prevailing today.

Now, we can formulate our
Direct sparse approximation problem
With dictionary D = {gγ , γ ∈ Γ} and K fixed, find
the set of indices

�
γk

�
k=0···K−1

and corresponding
coefficients

�
αγk

�
k=0···K−1

that minimize
�x−

�K−1
k=0 αγkgγk�2.

Unfortunately, this problem cannot be solved exactly for
real-size problems, because of its combinatorial nature. Indeed,
if M is the total number of atoms in the dictionary D,
there are

�M
K

�
combinations of indices

�
γk

�
k=0···K−1

to test,
and for each of these finding the least-squares optimal set
of coefficients

�
αγk

�
k=0···K−1

is an orthogonal projection
problem, requiring (in general) the inversion of a K × K
matrix.

To circumvent this problem, there are two different options.
The first one is to design a similar problem that can be solved
exactly. The other approach looks for an approximate solution
of the original problem, obtained with a tractable algorithm.
In both cases, one is left to trust that the obtained solution is
not far from the optimal one.

As the rest of the paper is devoted to the latter solution, let
us quickly review the first option. Instead of having an exact
sparsity constraint (number of non-zero elements bounded by
some number K), we can look for signals that have few large
coefficients and a lot of very small ones. Amongst all measures
for this “relaxed sparsity problem”, it is common practice to
use the �1-norm �x�1 =

�N−1
k=0 |x(k)|. Now, as the �1-norm

has good convexity properties, it is possible to jointly optimize
the data fidelity and the �1-sparsity of the set of coefficients, by
standard quadratic programming [16], interior point methods
[16], or a modification of least angle regression (LARS)
technique [17]. There are also similar problems that can be
solved more efficiently, such as the Dantzig Selector [18] that
only requires a linear-time program and is hence applicable
to large datasets. It should be noted that these methods
have received renewed attention lately in the framework of
compressive sensing [19], [20], which involves similar types
of optimization problems. In this context, there is currently
a large activity to adapt these sparse solvers on multicore or
GPUs [21], [22], [23].

However efficient these methods may be, we have chosen
not to use them in this study. The main reason is that our
long-term goal is to design a “real-time” (though with delay)
sparse decomposition algorithm, applicable to an incoming
stream of data. In general, the previously described algorithms
deal with the signal as a whole, and are therefore more
suited to an offline scenario. The simplest greedy methods
described in the next section, however, can very easily be
modified into a “local” implementation, amenable to on-the-
fly processing. Another advantage of greedy methods is that
they are natively scalable in complexity, hence usable on any
hardware architecture, and virtually any signal size. Finally,
they provide an intuitive view of the involved mechanisms.
Accordingly, in the rest of this paper, we will only consider
greedy methods.

3

x !1

x !2
x !3

x !4

x !5

x !6

…
D

ic
ti
o
n
a
ry

S
ig

n
a
l

Fig. 1. Finding the best sparse decomposition of a signal, in a large dictionary of elementary waveforms, is a hard optimization problem that in general
cannot be solved by brute force.

II. GREEDY METHODS FOR SPARSE APPROXIMATIONS

Greedy methods [24] are based on a simple divide-and-
conquer principle: they select one atom, subtract its contribu-
tion, and iterate on the residual. The efficiency of these meth-
ods arise from the fact that, in order to select only one atom
(K = 1), the Direct sparse approximation problem is easily
solved: the parameter γopt and the corresponding coefficient
αγopt that minimize �x − αγgγ�2 are obtained by selecting
the best orthogonal projection on individual atoms, i.e., by
simple scalar products (correlation) between the signal and
the atoms: γopt = argmaxγ∈Γ|�x,gγ�|, and αγopt = �x,gγopt�.
This is the basis for the Matching Pursuit (MP) algorithm [25],
whose pseudo-code is given in Algorithm 1. Basically, it can
be described as follows : at each iteration, find in the dictionary
D the unit-norm atom best correlated with the signal (with
the correlation computed as a scalar product, atom selection
stage), subtract its contribution by (least-squares) orthogonal
projection, and reiterate. There are more elaborate strategies
such as Orthogonal Matching Pursuit [26], Low Complexity
Orthogonal Matching Pursuit [27], Relaxed Greedy Algorithm
[28], or Gradient Pursuit [29], etc), that find a better minimizer
of the error by considering the whole set of already selected
atoms, from previous iterations. For the sake of simplicity, we
do not consider them in this study.

Besides giving good approximate solutions of the sparse
decomposition problem, MP is very appealing: first, its design
is extremely simple, offering flexibility to adapt to the problem
at hand; and second, it is scalable in complexity: at any given
time, every subsequent iteration adds a vector and reduces

the approximation error. The algorithm can be stopped at
any time, depending on the available resources and/or the
target precision. In a basic, most general implementation,
two steps can potentially be computational bottlenecks: the
computation of the scalar products, and the atom selection
stage (respectively marked with (*) and (**) in Algorithm 1).

Algorithm 1 Matching Pursuit (MP)
Require: signal x ∈ RN , dictionary D = {gγ , γ ∈ Γ},

maximum number of iterations N0

Ensure: {αγ , γ ∈ Γ} set of coefficients
n ← 0 index of iteration
r0 ← x residual at initialization
αγ ← 0, ∀γ ∈ Γ
repeat

cγ = �rn,gγ�, ∀γ ∈ Γ scalar products computation (*)
γopt ← argmaxγ∈Γ|cγ | atom selection stage (**)
rn+1 ← rn − cγopt gγopt residual update
αγopt ← αγopt + cγopt

n ← n + 1
until n = N0 iterations performed or required precision
reached
Return {αγ , γ ∈ Γ} set of decomposition coefficients, such
that x =

�
γ∈Γ αγgγ + rn

As described above, these greedy iterative methods are
essentially sequential. In the most general case, atoms have
the same length as the signal itself, and any iteration is based
on the residual of the previous one. Therefore, the potential

4

gain in parallelizing is weak, and limited to sub-tasks such
as the update of the scalar products. In practice, atoms with
arbitrary shape and support are barely used, as the cost of
updating the scalar products is often prohibitive (updating the
scalar product of the length-N signal with P atoms requires
in general N×P multiplications) : one prefers fast algorithms
such as the (local) FFT or the Mallat’s pyramidal algorithm
for the discrete wavelet transform. When such structured time-
localized atoms are used, only a local update of the scalar
products must be performed, considerably speeding-up the
process. For 1-D signals, there are now a number of flexible,
optimized packages for Matching Pursuit, such as the open-
source Matching Pursuit ToolKit (MPTK) [30]. However,
for large signals, highly redundant dictionaries and/or high
precision (i.e., large number of iterations), the decomposition
time can still be large. As reported above, computation times
are in the order of 1 hour for the processing of one image in
[4], and of typically 100 times the duration of the audio piece
in [5].

The goal of this research is to show how such principles
can be generalized to “parallelize” MP – or more generally
any greedy pursuit algorithm. The main idea is to break down
the problem into a number of threads that could be handled
by different processor cores working on different portions of
the same signal. It should be emphasized that our approach is
fundamentally different from the previously published work on
parallel MP [31], [32], [33], that present efficient multi-core
implementations of MP by optimally distributing the compu-
tationally intensive steps of MP (atom selection stage, update
of the scalar products), hence minimizing the message passing
between subtasks. Instead, in the current work, we present
a “sub-optimal” version of MP that allows a straightforward
parallelization of the MP algorithm : different threads work on
different portions of the signal. The first benefit is that there is
no message passing between tasks – which may be a limiting
factor when scaled to a very large number of tasks, and may
lead to a performance strongly dependent on the architecture.
Our approach is fully scalable, in the way that is adapts to
the processing power at hand (basically, dividing the load by
the number of cores, with a negligible master process), and
does not require any platform-dependent implementation or
parameter optimization. The second benefit is that there is no
need to know, or load into memory, the entire signal. For a
typical 5-minutes musical song at CD-quality with more than
107 samples, there is no strong penalty in working locally on
time frames whose size match the largest coherent “objects”
in our signals (e.g., musical notes), with a typical duration of
0.1 s. This opens a perspective on “real-time” processing of
an incoming stream of audio data – though with a delay that
can become significant. The penalty to pay is that we are no
longer guaranteed to make optimal choices at every iteration
as in the plain MP. We shall see that, for typical signals, a
smart algorithm design can not only reduce this “penalty”,
but even take advantage of it, at high number of iterations.
Throughout this article, all the examples will be audio signals,
as 1-D signals are the easiest way to present such algorithms,
however, similar principles could potentially apply to other

frame 1 frame 2 frame 3 frame 4 ...

...frame 1

frame 2

frame 3

frame 4

Fig. 2. Parallel processing with (top) fixed frame-based segmentation, or
(bottom) fixed smooth overlapping windows.

signals with similar scaling structures.

III. FIXED VS. SLIDING LOCAL MATCHING PURSUIT

As a first approach, we divide the computational burden of
MP by working locally on fixed adjacent segments (“frames”)
of the signal (see Fig. 2). The simplest strategy is to use block-
based frames : the signal is simply divided into equal-length
frames (top plot of fig. 2) and a local MP is applied on each
of them. Although this strategy may be acceptable for some
signals, for the audio signals studied here it provides sharp
blocking effects : transients at edges, varying quality across
edges.

An alternate strategy is to use overlapping frames with
smooth windows (bottom plot of Fig. 2). It is important to
mention that the window is not applied on the signal but is a
re-weighting of the scalar products at the atom selection stage
(step (**) in Algorithm 1), reducing the likeliness of choosing
atoms at the side of the frames. This Weighted Matching
Pursuit (WMP) is described in Algorithm 2.

Algorithm 2 Weighted Matching Pursuit (WMP)
Require: signal x ∈ RN , dictionary D = {gγ , γ ∈ Γ}, maxi-

mum number of iterations N0, set of weights {wγ , γ ∈ Γ}.
Ensure: {αγ , γ ∈ Γ} set of coefficients

n ← 0 index of iteration
r0 ← x residual at initialization
αγ ← 0, ∀γ ∈ Γ
repeat

cγ = �rn,gγ�, ∀γ ∈ Γ scalar products computation
γopt ← argmaxγ∈Γ|wγ cγ | weighted atom selection stage
rn+1 ← rn − cγopt gγopt residual update
αγopt ← αγopt + cγopt

n ← n + 1
until n = N0 iterations performed or required precision
reached
Return {αγ , γ ∈ Γ} set of decomposition coefficients, such
that x =

�
γ∈Γ αγgγ + rn

The weights wγ are chosen according to the center times
of the atoms : large weights for atoms centered around the
middle of the frame, small weights on the side. More precisely,
if tγ is the centre time of the atom gγ , then wγ = w(tγ/L),
where L is the frame size and w any smooth tapering window
defined on [0, 1] such that w(0) = w(1) = 0, for instance a
Hanning window (preliminary experiments indicate that the
regularity of w is important but its exact design has little

5

influence on the final performance). With this modification,
the boundary effects are significantly reduced, but, as seen on
the bottom plot of Fig. 2, adjacent overlapping windows share
a portion of the signal. If an atom is selected in this zone,
then a message has to be passed to its neighbor, indicating that
the signal there has been updated locally. Due to the tapering
window, these events should be relatively rare, but their
existence impose stringent parallel programming constraints
with message passing and synchronization.

The simplest and more efficient strategy that we propose
is to use instead sliding frames, such as the one displayed
in Fig. 3: a given core acts on a (windowed) frame of the
signal, that after a number of iterations moves forward. An
alternate view of this problem is shown on Fig. 4, where
multiple cores act on adjacent frames : after a number N0

of iterations, the signal is shifted by h samples, with h a
fraction of the frame size L. It is important to note that now,
there is no overlap between adjacent frames, and therefore
no need for message passing. This way, it is possible to use
multiple core processors performing with the highest precision
while guaranteeing real-time processing of the data - though
with significant delay. If fs is the signal sampling frequency,
and Niter/core the guaranteed number of MP iterations per
core per second (after initialization, the computational cost
per iteration remains roughly constant), N0 is simply given
by N0 = (Niter/coreh)/(Lffs).

Algorithm 3 Parallel Local Matching Pursuit (PLoMP)
Require: incoming signal x, frame length L, size-L local

dictionary D = {gγ , γ ∈ Γ}, set of weights {wγ , γ ∈ Γ},
frame hop size h, number of cores K, number of iterations
per core N0.

Ensure: {αγ , γ ∈ Γ} set of coefficients
xlocal ← first K ∗ L coefficients of x
repeat

equally divide xlocal into K non-overlapping frames
parallel process each frame with WMP, N0 iterations
store results in {αγ , γ ∈ Γ}
load next h samples of x and shift xlocal

until no more incoming signal
Return {αγ , γ ∈ Γ} set of decomposition coefficients, such
that x =

�
γ∈Γ αγgγ + rn

The pseudo-code for this Parallel Local Matching Pursuit
(PLoMP) algorithm is given in Algorithm 3. Apart from
file input/output, PLoMP perfectly spreads the computational
load onto the available computational resource, by making at
each iteration K independent calls to the Weighted Matching
Pursuit.

IV. RESULTS

We have simulated these approaches for representing audio
signals on a redundant dictionary of local cosines. We first
used a test signal of a sum of 3 constant-amplitude sinusoids
with well-separated frequencies, a signal considered as very
sparse, with added white noise. The energy of the residual

1

0.5

0

0.5

1

sliding frame 1

Fig. 3. One sliding frame with a smooth tapering window.

Fig. 4. Parallel processing PLoMP with adjacent smooth windows. The
incoming signal is fed through the successive local processors, each one
making just as many operations as to guarantee real-time-processing

is plotted on Fig. 5, as a function of the total number of
iterations. Four different PLoMP configurations were tested,
and compared to the standard MP algorithm :

1) one-pass PLoMP (one core, working locally on the
signal)

2) a two-pass PLoMP (K = 2 cores working locally on
the signal)

3) two one-pass PLoMP, while the second time the signal is
entered in a time-reversed fashion – attempting to reduce
the effect of time asymmetry in PLoMP.

4) a four-pass PLoMP (K = 4 cores).
Interestingly, for a small number of iterations per core, all

parallel or sequential strategies are equivalent, corresponding
to “good” choices: selected atoms remove energy only from
the sinusoids. For a range of subsequent iterations, parallel
strategies sometimes make “mistakes”, choosing atoms in the
noise or side lobes. However, at high precision, all the sinu-
soidal components have been removed and the performance of
all strategies are similar. Note that in this regime, the parallel
local MP strategies even obtain a slightly better asymptotic
behavior than global MP (see inset of Fig. 5) ! It should also be
noted that strategy (3), using two passes in alternate directions,
results in slightly better results in the intermediate regime than
the K = 2 PLoMP (strategy 2) (it can be guessed that some
of the “bad choices” are a consequence of the time asymmetry
of the local MP algorithm), but does not lead to any gain in
the high-precision, asymptotic regime.

Then, we performed similar simulations on a real audio
excerpt chosen for its large dynamics (jazz trio with loud piano
notes / quiet double-bass + drums), and compared the standard
MP to a K = 5 cores PLoMP, for a total number of iterations
where the sound quality was deemed acceptable. For the same
number of total iterations, the global SNR of the standard,

6

time (s)

5 sliding windows

PLoMP
global SNR = 13.3 dB

sequential MP
global SNR = 15.5 dB

Local

SNR

(dB) +20

+10

0

-10

+10+10+10+10

+20+20+20+20+20

-10-10

0 1 2 3 4 555 6

Fig. 6. Parallel vs. sequential processing on a real audio signal. Local Signal-
To-Noise ratio (SNR) for sequential MP (red) and PLoMP (blue), for the same
number of iterations.

sequential MP was 15.5 dB; while PLoMP resulted in 13.3
dB SNR.

However, looking at the global SNR may not be the only
criteria to look at. Figure 6 shows the local SNR (computed on
sliding windows of length 16384 samples, i.e. about 370 ms
at 44.1 sampling rate), for the same total number of iterations,
between the global MP and PLoMP. Although the average
SNR is higher in the case of the global MP, the situation can
be the opposite locally: PLoMP has a more steady local SNR.
This can be beneficial from a perceptual point of view, and
this is confirmed by listening to the soundfiles2: in PLoMP,
the bass has significantly more presence, while it has almost
disappeared in the global, sequential MP.

V. CONCLUSION

The widely-used MP algorithm is intrinsically a sequential
algorithm. We have shown that it can be modified to work
locally, for carefully chosen frame duration and window
shape, and is therefore particularly well suited to multicore
processing. Simulations show that this comes at a usually small
penalty in performance, if any. For signals with large dynam-
ics, it may even provide a better adaption to the specificities
of the signal. Although still at a preliminary stage, this study
paves the way to what is so far considered as intrinsically
impossible : an “on-line” sparse solver for live multimedia
continuous data streams. For high-quality audio, this would
typically require tens of cores !

ACKNOWLEDGMENT

The author would like to thank Bob L. Sturm for proof-
reading, and the anonymous reviewers for their insightful
comments.

2Corresponding sound files can be downloaded at
http://old.lam.jussieu.fr/src/Membres/Daudet/SPM/

REFERENCES

[1] M. Adams, “The JPEG-2000 still image compression standard,” ISO/IEC
JTC 1/SC 29/WG 1, vol. 2412, 2001.

[2] M. Bosi, K. Brandenburg, S. Quackenbush, L. Fielder, K. Akagiri,
H. Fuchs, M. Dietz, J. Herre, G. Davidson, and Y. Oikawa, “ISO/IEC
MPEG-2 advanced audio coding,” Journal of the Audio engineering
society, vol. 45, no. 10, pp. 789–814, 1997.

[3] I. Selesnick, R. Baraniuk, and N. Kingsbury, “The dual-tree complex
wavelet transform,” IEEE Signal Processing Magazine, vol. 22, no. 6,
pp. 123–151, 2005.

[4] L. Peotta, L. Granai, and P. Vandergheynst, “Image compression using
an edge adapted redundant dictionary and wavelets,” Signal Processing,
vol. 86, no. 3, 2006.

[5] E. Ravelli, G. Richard, and L. Daudet, “Union of MDCT Bases for
Audio Coding,” IEEE Trans. Audio Speech Lang. Proc., vol. 16, no. 8,
pp. 1361–1372, 2008.

[6] R. Pichevar, H. Najaf-Zadeh, and L. Thibault, “A biologically-inspired
low-bit-rate universal audio coder,” in Audio Engineering Society Con-
vention, Vienna, Austria, 2007.

[7] R. Neff and A. Zakhor, “Matching pursuit video coding. I. Dictionary
approximation,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 12, no. 1, pp. 13–26, 2002.

[8] M. Plumbley, T. Blumensath, L. Daudet, R. Gribonval, and M. Davies,
“Sparse representations in audio and music: From coding to source
separation,” Proceedings of the IEEE, 2009 (to appear).

[9] P. Leveau, E. Vincent, G. Richard, and L. Daudet, “Instrument-specific
harmonic atoms for mid-level music representation,” IEEE Transactions
on Audio Speech and Language Processing, vol. 16, no. 1, p. 116, 2008.

[10] E. Ravelli, G. Richard, and L. Daudet, “Audio signal representations for
indexing in the transform domain,” IEEE Transactions on Audio Speech
and Language Processing, to appear.

[11] D. Malioutov, M. Cetin, and A. Willsky, “A sparse signal reconstruction
perspective for source localization with sensor arrays,” IEEE Transac-
tions on Signal Processing, vol. 53, no. 8 Part 2, pp. 3010–3022, 2005.

[12] R. Gribonval, “Sparse decomposition of stereo signals with matching
pursuit and application to blind separation of more than two sources
from a stereo mixture,” in Proc. IEEE Int. Conf. on Acoustics, Speech
and Signal Processing, 2002.

[13] A. Bronstein, M. Bronstein, M. Zibulevsky, and Y. Zeevi, “Sparse ICA
for blind separation of transmitted and reflected images,” International
Journal of Imaging Systems and Technology, vol. 15, no. 1, pp. 84–91,
2005.

[14] D. Gabor, “Acoustical quanta and the theory of hearing,” Nature, vol.
159, no. 4044, pp. 591–594, 1947.

[15] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Transactions on signal processing, vol. 54, no. 11, p. 4311, 2006.

[16] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis
pursuit,” SIAM review, pp. 129–159, 2001.

[17] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle
regression,” Annals of statistics, pp. 407–451, 2004.

[18] E. Candes and T. Tao, “The Dantzig selector: statistical estimation when
p is much larger than n,” Annals of Statistics, vol. 35, no. 6, pp. 2313–
2351, 2007.

[19] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,”
IEEE Transactions on information theory, vol. 52, no. 2, pp. 489–509,
2006.

[20] D. Donoho, “Compressed sensing,” IEEE Transactions on Information
Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[21] A. Borghi, J. Darbon, S. Peyronnet, T. Chan, and S. Osher, “A simple
compressive sensing algorithm for parallel many-core architectures,”
CAM Report, pp. 08–64, 2008.

[22] S. Lee and S. Wright, “Implementing Algorithms for Signal and Image
Reconstruction on Graphical Processing Units,” submitted, 2009.

[23] M. Andrecut, “Sparse Approximation of Computational Time Reversal
Imaging,” Arxiv preprint arXiv:0904.3396, 2009.

[24] J. Tropp, “Greed is good: Algorithmic results for sparse approximation,”
IEEE Trans. Inf. Th., vol. 50, no. 10, 2004.

[25] S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictio-
naries,” IEEE Trans. Sig. Proc., vol. 41, no. 12, pp. 3397–3415, 1993.

[26] Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching
pursuit: recursive function approximation withapplications to wavelet
decomposition,” in 27th Asilomar Conference on Signals, Systems and
Computers, 1993, pp. 40–44.

7

All strategies

make only

good choices

No more

good

choices

Risk of

(temporary)

mistake

Fig. 5. Decay of the energy of the residual as a function of the number of iterations, for a signal being a sum of 3 constant sinusoids and the dictionary a
union of local cosines with different scales. The plain black line is the reference global MP, other colors are local PLoMP with different strategies (different
number of windows / number of iterations at a given position).

[27] B. Mailhé, R. Gribonval, F. Bimbot, and P. Vandergheynst, “A low
complexity orthogonal matching pursuit for sparse signal approximation
with shift-invariant dictionaries,” in Proc. IEEE Int. Conf. on Acoustics,
Speech and Signal Processing, 2009.

[28] A. Barron, A. Cohen, W. Dahmen, and R. DeVore, “Approximation and
learning by greedy algorithms,” Annals of statistics, vol. 36, no. 1, pp.
64–94, 2008.

[29] T. Blumensath and M. Davies, “Gradient pursuits,” IEEE Transactions
on Signal Processing, vol. 56, no. 6, pp. 2370–2382, 2008.

[30] S. Krstulovic and R. Gribonval, “MPTK: Matching pursuit made
tractable,” in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal
Processing, 2006.

[31] G. Dodero, V. Gianuzzi, M. Moscati, and M. Corvi, “A scalable parallel
algorithm for Matching Pursuit decomposition,” in Proc. HPCN, 1998,
pp. 458–466.

[32] A. Bultan and O. Arikan, “A parallelized matching pursuit algorithm for
the four-parameter chirplet decomposition,” in Proc. Int. Symp. Time-
freq. Time-scale Anal., Pittsburgh, PA,, 1998, pp. 421–424.

[33] H. Feichtinger, A. Turk, and T. Strohmer, “Hierarchical parallel matching
pursuit,” in Proc. SPIE Int. Soc. Opt. Eng., vol. 2302, 1994, pp. 222–232.

