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and Time-Domain Information
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Abstract—The aim of this paper is to propose solutions to
some problems that arise in automatic polyphonic transcrip-
tion of recorded piano music. First, we propose a method that
groups spectral information in the frequency–domain and uses
a rule-based framework to deal with the known problems of
polyphony and harmonicity. Then, we present a novel method for
multipitch-estimation that uses both frequency and time–domain
information. It assumes signal segments to be the linearly weighted
sum of waveforms in a database of individual piano notes. We
propose a solution to the problem of generating those waveforms,
by using the frequency–domain approach. We show that accurate
time–domain transcription can be achieved given an adequate
estimation of the database. This suggests an alternative to common
frequency–domain approaches that does not require any prior
training on a separate database of isolated notes.

Index Terms—Audio, F0 estimation, music, multiple pitch esti-
mation.

I. INTRODUCTION

WE CAN define music transcription as the process of
converting a musical recording or performance into a

musical score, or equivalent representation. In the traditional
sense, transcribing a piece of music implies a number of
high-level tasks such as: estimating the pitch and timing of
individual notes; estimating the tempo, meter and key of each
section of the piece; identifying and labeling ornamentations;
recognizing the instruments being played; and segregating
“voices” according to the instrument that played them and to
their function, i.e., melody, accompaniment, etc.

These tasks, already complicated for highly trained indi-
viduals such as musicians and musicologists, have proven ex-
tremely difficult for computers. Relatively successful methods
have been proposed for monophonic signals, i.e., when only
one note is present at a time. However, success has been more
evasive for the analysis of polyphonic signals, i.e., presenting a
multiplicity of notes and, possibly, instruments at a time.

At its simplest, the issue of transcribing music, except for in-
formation related to timbre and instrumentation, can be reduced
to knowing the fundamental frequency , start time, duration,
and loudness of individual musical notes in the recording. We
can, therefore, assume that note event information is enough to
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describe a musical signal such that this encoding can be used
for a range of high-level applications including: retrieval of mu-
sically similar recordings from large audio databases, coding of
audio information for fast audio transmission through data chan-
nels (e.g., MPEG-4 coders), real-time high-level interaction be-
tween musicians and computers, analysis of recordings of the
same piece by different performers, etc.

This paper aims to propose novel ways of automatically ex-
tracting note events from simple polyphonic audio files, i.e., real
recordings including an undetermined number of notes at a time
played by a single instrument. Specifically, we have chosen the
piano as our single instrument, because this is one of the instru-
ments where the problems due to polyphony are the most chal-
lenging. Also, there exists a large corpus of solo piano music
that can be used for testing and evaluation. Finally, we can ex-
ploit the characteristics of the piano sound to our benefit, as will
be seen in later sections.

Although this is not a transcription system in the strict mu-
sical sense, we will indistinctly refer to our results as transcrip-
tions and to the research area as automatic music transcription.

A. Background

Almost invariably, since the early works by Moorer [1]
and Piszcalski and Galler [2], polyphonic music transcription
systems rely on the analysis of information in the frequency do-
main: Klapuri [3] uses the iterative calculation of predominant

s in separate frequency bands; Martin [4] uses blackboard
systems; and Kashino et al. [5] use Bayesian probability
networks for the grouping of supportive frequency–domain
evidence. Raphael proposes the use of a hidden Markov model
and spectral feature vectors to describe chord sequences in
piano music signals [6]. Carreras et al. [7] use neural networks
for spectral-based harmonic decompositions of signals, while
Marolt [8] uses networks of adaptive oscillators to track partials
over time. A recent example, Ortiz et al. [9], uses a physical
model of the piano to generate spectral patterns that can be
compared to the incoming spectral data. For an extensive review
of polyphonic music transcription systems, see [10].

Analyzing spectral data is justified as in time-frequency
representations, periodicities in time are represented as energy
maxima (i.e., peaks) in the frequency–domain. This suggests
that principled grouping of these energy maxima generates
patterns or structures that may be related to notes in a music
signal. Notably, the presence of a note is specifically associated
with the presence of a comb-pattern in the frequency–domain
with lobes approximately at the positions of the multiples of
the fundamental frequency of the analyzed tone.

However, relying on the analysis of the frequency–domain
data has some disadvantages [10], [11]. The resolution limita-
tions of most time–frequency representations can badly affect
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the frequency localization of spectral components. This, in turn,
is emphasized by the polyphony of the signal: when more than
one note is present, peaks related to different s can lie in the
same frequency bin and, therefore, are not uniquely identifiable.
The problem becomes worse when the polyphony increases,
often increasing the number of estimation errors. Overlapping
between the different harmonic (or nearly harmonic) series is
also produced by the presence of harmonic relations between
sounds (i.e., harmonicity). This phenomena sharply diminishes
the chances of resolving the mixture of notes in the signal.

B. Organization of This Paper

In the following sections, we present a method that uses the
commonly used approach of grouping frequency–domain data
for polyphonic music transcription (Section II) with some novel
adaptations by means of an heuristic set of rules. Then, we pro-
pose that we can avoid the paradigm of analysis only in the
frequency–domain, by using a time–domain linear additive ap-
proach (Section III) which is well suited to work with piano sig-
nals. We integrate frame-by-frame results into note events (Sec-
tion IV) and perform a comparative study of the two methods
on a database of polyphonic piano recordings (Section V), fi-
nally presenting the conclusion and further considerations (Sec-
tion VI).

II. FREQUENCY–DOMAIN TRANSCRIPTION

The goal of our frequency–domain method is to find groups of
spectral peaks that characterize the notes in a recorded mixture.
To this end we will calculate the signal’s spectrum by means of
the short-time Fourier transform (STFT) and select strong peaks
in the frequency–domain, group selected peaks according to ex-
pected harmonic comb patterns, and use a number of heuristic
rules to select the comb patterns that best describe the funda-
mental frequencies that exist in a given signal segment.

A. Spectral Peak-Picking

Let us consider the STFT of the signal

(1)

where is an -point window, and is the hop size, or
time shift, between adjacent windows. The frequency resolution
is , where is the sampling frequency.

The magnitude of includes a number of irrelevant peaks
that may mislead the estimation procedure. In [12], a psychoa-
coustic masking model is used to eliminate weaker peaks. In
this paper, we smooth the spectrum using a zero-shift infinite
impulse response (IIR) digital filter [13]. Peak-picking is per-
formed on the filtered spectrum using a simple local maximum
algorithm, such that detected peaks correspond to the stronger
peaks in the original spectrum. Peaks are matched to the closest
local maximum of the unfiltered spectrum to compensate for the

loss of resolution brought about by the filtering. The resulting
modified spectrum of detected peaks can be defined as

, if peaks are detected
elsewhere.

B. Grouping Peaks

Pitched sounds are expected to produce frequency–do-
main comb patterns with lobes approximately at ,

, where is the fundamental frequency of
the sound, and is the number of
lobes in the pattern. These patterns are known as harmonic
combs. Here, because our approach is energy-based, and since
most of the energy is concentrated on the first few partials, we
can neglect, as a first-order approximation, the well-known (and
perceptually important) effect of piano strings inharmonicity.

To identify these combs, we need first to generate a list of
possible fundamental frequencies. A possible approach [14] is
to select the spectral peaks with greater magnitude, and then,
for each selected peak , to generate note hypotheses with
fundamental frequencies defined by

(2)

such that

bin of the th maximum of (3)

and , , is the bin instantaneous frequency
calculated using the phase-vocoder technique [15], [16], i.e., the
bin’s unwrapped phase difference divided by the STFT’s hop
size. This improves the precision of the frequency estimation.
We can use to generate a matrix of possible
harmonic combs in the spectrum .

Let us define , a subset of , such that
the instantaneous frequencies

are within a quarter tone distance from , the
expected frequency of the th comb’s lobe. The hypothesis as-
sociated with this comb, can be defined as

(4)

The array represents the closest approximation be-
tween the ideal combs defined by and the spectral
data . An example can be seen in Fig. 1, where the har-
monic grids for , 1,3 and 7 are selected.
In our implementation , , and are static predefined
values, experimentally set to 12, 10, and 5, respectively.

C. Selecting Comb Patterns

We need to evaluate the array of observed comb
patterns, and select those hypotheses that best describe the s
in a given signal segment. Selection is performed by a process
of elimination of weak hypotheses, i.e., those that are related
to a few low-magnitude peaks or that can be explained by the
combination of other hypotheses. In the following, we provide a
list of heuristic rules applied sequentially to all hypotheses. All
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Fig. 1. Harmonic combs for two different roots (z = 1 and z = 3) that include
the maximum peak of S(k).

used thresholds are static and set experimentally. For a comb
pattern to be selected, all tests need to be satisfied.

1) Minimum Support: When constructing , peaks are
searched for in the vicinity of the expected position of a partial.
If no spectral peaks are found within that region, it is said that
there is no support from that partial. For a hypothesis to be
selected, it requires a minimum number of detected partials
(relative to its ) which is at least equal to .

2) Minimum Energy: The sum of the energy of all supporting
partials (i.e., total energy of the comb) must be above a min-
imum energy threshold equal to 10 dB.

3) Detection of Subharmonics: Consider an octave-related
pair of hypotheses, and , such that their fundamental
frequency ratio is approximately an even number.
Thus, the even partials of overlap all partials of . If any
of the followings observations is true, then is considered a
subharmonic benefiting from the energy of and therefore
eliminated: First, that the energy produced by the even partials
of the subharmonic is significantly higher (three times higher in
our implementation) than that produced by its odd partials

(5)

where is the total number of partials. Second, that the energy
of the initial partials of the lower note is significantly
smaller (eight times smaller in our implementation) than its total
energy

(6)

4) Detection of Overtones: For the same octave-related pair,
let us analyze the distribution of the energy through all the comb

lobes. If the total amount of the energy of is concentrated
on its first partials

(7)

then is considered an overtone and thus eliminated.
5) Harmonic Overlapping: Two notes in harmonic relation

share partial components according to the relationship
, where and are integer values. If considering harmonic

intervals other than octaves, it is possible that a hypothesis
exists only as a result of the presence of other harmonically re-
lated hypotheses in the signal segment. For ex-
ample, if a chord Hz Hz is played,
peaks will be generated approximately at the position of every
third and fifth partial of (261.626 Hz). That is five of the first
ten partials of , therefore generating strong support from ex-
isting peaks. In this case, we can define

(8)

a subgroup of partials of the comb that overlaps with partials
from the harmonically related hypotheses . If
is only the result of these harmonic relationships, then its total
energy should be almost equal to the energy of the subgroup
(an inverse criteria can be defined for )

(9)

If true, is considered a hypothesis generated by harmonicity
and thus eliminated.

6) Competitive Energy: Let us define as the hypoth-
esis with the highest energy. All remaining hypothesis must
comply with

(10)

where is a predefined value. If this condition is false,
then is considered insignificant and thus eliminated.

As will be seen in Section V, this method gives relatively
good results (about 69% of notes are correctly detected, for 16%
of false positives). However, at high levels of polyphony, i.e.,
chords of more than four notes, it suffers from the usual limita-
tions of the analysis in the frequency domain: too many partials
are intertwined together, and typical errors such as octave errors
are prone to appear.

This frequency–domain method could be improved in many
ways. For instance, we could take into account a standard inhar-
monicity law [17] to estimate more precisely the frequency of
partials: , where is a constant
that depends on the physical characteristics of the string. How-
ever, values for are strongly note- and piano-dependent, so
this hyper-parameter would have to be learned from the signal.
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This physically motivated improvement could help us resolve
some chord ambiguities, but at a cost of a large increase in
the complexity of the model. Instead, we have chosen to en-
hance our signal model by combining this frequency–domain
approach with a new time–domain method, which will be the
focus of the next sections.

III. TIME–DOMAIN TRANSCRIPTION

We have seen that almost all existing methods for polyphonic
transcription operate only on frequency–domain data. In this
section, we propose an alternative approach that avoids, at least
partially, the usual paradigm of analysis in the frequency do-
main. The system uses a hybrid method,1 where the classical ap-
proach is improved by a time–domain recognition process. This
enables a refinement of our results by taking into account the
information contained in phase relationships, that are lost when
only the magnitude spectra of sounds are analyzed. The method
is applied to piano music, where, as a first-order approximation,
the phase relationships between partials in a given piano note
can be assumed reproducible. This assumption is very specific
to instruments where the player has little or no control on the
excitation (apart from velocity), and where the exact location of
the instrument does not vary in time.

A. Linear Additive Approach

Let us return to , , a segment of our signal.
Let , , be the time–domain normalized wave-
form of one of the individual notes of a single instrument (for
our implementation to piano music ). Let us assume (as
an initial approximation) that each is independent of its loud-
ness, that is, the waveform remains the same regardless of the
strength at which the corresponding note has been played, ex-
cept for a global scaling of the signal’s amplitude.

Let us also assume that, in a mixture, a waveform produced
by a given single note is independent of the presence of other
waveforms. In other words, we neglect the interactions due to
mechanical coupling phenomena that may arise when two or
more keys are pressed at the same time.

Furthermore, let us demonstrate that the individual wave-
forms form a family of linearly independent vectors. This
means that it is not possible to obtain a note by a linear com-
bination of other notes, as can be shown by contradiction: Let
us assume linear dependency between the individual notes ,
such that , for not all equal to zero. Let be
the smallest index, if any, such that . The signal
contains the fundamental frequency corresponding to the th
note (the fundamental is always present in piano sounds), which
is not present in any of the other , ; therefore, it is
necessary that , hence, the contradiction.

Let be the database containing the wave-
forms of the individual notes. In this context, the resulting wave-
form of a chord of synchronous notes can be simply defined
as a weighted linear sum of the individual notes

(11)

1Despite this, and to simplify the comparison between the two approaches,
we will refer to this method simply as the “time–domain” approach.

where is the mixing coefficient for the th note, such that

if the th note is played in
otherwise.

where increasingly maps the loudness, or velocity, of the
corresponding note.

Following this definition, the frame-by-frame -estimation
problem, can be restated as the calculation of the values of the
mixing vector , given the segment and
the database . This operation returns information about what
notes have been played in the segment and with what loudness.

In finite dimensions, a simple algebraic solution can be found
to this inverse problem. Let us define , the representation of
on , a matrix whose rows are the -length individual
vector notes

...
...

...
...

Equation (11) can now be expressed in terms of as

(12)

and, therefore

(13)

Because of the linear independence of the rows of , the
matrix is not singular, thus invertible. Hence, (13)

is equivalent to

(14)

Therefore, the mixing vector can be reconstructed by a
simple matrix product of the fixed matrix and the
segment . The rows of form the dual basis of
the basis ; , which represents the orthogonal projection of

on the subspace , is obtained by scalar products with ele-
ments of . It is important to note that this is a simultaneous
estimation of all notes, as opposed to the standard recursive pro-
cesses of the majority of frequency–domain techniques. We will
discuss the details of the estimation of in Sections III-C and
III-D.

B. Phase Alignment

Phase-alignment between simultaneous notes is only possible
under specific conditions, i.e., audio files generated with synthe-
sized sounds using perfectly quantized playing. However, this
is not the case when working with real recordings. Individual
notes within a chord are never perfectly synchronous. Thus,
the above-mentioned approach is over-simplified (as all scalar
products assume alignment), and the results obtained using this
method are not accurate.
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Fig. 2. (a) Estimation of the weighting coefficients ��� on a segment s(n), (b) using the nonaligned database D, and (c) the aligned database ~D. Estimation of ���
is more accurate (e) with alignment than (d) without (circles indicate the actual notes).

Let us define , the shift-by- -samples operator, such that

(15)

A possible solution for our phase-alignment problem is to
consider all shifted versions of vectors up to a delay , or

, . This means that we will work in subspaces
of higher dimension (such as ).

Needless to say, this is a very computationally intensive solu-
tion. Moreover, when gets larger than (as will happen
for large values of ) the family of vectors becomes overcom-
plete; hence, it is no longer linearly independent. This implies
the noninvertibility of matrix , thus precluding the calcu-
lation of vector as stated in (14). An alternative approach is
needed for phase alignment.

On a frame-by-frame basis, let us suggest that for the th note
in the database, we only need to use the , such that com-
pensates for the phase misalignment between the sound
and the note . This is equivalent to generalizing (11) as

(16)

The delay is computed as

(17)

This approach, although slightly suboptimal compared to the
first solution, is much easier to implement. If considering all
possible delays within the length of , the scalar
product becomes equivalent to the convolution of
and

(18)

then (17) can be rewritten as

(19)

We can now define an aligned database
and adopt the procedure described in (14) with the modified
basis

(20)

Fig. 2 shows a segment containing the notes E3, G3, and
C4 (MIDI numbers 52, 55, and 60, respectively).2 A database

, in Fig. 2(b) and an aligned database , in Fig. 2(c) are
used for pitch estimation. It can be seen that results using
[Fig. 2(e)] are more accurate than using the nonaligned data-
base [in Fig. 2(d)]. Indeed, taking phases into account is only

2MIDI(f ) = j69 + 12 � log (f =440)j. The first note of the piano A0 =
27:5 Hz corresponds to MIDI number 21.
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Fig. 3. Calculation of��� for equal C-major chords from three different pianos. Top plots: chord spectra. Bottom plots: estimation of��� using the same note database
D, corresponding to the first piano (circles indicate the actual notes).

beneficial when interferences are constructive, i.e., when signal
and database notes are phase-synchronous.

C. Results With a Fixed Database

To validate our method, we have tested our estimation
process on instantaneous mixtures of known waveforms, with
small random time shifts. The used waveforms belong to three
acoustic pianos (to be referred as pianos 1, 2, and 3) from the
McGill University’s catalog of orchestral sounds [18]. For our
experiments, the database is built with notes from Piano 1.3

When tested with samples from the same piano, s are cor-
rectly identified even in the presence of harmonic intervals and
polyphonies of more than four notes. An example is shown in
Fig. 3(a), where the notes from a C major chord are correctly
estimated.

However, when tested with samples from pianos 2 and 3, the
estimation simply does not work [see Figs. 3(b) and (c) respec-
tively]. In fact, at the top of Fig. 3, it can be noted that the dis-
tribution of energy across partials varies considerably between
pianos (or recording conditions), thus precluding the use of a
simple piano model to estimate notes produced by all pianos.
This specificity is critical, as for most real musical recordings we
would not have access to a database that completely matches the
played sound. Thus, a useful -estimation method must deal
with recordings for which such information is not available.

3a Steinway and Sons Model D, see info at http://www.steinway.com.

As a possible solution to this problem, we adopt the use of an
adaptive approach, where the database of individual notes is es-
timated for each song using our frequency–domain method. The
generated database is then used for time–domain transcription
as explained above. In the following sections, we will describe
this solution in detail.

D. Adaptive Database Estimation

Estimating the database from the signal is a three-step
process:

1) estimation of “very likely” notes using the frequency–do-
main method;

2) synthesis of the estimated sounds;
3) interpolation of missing sounds in the database.
1) Note Estimation in the Frequency–Domain: For the

method in Section II, let us define as the estimation error
rate related to false negatives (FNs) and as the estimation
error rate related to false positives (FPs).4 We can also define
as the set of parameters that control the transcription process.
A usual choice of is one that roughly balances the FNs and
the FPs, for instance .

However, estimation of all notes in the signal is no longer the
goal of our system. The goal is to accurately retrieve a set of
“very likely” notes in the signal, i.e., notes that can be detected
with a high level of confidence, such that they can be used as
the individual waveforms that compose the database . In

4FN are actual notes that are not detected by the system, while FP are nonex-
isting notes that are detected by the system.
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Fig. 4. Gaps in the database are filled by pitch-shifting the estimated notes.

order to do this, we need to retune the algorithm such that its
rate of false positives is kept very low. In this paper, was set
manually after a number of experiments. However, this process
could be automated and the parameters learned from a training
set of annotated music. Finally, if several occurrences of the
same note are found, the one with the highest note-to-signal
energy ratio is used, thus favoring the use of notes found in
isolation.

2) Synthesis of the Estimated Notes: For the synthesis
process on each frame, we use the harmonic combs (Sec-
tion II-B) of estimated notes to isolate the relevant signal
components. We create a modified spectrum by preserving the
magnitude and unwrapped phase of these components only. For
the synthesis process, we use overlap-add techniques similar to
those used in [19].

3) Filling the Gaps: Synthesized notes are organized in the
database according to their . The resulting database is in-
complete, i.e., does not contain waveforms for all notes in the

range to be estimated; therefore, precluding the use of the
time–domain method. The completeness of the database varies
depending on the signal and on the parameter set . The situa-
tion, illustrated on the left-hand side of Fig. 4, leaves us with a
database of a few detected notes and many gaps.

A solution is to use a pitch-shifting algorithm to fill the gaps in
the database. An efficient pitch-shifting algorithm can be imple-
mented using phase-vocoder theory [16]: we calculate the phase
difference between consecutive FFT bins in time. We cal-
culate a modified phase difference as the product between

and a transposition factor , such that

(21)

where is the original fundamental frequency, and is the
fundamental frequency of the shifted note. The modified phase
increments are used to synthesise the shifted signals, thus com-
pleting the database as illustrated in the right-hand side of
Fig. 4. Shifting is allowed only up to half an octave from the
original pitch, to avoid introducing into the database waveforms

which are not representative of the piano sound at a given fre-
quency.

IV. INTEGRATING FRAME ESTIMATIONS OVER TIME

If notes are to be constructed from estimates, the frame-by-
frame analysis needs to be complemented by the analysis of in-
formation along the time axis. This applies to estimations using
both presented methods.

Let us define a frame estimation as , where is
the frame time, and is the estimated frequency. Let us also
define a note as the group of frame estimations with fun-
damental frequency that occur within a segment defined by
an onset time and offset time , such that

, if and , the difference between
and the position of the previous frame estimation, is less than

a static predetermined value . This value defines the max-
imum gap that can exist between neighboring frame estimations
that belong to the same note. In this implementation, for a hop
size of 10 ms, 30 ms. Note that the note boundaries and

are defined by estimations separated by .
The duration of is evaluated against a predefined

threshold (=40 ms), such that

then is kept
then is eliminated.

If is kept, it is aligned in time to the closest note onset po-
sition, calculated using the derivative of the log-energy of the
note. This process is equally applied to frequency and time–do-
main estimations. A more detailed explanation can be found in
[10].

V. RESULTS AND DISCUSSION

A. About the Evaluation

1) Method: To quantitatively evaluate the accuracy of the
transcription, we chose a note by note comparison against a
score-like representation of recorded signals. For the evaluation
to be meaningful, we require our test signals to be polyphonic,
generated by a real piano (i.e., not synthesized) and recorded
in live conditions (i.e., presenting the effects of room acous-
tics). For these signals, we also require score-like representa-
tions matching recorded events in time and frequency.

2) Test-Set: We use a collection of MIDI files as our sym-
bolic database. They were generated from performances of
amateur and professional piano players and contain a total of
4258 notes. The collection corresponds to segments of piano
pieces by five well-known composers: Wolfgang Amadeus
Mozart, Ludwig van Beethoven, Claude Debussy, Scott Joplin,
and Maurice Ravel. The selection of composers and musical
pieces was arbitrary. We use these files to drive a MIDI-con-
trolled acoustic grand piano.5 The piano was recorded at
44.1-kHz sampling rate, in stereo by using a coupled pair of
condenser microphones in a recording studio. The record-
ings, converted to pulse-code modulation mono wave files
at 22 050-Hz sampling rate, are used as input signals for the
analysis. The length of the analysis window is 200 ms and
overlapping frames are separated by a 10-ms hop.

5a Yamaha Disklavier, see info at http://www.yamaha.com/disklavier.
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TABLE I
TRANSCRIPTION RESULTS USING THE FREQUENCY-DOMAIN

AND TIME-DOMAIN APPROACHES

3) Limitations of Using MIDI Data: The use of MIDI files
as our ground truth for evaluation is not without complications:
MIDI information contains a list of commands that regulates
when to hit and release each piano key, as well as the loud-
ness of the hit. This ignores other features in the sound such as
the instrument’s sustain, the room’s reverberation, the temporal
changes in timbre due to the physics of the instrument and the
noise produced by the instrument mechanism (e.g., by using the
pedals, by the hammering of the strings, etc). It also ignores the
mechanically induced delay between note on/off and the real
time at which the piano keys are pressed/released. As a con-
sequence, events in the MIDI file will differ from those in the
audio signal, most noticeably in the duration of notes and, thus,
the polyphony in the signal, and less noticeably in the exact start
times of events. Our evaluation tries to compensate for this by
using a tolerance window in time when comparing the original
and the estimated MIDI files: true positives (TPs) are acknowl-
edged when notes of the same pitch start in both MIDI files
within 50 ms of each other. Offset times are not taken into ac-
count.

B. Discussion

1) Overall Results: Table I compares results for the tran-
scription using the frequency–domain (FD) and the time–do-
main (TD) approaches.

For each composer and approach, Table I shows the per-
centage of true positives (TP), or estimated true notes, and the
percentage of false positives (FP), or estimated false notes.
For the frequency–domain approach, the overall rate of true
positives is almost 70% of the total amount of notes. For the
time–domain approach, overall rates of TP increase by 8%, up
to almost 77%. This is a significant improvement, considering
that as the number of true positives increase, only the most dif-
ficult note combinations remain undetected (e.g., harmonically
related notes in complex polyphonies). However, the number
of FP also increases significantly, raising concerns about the
advantages of using this approach. In the following, we will
discuss these results in more detail.

2) Polyphony and Harmonicity: For both approaches, the
best results are for Debussy’s piano pieces, while the worst
are for Joplin’s segments. This is consistent with the known
limitations of transcription systems regarding polyphony and
harmonicity: Debussy’s segments are based on chromatic
melodic progressions, usually with low polyphonies involved,
while Joplin’s segments are rich in complex polyphonies of
highly harmonic sounds, as rag time music usually is. Similar
observations can be made for the whole collection. Table II
shows the mean, deviation, and maximum polyphonies of

TABLE II
TEST COLLECTION STATISTICS FOR POLYPHONY AND NOTE DURATIONS

IN SECONDS: AVERAGE (�), STANDARD DEVIATION (�), AND

MAXIMUM VALUE (MAX)

TABLE III
CATEGORIZATION OF FALSE NEGATIVES (FN) AND FALSE POSITIVES (FP)

ACCORDING TO HARMONICITY IN THE MUSIC COLLECTION

the test collection by composer. Polyphony is defined as the
number of notes that are on when a new note starts. It is
measured by counting the number of active notes at every note
onset in the MIDI file. We can see the correspondence between
the low-order polyphony statistics in the MIDI files and the
accuracy of the detection: pieces by Ravel and Joplin show the
highest polyphony while producing the lowest detection rates.
Pieces by Debussy and Mozart contain lower polyphonies,
thus producing more accurate detections. The impact of the
polyphony is made worse by the speed of the piece: fast pieces
with high polyphonies will provide less steady data for the anal-
ysis, thus misleading the estimation process. The last column
of Table II shows the mean and deviation of note durations (in
seconds) by composer. This data, while strengthening the case
for poor estimation in Joplin’s music, also partly explains the
low number of TP obtained for Beethoven’s music (at least
with the frequency–domain approach).

However, the quantity of notes in the polyphony is only part
of the problem. As discussed before, the relationships be-
tween notes have great influence in the accuracy of the detec-
tion. Chords with a high harmonic content are more difficult to
estimate than those without. Table III shows the contribution of
octaves, thirds and, fifths to the estimation error. In the case of
false negatives, numbers in the table refer to the percentage of
all notes in the MIDI file that were not detected due to harmonic
relationships. In the case of false positives, values refer to the
percentage of detected notes that were false due to harmonic re-
lationships. All results are categorized by composer.

The problem of harmonicity accounts for more than half the
false negatives and around 70% of false positives. Octave inter-
vals are of great significance to miss-detections in Ravel’s and
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Joplin’s music. In Mozart’s and Debussy’s pieces, it is mostly
the presence of thirds and fifths that affects the estimation.

3) Database Estimation: Table III also shows how, in the
case of the number of false negatives, the time–domain approach
seems to improve upon the frequency–domain method. The per-
centage of harmonically related FN is consistently reduced by
the time–domain method, in some cases for as many as 4% of
the total amount of FN. This is evidence to support the idea
that if a waveform is successfully incorporated into the basis,
then estimations of that note are improved along the duration
of the signal. Unfortunately, this is a double-sided argument: if
a corrupted waveform (a false positive or a true positive resyn-
thesized from a complex signal context) makes it to the dictio-
nary, then spurious detections are increased. This is reflected in
the higher number of FP estimated using the time–domain ap-
proach.

Furthermore, even when notes are correctly selected for the
database, they do not necessarily represent all instances of the
same note during the musical piece: waveforms of the same
note are subject to significant variations depending on the en-
ergy at which they have been played, their length, the work of
the pedals, the context (the interaction with other notes being
played at the same time), all of which is neglected by the tem-
poral approach.

What the results show is that the estimation of notes using
the time–domain method depends on a successful estimation in
the frequency–domain (at the database building stage). Note, for
example in Table I, how the increase in the number of TP and
FP using the time–domain approach is related to the FP pro-
duced by the frequency–domain method: the lower the number
of FP in the frequency–domain, the higher the increase in ac-
curacy in the time–domain (e.g., Mozart, Beethoven, and De-
bussy). On the other hand, less accuracy in the frequency–do-
main means higher FP rates and lower increments in TP using
the time–domain approach. There is a minimum level of accu-
racy that we need to achieve when building the database to make
the time–domain approach work. The assumptions at the core of
the method depend on this.

Despite all this, overall results are improved by using the
time–domain method, supporting the idea of an alternative ap-
proach to the standard analysis in the frequency domain. More-
over, the biggest limitation of the time–domain approach seems
to be its dependency on the frequency–domain approach in order
to acquire the necessary knowledge for detection. As the theory
showed, and the known-database results exhibited, the capabil-
ities of the system are very high given the reliability of the data-
base.

4) Comparison to Other Approaches: There are a number
of issues that make a fair comparison of existing approaches to
automatic transcription an almost impossible task.

• Databases: There is a lack of standard databases for
training and evaluation. Researchers choose the style,
instrumentation and acoustic characteristics of the test
music as a function of their particular application and/or
their access to ground-truth information.

• Annotations: The difficulties of producing reliable ground-
truth data usually translates in the use of “shortcuts” to an-
notation, e.g., synthesized music, midi-driven instruments,

score-following, etc. Hand-marking is a painful and time-
consuming task that leaves no room for the cross-validation
of annotations. Furthermore, there are no standard rules
regarding annotations, so different ground-truths are not
compatible.

• Evaluation: Different studies use different evaluation
methods making numeric comparisons futile, e.g., dif-
ferent criteria for hits or misses, different tolerance
windows, etc.

As a reference, we can cite numeric results published on
databases of acoustically recorded piano music. Raphael [6],
reports rates of 61% TP and 26% FP on a database of 1360 notes
from a single piano recording; Carreras et al. [7] report average
results of 74% TP and 11.7% FP on five segments of piano
music (it is important to note that their evaluation assumes
perfect onset detection which is not always the case); recently,
Marolt [8] reported results of 80.9% TP and 14.7% FP on a
database of 3382 notes from three piano recordings. It is worth
mentioning that, with the exception of Raphael’s approach
that uses the Baum–Welch algorithm to train his HMM on the
analysis signal, these approaches train their systems prior to
analysis on a separate database of isolated notes or tones. By
gaining our knowledge directly from the signal, we are not
constrained by the limitations imposed by the training set.

VI. CONCLUSION

In this paper, we concentrate on the problem of automatically
transcribing piano music. First, a method is proposed that ana-
lyzes the signal on a frame-by-frame basis, detecting the most
prominent spectral peaks and grouping them according to ex-
pected comb-patterns by means of a set of heuristic rules. The
method successfully identifies nearly 70% of notes in acoustic
piano recordings. Errors are often associated with the common
limitations of frequency–domain approaches: high polyphonies,
short durations, and harmonic intervals.

Alternatively, a novel method is presented that identifies
notes from polyphonic mixtures in the time–domain. It im-
proves results when facing common issues that arise when
using frequency–domain transcription methods. The approach
assumes short segments of the original waveform to be the
linear sum of weighted individual waveforms (corresponding
to the individual notes of the played instrument), and phase
relationships to be reproducible. The theory is developed to
lead to the conclusion that, by estimating the values of the
mixing vector for each frame, accurate polyphonic pitch
detection can be achieved. This is true provided that we have
the original waveform and that we have a database of wave-
forms corresponding to individual notes of the instrument. To
this end, two conditions need to be satisfied, phase-alignment,
obtained through independent shifting of each vector, and
a reliable database, constructed by using the results of the
frequency–domain approach. This method has the advantage
of not needing prior training on a separate database of isolated
notes. Moreover, the use of the dual approach could be further
refined to use results of the time–domain method to improve on
the frequency–domain estimation, thus increasing the accuracy
of the detection with each iteration.
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The time–domain method improves estimations by 8%, but
with a cost to the reliability of the detection of nearly 6%. De-
tailed analysis concludes that a considerable improvement to the
previous approach can be obtained when the rate of false pos-
itives from the frequency–domain is reasonably low, i.e., when
a certain level of accuracy has been reached. Otherwise, false
positives are introduced into the the database, badly affecting
the performance of the new method.

In the future, results could be improved by adding knowledge
about the physical behavior of the instrument into our model, as
proposed by [9] (inharmonicity, string coupling, etc). Also, for
the time–domain method, we could go beyond our crude initial
approximation that the waveforms are invariant with respect to
loudness, except by a global scaling factor, and add a model
for nonlinear timbre variations, such as the ones used in piano
synthesis [20].

The generalization of this approach to other instruments de-
pends on sources being static, as any movement will, at the very
least, destroy phase relationships of wavelengths lower than the
amplitude of the movement. Also, the phase relationships need
to be reproducible in the excitation, a condition that constrains
the nature of possible sources to a few instruments (e.g., key-
boards: organ, harpsichord).
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