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Abstract: We study the propagation of waves in a set of absorbing subwavelength scatterers
positioned on a stealth hyperuniform point pattern. We show that spatial correlations in the
disorder substantially enhance absorption compared to a fully disordered structure with the same
density of scatterers. The non-resonant nature of the mechanism provides broad angular and
spectral robustness. These results demonstrate the possibility to design low-density materials
with blackbody-like absorption.
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1. Introduction

Enhancing the absorption of waves is of paramount importance in a number of applications,
including solar heating [1], photovoltaics [2], molecular spectroscopy and sensing [3], acoustic
insulation [4,5], seismology [6], or ocean waves [7]. In optics, perfect absorption of coherent light
has been demonstrated long-ago on designed periodic structures supporting surface plasmons [8].
The conception of metallic nanostructures to enhance absorption has become a strategy to increase
the efficiency of photovoltaic conversion or photodetection of visible or near infrared light, taking
advantage of the broadband nature of plasmon resonances. A drawback is the strong absorption
in the metal itself, which reduces the absorption enhancement in the region of interest (e.g., the
active semiconductor). Optimized nanostructures also require costly nanofabrication techniques,
and can be highly sensitive to imperfections. The concept of coherent perfect absorption (CPA)
has been generalized, showing that total absorption at a given frequency can be reached in any
absorbing material provided that the incident wavefront has been spatially shaped to match an
absorption eigenmode [9, 10]. Coupled to wavefront shaping techniques, CPA permits total
absorption of light in complex disordered media [11–13]. An important difference between
Refs. [9, 10] and [11–13] is that the former are based on resonant absorption by an eigenmode
at certain frequency. However, the latter are based on non-resonant coupling of light into an
eigenchannel that can occur over a continuous frequency range and its enhancement effect can be
broadband. Nevertheless, resonant absorption in designed nanostructures and CPA both require
a coherent (shaped or unshaped) incident wavefront. This makes the absorption process sensitive
to changes in the incident wave (direction, polarization and to a lesser extend spectrum), or to a
reduction of its degree of coherence, thus limiting the range of targeted applications.

Alternatively, absorption of natural light in disordered materials has been put forward recently,
mostly in the context of photovoltaics [14–17]. It has been known for long that structural
correlations (e.g., correlations in the positions of scatterers dispersed in a homogeneous medium)
have a strong impact on the scattering properties [18–25]. The possibility to increase absorption
using correlated disorder has been demonstrated in thin films patterned with holes [26], and
put forward recently in particular cases [27–30]. Nevertheless, a general strategy to optimize
disordered materials in terms of their ability to absorb light (and more generally waves) over a
broad spectral and angular range is still missing.

Previous works were often guided by the idea of increasing the optical path length [15, 16], or
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based on an optimization process without targeting a particular physical mechanism [11–13,17].
In this manuscript, we propose an alternative strategy. First, we demonstrate the existence of an
upper bound for the absorbed power, and discuss the underlying physical picture. This picture
naturally dictates a methodology to enhance absorption in a disordered medium by suppressing
scattering using structural correlations, and maximizing the absorbance in the resulting effective
homogeneous medium. Second, based on numerical simulations, we show that hyperuniform
materials, a specific class of correlated disordered materials, permit to reach an absorption
level close to the predicted upper bound, with substantial spectral and angular robustness. The
results demonstrate the substantial impact of structural correlations on absorption, offering the
possibility to design low-density disordered materials with blackbody-like absorption.

2. Upper bound for wave absorption in disordered media

Upper bounds for the absorbed power in photonic materials have been discussed in previous
studies. One of them applies to materials made of discrete scatterers with a fixed position in
space, the degree of freedom being the polarizabilities of the individual scatterers [31]. Since
in the present work we focus on the degrees of freedom offered by the spatial distribution of
scatterers, this upper bound is not directly applicable. Another upper bound was derived for a
medium with given material properties (dielectric function) and a tunable geometry [32]. Since
our objective is to define strategies to optimize the absorption in a disordered medium described
statistically, we propose another approach to derive an upper bound that directly applies to the
statistically averaged absorbed power. As we will see, this upper bound derivation gives insight
for the definition of strategies to reach this bound [i.e. to optimize the level of absorption by
designing the statistical properties (spatial correlations) of the disordered medium].
Let us consider a disordered medium embedded in a volume V with external surface S,

illuminated by a monochromatic incident electric field with complex amplitude E0. From
Poynting’s theorem, and writing the total field E = E0 + Es with Es the scattered field, energy
consevation can bewritten in the form Pe = Pa+Ps [33]. In this expression, Pe = Re

∫
V

j·E∗0d3r/2
is the extinction power, j being the induced current density in volume V , Pa = Re

∫
V

j · E∗d3r/2
is the absorbed power, and Ps = Re

∮
S
(Es ×H∗s) · nSd2r/2 is the scattered power, Hs being the

scattered magnetic field and nS the outward normal on S. Since we are interested in a statistical
description of the disordered medium, we introduce the ensemble average denoted by 〈· · ·〉,
and write the fields and current density as a sum of an average value and a fluctuating part:
X = 〈X〉 + δX with X ∈ {E,Es,Hs, j} (note that 〈δX〉 = 0, and that E0 = 〈E0〉 since E0 is
deterministic). Introducing these expansions into the expressions of the extinction, absorbed
and scattered powers, they can be cast in the form 〈P〉 = P + P̃, where P is the component
involving average quantities 〈X〉 and P̃ the component involving fluctuations δX (see App. A).
Noting that 〈Pe〉 = Pe, energy conservation becomes on average Pe = Pa + P̃a + Ps + P̃s . An
important result of multiple scattering theory states that the averaged field obeys a wave equation
in an effective homogeneous medium [34, 35]. Energy conservation for the averaged field can be
written Pe = Pa +Ps (see App. A). Combining the two preceding equations leads to P̃a + P̃s = 0.
As a result, the averaged absorbed power can be written

〈Pa〉 = Pa − P̃s . (1)

Note that P̃s ≥ 0 since it can be reduced to the integration of |δEs |
2 over a closed-surface

encompassing the medium in the far field. For the sake of simplicity, we now assume that the
medium is a slab of finite thickness and illuminated by a plane-wave E0 which will be the situation
of interest in the following. We consider the volume V to be a portion of the slab with cross
section Σ. In that simple case, the power Pa absorbed in the effective homogeneous medium (as
seen by the averaged field) cannot exceed the incident power P0 =

∫
Σ

Π0 · nΣd2r where Π0 is the
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incident Poynting vector and nΣ the inward normal on Σ . We finally have

〈Pa〉 ≤ P0 − P̃s . (2)

The derivation of this upper bound for the averaged absorbed power in a disordered medium
embedded in a slab geometry is the first result in this article.

This upper bound suggests three strategies to increase the absorbed power: (1) Inhibit P̃s while
keeping Pa approximately constant, (2) for a fixed P̃s , maximize Pa as close as possible to P0, or
(3) inhibit P̃s and maximize Pa. Strictly speaking, finding the statistical classes of disorder that
maximize the absorbed power is challenging. Indeed, Pa and P̃s depend on transport parameters
such as the effective refractive index and the scattering and absorption mean free paths, that have
a complex dependence on the structural correlations of disorder [36]. In the following we will
constrain the problem by considering media made of absorbing discrete scatterers dispersed in a
transparent background, and characterized statistically by the spatial correlation in the positions
of the scatterers. Furthermore, we will consider the special class of stealth hyperuniform disorder,
that is known to produce P̃s � P0 for large wavelengths even in dense materials [24]. In
particular, a key question that we will address below concerns the validity of the preceding
inequality in the presence of strong absorption.

3. Wave absorption in hyperuniform materials

Hyperuniform point patterns are such that the variance of the number of points within a sphere
of radius R increases slower than the average number of points when R tends to infinity [37]. For
a set of N points with positions rj , this property is equivalent to saying that the structure factor

S(q) =
1
N

������ N∑
j=1

exp[iq · rj]

������
2

(3)

vanishes when |q| → 0. First introduced for their interest in close packing processes [37],
hyperuniform distributions of scatterers (hereafter denoted by hyperuniform materials) also
produce materials of interest in wave physics, in particular due to their ability to produce bandgaps
even in absence of periodicity [38–44]. Stealth hyperuniform materials is a specific class for
which S(q) strictly vanishes on a domain Ω of typical size K around q = 0 [45, 46]. The size K
actually controls the degree of spatial correlations. For large K , the system is very constrained,
generating short and long-range order. For K → 0, structural correlations are relaxed and the
system tends to a fully disordered material. The degree of order in the pattern is usually measured
by the ratio χ = [K/(2π)]d/(2dρ), with ρ the density of points and d the dimension of space.
χ has to be understood as the number of constrained degrees of freedom (DOF) normalized
by the total number of DOF. χ = 0 corresponds to an uncorrelated pattern (fully disordered
structure without any constraints), while χ = 1 characterizes a perfect crystal with infinite range
correlations [45].

In the single-scattering regime, the scattered intensity is directly proportionnal to the structure
factor S(q), with q = ks − ki , ks and ki being the scattered and incident wavevectors. A
stealth hyperuniform material does not scatter light for wavelengths satisfying λ > 8π/K , which
corresponds to scattering wavevectors q lying in the domain Ω [24]. In the multiple-scattering
regime, transparency also holds for large λ, provided that the effective scattering mean-free path
`Hs is larger than the system size L [24] (we use the superscript H for quantities characterizing
the hyperuniform material). In this regime, we have P̃H

s � P0, leading us to the idea that
hyperuniform materials made with absorbing scatterers could be used to optimize the absorbed
power, along the line denoted by strategy (1) above.
In order to support this idea, we present numerical simulations of wave scattering in two-

dimensional model materials made of subwavelength electric-dipole scatterers distributed on a
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stealth hyperuniform point pattern. To proceed, we generate 60 configurations with thickness L
and transverse size 3L, following the algorithm in Ref. [45] (also described in Ref. [24]). A value
χ = 0.44 is chosen, permitting to simulate large systems with a limited number of scatterers,
although the behaviors discussed below are also observed for smaller values of χ. The value
χ = 0 has also been chosen to make a comparison with a fully disordered (uncorrelated) structure.
In that case, the system is simply generated by picking-up random positions of the scatterers
uniformly in the volume L × 3L. For simplicity we consider electromagnetic waves with an
electric field perpendicular to the plane containing the scatterers. Each scatterer is described by its
electric polarizability α(ω) = −4ηc2/[Q(ω2 −ω2

0)+ iω2]. Here c is the speed of light in vacuum,
ω0 is the resonance frequency, Q = ω0/Γ is the quality factor, Γ = ΓR+ΓNR is the linewidth, with
a radiative and a non-radiative contribution (absorption), and η = ΓR/Γ is the quantum efficiency
(or albedo). From the polarizability, we can deduce the scattering cross-sectionσs = k3

0 |α(ω)|
2/4,

the extinction cross-section σe = k0 Im[α(ω)] and the absorption cross-section σa = σe − σs of
the scatterers, with k0 = ω/c = 2π/λ the wavenumber in vacuum. Given a number density ρ
of scatterers, we introduce as references the scattering and absorption mean-free paths in the
independent scattering approximation (ISA, also known as Boltzmann approximation), defined as
`Bs = (ρσs)

−1 and `Ba = (ρσa)
−1. The disordered medium is illuminated from the left by a plane-

wave at normal incidence (as shown schematically in the inset in Fig. 1). Maxwell’s equations
are solved using the coupled-dipoles method [47], and once the electric field illuminating each
scatterer is known, the total absorbed power PH

a is readily calculated (see App. B for more details
on the numerical procedure). Repeating the calculation on the set of generated configurations,
an ensemble average is performed to obtain

〈
PH
a

〉
. Running the same simulations on a set of

configurations with uncorrelated scatterers, with the same density ρ, leads to a calculation of
the average power in a fully disordered material

〈
PU
a

〉
(we use the superscript U for quantities

characterizing the uncorrelated material).
The dependence of

〈
PH
a

〉
and

〈
PU
a

〉
on the ISA absorption optical thickness L/`Ba is shown in

Fig. 1 (a). The parameter L/`Ba = ρσaL is chosen here as a measure of the intrinsic absorption
level, independently of the spatial correlations in the medium. The power absorbed by the
stealth hyperuniform material is substantially larger than that absorbed in the fully disordered
material with the same density. As shown in Fig. 1 (b), we observe a maximum enhancement〈
PH
a

〉
/
〈
PU
a

〉
' 1.8 for a thickness L ' `Ba .

The propagation regimes in the hyperuniform and disordered structures can be analyzed, in
order to get physical insight into the mechanism responsible for the absorption enhancement.
The effective scattering mean free path in the non-absorbing hyperuniform structure is estimated
to be `Hs ≥ 750 `Bs , based on a computation of the average field inside the medium (see App. C).
This confirms that hyperuniform correlations, with the set of parameters chosen in Fig. 1, lead to
transparency by suppressing the scattered power [24]. Moreover, we have verified numerically
that the fluctuations of the absorbed power also vanish (see App. D), so that error bars are
not displayed in the figures for the sake of lisibility. We can conclude that the hyperuniform
material in this regime behaves as an effective homogeneous and absorbing medium. Note that
homogenization emerges here as a consequence of spatial correlations, without any change in
the density of scatterers. The descprition of the effective medium has to go beyond standard
approaches, such as the Maxwell-Garnett model. The average absorbed power can be calculated
analytically considering a homogeneous slab, with a complex refractive index given by the
effective refractive index of the hyperuniform structure, also deduced from the computation of the
average field inside the slab (see App. E). The result of the analytical calculation is represented in
Fig. 1 (a), and nicely fits the numerical simulation, confirming the picture of an homogenization
process. Regarding the uncorrelated medium, scattering is not suppressed, but the absorption
curve can be fairly reproduced using a Monte Carlo simulation of intensity transport, describing
the multiple scattering process in a medium with an effective refractive index nUeff =

√
1 + ρα(ω),
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Hyperuniform Uncorrelated

(a)

(b)

Fig. 1. (a) Normalized absorbed power averaged over 60 configurations, versus the ISA
absorption optical thickness L/`Ba , for hyperuniform (black solid line) and uncorrelated
(red solid line) materials. Parameters: L/`Bs = 15, k0`

B
s = 13, N = 30000 scatterers,

χ = 0.44. Black dotted line: absorption by a homogeneous material with a complex
refractive index equal to the effective index of the hyperuniform material (obtained by a
fitting procedure). Red dotted line: absorption by an uncorrelated medium computed using
a Monte Carlo simulation. (b) Ratio

〈
PH
a

〉
/
〈
PU
a

〉
measuring the absorption enhancement

in the hyperuniform material.

and scattering and absorption mean-free paths `Us = `Bs and `Ua = `Ba , as shown in Fig. 1 (a). We
have also verified using the Monte Carlo simulation that when `Ua � `Us the power absorbed by
the uncorrelated structure approaches P0. The reason is that most of the light is absorbed before
being scattered.
Interestingly, although spatial correlations in the stealth hyperuniform structures have a huge

impact on the scattering mean free path, they weakly affect the absorption mean free path.
This result was already put forward in Refs. [27, 28] for hard spheres correlations, and is
confirmed by numerical simulations for hyperuniform disorder (see App. F). Indeed, with the
parameters used in Fig. 1, we have `Ha ' 0.7`Ba . This calls for a simple random walk picture,
that explains qualitatively the behavior of

〈
PH
a

〉
and

〈
PU
a

〉
. For the hyperuniform medium, we

have `Ha ∼ `Ba < L � `Hs , meaning that the photons travel along the distance L without being
scattered, with a high probability to be absorbed before escaping. For the uncorrelated medium,
`Us ∼ `

B
s < `Ua ∼ `

B
a < L, and a non-negligible fraction of photons are backscattered before

being absorbed. These results are not specific to the value of χ that has been chosen. Since the
absorption mean-free path weakly depends on χ, the results are valid as soon as the transparent
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criterion is fulfilled [24].
From the validity of the intensity transport picture, we also expect the absorption enhancement

to be robust against changes in the direction of incidence and the illumination frequency. This is
confirmed by the dependence of 〈Pa〉 on the incidence angle θ0 and the frequency ω displayed
in Fig. 2. The dependence of

〈
PH
a

〉
on θ0 [Fig. 2 (a)] is weak (and weaker than that observed

for
〈
PU
a

〉
), except at large angles where finite-size effects start to play an important role (the

transverse size of the medium is limited to 3L in the simulation). Using broadband scatterers
(quality factor Q = 3), we obtain a large absorption enhancement on a broad frequency range
[Fig. 2 (b)]. The bandwidth with large absorption corresponds to the frequency range for which
the condition `Ha ∼ `Ba < L � `Hs remains satisfied. It is interesting to note that the disordered
stealth hyperuniform material provides a maximum of absorption exceeding that obtained with a
periodic crystal, together with a better angular robustness (numerical simulations for crystals are
displayed in App. B).

(a)

(b)

Hyperuniform

Uncorrelated

Fig. 2. (a) Normalized average absorption versus the angle of incidence. Same parameters
as in Fig. 1 with L/`Ba = 2. (b) Normalized average absorption versus the illumination
frequency at normal incidence. Same parameters as in Fig. 1 with Q = 3 and η = 0.94 which
gives L/`Bs = 15, L/`Ba = 1 and k0`

B
s = 13 for ω/ω0 = 1.49. The vertical dashed blue line

indicates the cutoff frequency ωc = Kc/4 deliminating the transparency region λ > 8π/K .

Finally, it is interesting to use the analytical models to analyze the absorption enhancement at
very large optical thicknesses, that are not accessible to the full-wave numerical simulation. For
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the hyperuniform structure, we can calculate the power absorbed in an effective homogeneous
slab with thickness L. We assume a dilute medium in order to neglect the index mismatch at
the interfaces, and consider an absorption length `Ha ' `Ba (see App. F). For the uncorrelated
medium, we estimate the absorbed power using the diffusion approximation valid for L � `Bs
(see App. G). Although not shown for brevity, the enhancement curves have the same shape as
that in Fig. 1 (b), with an enhancement reaching

〈
PH
a

〉
/
〈
PU
a

〉
' 7 for L = 600 `Bs and L ' `Ba .

We can even estimate the maximum enhancement that can be expected using the analytical
models (see App. H for details on the calculation). We obtain (L/`Ba )optimum = 1.256 and

max

[ 〈
PH
a

〉〈
PU
a

〉 ]
' 0.243

√
L
`Bs
. (4)

4. Conclusion

In summary, we have demonstrated theoretically the existence of an upper bound for the absorbed
power in a disordered medium, and analyzed the potential of hyperuniformmaterials for the design
of strong absorbers of light. Hyperuniform correlations can enhance the absorbed power very
close to the upper bound, and the non-resonant nature of the mechanism provides broad angular
and spectral robustness. Robustness to positional variations of the scatterers is also expected,
since random displacements do not seem to destroy hyperuniformity [48]. Together with the
development of self-assembly processes able to produce hyperuniform architectures [49, 50], the
results in this article could guide the design of disordered correlated materials with blackbody-like
absorption. The results should apply to all kinds of waves propagating in materials made of
subwavelength absorbing scatterers in a non-absorbing host medium.

A. Elements of multiple scattering theory in disordered media

Let us consider a random variable X for which a statistical average exists and is denoted by 〈X〉.
From that, we define the fluctuation δX for each statistical realization by the deviation to the
average:

X = 〈X〉 + δX. (5)

In the case of disordered media, this expansion can be applied for example to the electric field:

E(r, ω) = 〈E(r, ω)〉 + δE(r, ω) (6)

where the statistics is performed here over all possible spatial configurations of the disordered
medium. From this expansion, it is easy to compute the average intensity which reads

〈I(r, ω)〉 =
〈
|E(r, ω)|2

〉
= |〈E(r, ω)〉|2 +

〈
|δE(r, ω)|2

〉
= I(r, ω) + Ĩ(r, ω) (7)

where we have used by definition 〈δE〉 = 0. I and Ĩ are respectively called the ballistic and the
diffuse intensity. This expansion holds for any quadratic quantity such as the extinction, absorbed
and scattered powers used in the main text:

Pe(ω) =
1
2

Re
∫
V

j · E∗0d3r, (8)

Pa(ω) =
1
2

Re
∫
V

j · E∗d3r, (9)

Ps(ω) =
1
2

Re
∮
S

(Es ×H∗s) · nSd2r . (10)
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We thus have

〈Pe(ω)〉 = Pe(ω) + P̃e(ω) = Pe(ω), (11)

〈Pa(ω)〉 = Pa(ω) + P̃a(ω), (12)

〈Ps(ω)〉 = Ps(ω) + P̃s(ω) (13)

where we have used 〈E0〉 = E0 and δE0 = 0 since the incident field is deterministic.

A.1. Ballistic beam

From Eq. (7), we see that the ballistic intensity is directly given by the average field. Thanks to
the multiple scattering theory, we can show that this field propagates in a homogeneous medium
with an effective refractive index neff(ω) [34, 35]. The imaginary part of this refractive index
gives the attenuation of the average field as it propagates in the medium. This attenuation is
called extinction and the typical distance over which the ballistic intensity is attenuated is the
extinction mean-free path `e. We can also show that this attenuation is given by absorption
(mean-free path `a) and losses by scattering (mean-free path `s). We have the relation:

1
`e
=

1
`a
+

1
`s
. (14)

The different powers relative to the effective medium read:

Pe(ω) =
1
2

Re
∫
V

〈j〉 · E∗0d3r, (15)

Pa(ω) =
1
2

Re
∫
V

〈j〉 · 〈E∗〉 d3r, (16)

Ps(ω) =
1
2

Re
∮
S

[〈Es〉 ×
〈
H∗s

〉
] · nSd2r (17)

where
〈j(r, ω)〉 = −iω 〈P(r, ω)〉 = −iωε0

[
neff(ω)2 − 1

]
〈E(r, ω)〉 . (18)

We also have
Pe(ω) = Pa(ω) + Ps(ω). (19)

Equation (16) together with Eq. (18) are at the root of the computation of the absorbed power in
the stealth hyperuniform medium (see App. E).

A.2. Diffuse beam

Regarding the computation of the diffuse intensity of Eq. (7), the problem is more complex. For
large optical thicknesses, we can show that it is governed by a diffusion equation which is at the
root of the computation of the absorbed power in the uncorrelated structure (see App. G).

B. Numerical computation of the average absorbed power

B.1. General method

The numerical computation is done through the following process schematized in Fig. 3. (1)
First, we generate 20 disordered configurations containing 90000 points in a square of size 3L.
For the hyperuniform point patterns, we use the algorithm of Ref. [24] and uncorrelated point
patterns are simply generated with a uniform random process. (2) To mimic a slab geometry
and improve the statistical average, the generated configurations are divided into three bands
of thickness L and length 3L. After dressing all points with a polarizability α(ω), Maxwell’s
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equations are solved in these configurations for a plane-wave illumination from the left and using
a coupled-dipoles method [47]. In this formalism and for 2D scalar waves, the exciting field on
scatterer i is given by

Ei(ω) = E0(ri, ω) + k2
0α(ω)

N∑
j=1, j,i

G0(ri − rj)Ej(ω) (20)

where E0 is the incident field and G0 is the Green function in vacuum. It connects the field to its
point dipole source and is given by

G0(r − r′) =
i
4

H(1)0 (k0 |r − r′ |) (21)

where H(1)0 is the Hankel function of zero order and first kind. The computation of the exciting
fields consists in solving the linear system given by Eq. (20). (3) Finally, to avoid finite-size
effects again, the absorbed power is computed only for scatterers belonging to the central square
of volume V using the relation

Pa

P0
=

σa

L |E0 |2

∑
i∈V

|Ei |
2 (22)

and a statistical average is performed using the 60 different realizations of the disorder to get
〈Pa〉 /P0.

(a) (b)

3L

3L

L

θ0

V
Σ

1

Fig. 3. Illustration of the numerical computation process. (a) Configuration generated
numerically on a square of size 3L containing 90000 points. (b) One of the three bands used
for the Maxwell simulation as a disordered pseudo-slab containing 30000 scatterers. The
absorbed power is computed on the blue hatched square V . θ0 is the angle of incidence of
the plane-wave illumination.

B.2. Comparison with crystalline structures

We have also performed numerical simulations in the cases of fully ordered structures to compare
with the hyperuniform and uncorrelated ones. The results are reported in Fig. 4. For the periodic
lattices, the unit cell parameter a is such that k0a = 1.95 for the square lattice and k0a = 2.10 for
the hexagonal lattice. This means that in both cases a < λ and there is only one propagating
Bloch mode (no Bragg peaks are visible). However, ρλ2 is not large enough for the crystalline
structures to be homogenized (in the usual sense) and described by an effective refractive index.
This makes the comparison to the hyperuniform structures difficult to address using simple
arguments.
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1

Fig. 4. Comparison of the power absorbed by different types of structures as a function of
the incident angle θ0. For all simulations, the geometry (slab), the number of scatterers and
the optical properties of each scatterer are preserved. Parameters: L/`Bs = 15, L/`Ba = 1,
k0`

B
s = 13 and N = 30000 scatterers.

C. Average field evolution and effective refractive index fit for the stealth hype-
runiform structure

To compute analytically the power absorbed by the stealth hyperuniform structures, we have to
compute the evolution of the average field which allows us also to estimate the effective refractive
index nH

eff. The system of interest is depicted in Fig. 5. It is illuminated by a plane-wave at normal
incidence given by

E0(z) = E0 exp(ik0z). (23)

E0

nH
eff

O L

z

1

Fig. 5. System of interest to compute the average field (homogeneous slab).

First, we compute numerically the average field for several depths inside the slab. For that
purpose, we compute for each configuration the field at any position using the expression

E(r, ω) = E0(r, ω) + k2
0α(ω)

N∑
j=1

G0(r − rj)Ej(ω) (24)

and the expressions of the exciting fields given by Eq. (20). Then we perform the statistical
average. The numerical result is finally fitted with a standard Fabry-Perot approach which leads
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to the theoretical expression of the average field given by

〈E(z)〉 =
t

1 − rHeff
2

{
exp[ik0(nH

eff − 1)z] + γ exp[−ik0(nH
eff + 1)z]

}
E0(z) (25)

where rHeff = r exp(inH
effk0L), γ = r exp(2inH

effk0L), r = (nH
eff−1)/(nH

eff+1) is the Fresnel amplitude
coefficient in reflection and t = 2/(nH

eff + 1) is its counterpart in transmission. The fit is done
using an optimization algorithm, based on a (global) genetic algorithm combined with a (local)
Newton algorithm [51]. Note that in the most general case, the effective refractive index is
non-local but it can be very well approximated by a simple complex constant for statistically
homogeneous dilute systems.
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Fig. 6. Example of fitting of the effective refractive index of the average field inside the
cloud. The average field is compared with the analytical solution of the field propagating
inside an (transversally) infinite homogeneous slab of same refractive index. Calculations
were done on 60 stealth hyperuniform configurations made of N = 30000 dipoles with
χ = 0.444, L/`Bs = 15 and (a) L/`Ba = 0 (no absorption) or (b) L/`Ba = 0.5.

Figure 6 gives two examples for a stealth hyperuniform structure. From the effective refractive
index, we get the extinction mean-free path by

`He =
1

2k0nH
eff
′′ (26)

where nH
eff
′′ is the imaginary part of the effective refractive index.

In Fig. 6 (a), there is no absorption and the extinction mean-free path can be assimilated to the
scattering mean-free path. We clearly see the very slow decay of the intensity of the average
field. which means that `Hs � L and the structure is transparent. The fit gives for Fig. 6 (a)
`Hs ∈ [750, 1200]`Bs . This large window results from large incertainties because of a small decay.
On the contrary, absorption is present in Fig. 6 (b). In that case, we cannot discriminate between
the scattering and the absorption processes through the evolution of the average field. However,
as pointed out in App. D, the fluctuations of the absorbed power vanish, which probably proves
that `Hs remains large compared to the size of the system L. Thus the imaginary part of the
refractive index gives here a direct access to the absorption length. The fit gives for Fig. 6 (b)
`Ha ∈ [0.71, 0.83]`Ba . The proximity of `Ha with `Ba is surprising. It has already been put forward
recently for a different correlation type (hard-sphere potential) [27, 28] and needs a more refined
analysis that is left for future work. In particular, Eq. (22) could be used as a starting point for
the derivation of a theoretical result regarding the expression of `Ha .
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D. Standard deviation of the absorbed power distribution

To check the transparent character of the stealth hyperuniform structure for the set of parameters
used in this work, we can compare the standard deviation obtained from the absorbed power
distribution for both types of correlations (hyperuniform and fully disordered system). Figure 7
shows the computed ensemble standard deviation of the power absorbed σPa relative to the
ensemble mean power absorbed 〈Pa〉. It indicates clearly the strong reduction of σPa for a stealth
hyperuniform medium in the transparency regime, compared to an uncorrelated medium with
the same intrinsic parameters, typically by one to two orders of magnitude. Furthermore, its
amplitude in the hyperuniform case is more than two orders of magnitude smaller than 〈Pa〉,
which indicates that

〈
PH
a

〉
' P

H

a . The power associated to absorption by the average field
suffices to describe the absorption of a hyperuniform medium in the transparency regime for
most applications. This relatively low standard deviation of the power absorbed is interpreted by
the fact that a stealth hyperuniform medium in the transparency regime suppresses most of the
ensemble fluctuations of the fields by definition of this regime. One may then expect that all the
observables are described by the average fields. Note also that in the case of uncorrelated media,
the larger the optical thickness L compared to `Us , the closer P̃s → P0 and typically the larger
σPU

a
relatively to

〈
PU
a

〉
.

Fig. 7. Relative standard deviation of the absorption in a correlated (black, down) and
uncorrelated (red, up) cloud. Same parameters as in Fig. 1 of the main text. Error bars were
estimated by boostrapping on 10000 resampling and taking ±3 times the standard deviation
obtained.

E. Average absorbed power for the stealth hyperuniform structure

Even in the presence of absorption, `Hs � L and the stealth hyperuniform structure remains
transparent. This means that the fluctuations of the field vanish and P̃H

s � P0 leading to〈
PH
a

〉
= P

H

a . Thus the power absorbed by the system is given by〈
PH
a

〉
P0

=
ω

2

∫
Im[〈P〉 〈E∗〉]dz

[
ε0cI0

2

]−1
(27)

where the average polarization field is given by 〈P〉 = ε0[nH
eff

2
− 1] 〈E〉. Using Eq. (25), we

easily obtain an analytical and exact expression of the power absorbed by the slab as a function
of its size k0L and effective refractive index nH

eff. In order to get more physical insights into
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the absorption in the slab, approximations are possible. Indeed, if the slab is large enough, i.e.
nH
eff
′′k0L � 1, round trips are not allowed and a very good approximation of Eq. (25) is given by

〈E(z)〉 = t exp(ik0nH
effz)E0. (28)

Using this expression in Eq. (27) leads to〈
PH
a

〉
P0

=
|t |2

2nH
eff
′′ Im

[
nH
eff

2
] [

1 − exp(−2k0nH
eff
′′

L)
]
= [1 − R]

[
1 − exp(−2k0nH

eff
′′

L)
]

(29)

where R = |r |2 is the factor of reflectivity in intensity of a single interface. We finally have〈
PH
a

〉
P0

= [1 − R]
[
1 − exp

(
−

L
`Ha

)]
(30)

which is the expression used in Fig. 1 (a) of the main text (with a fitted refractive index).

F. Absorption mean-free path and hyperuniformity

Figure 8 shows the normalized average absorbed power of stealth hyperuniform clouds with
different values of the parameters of interest such as the ISA optical thickness L/`Bs , the order
degree χ, or disorder strength k0`

B
s .
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Fig. 8. Normalized average absorbed power for stealth hyperuniform structures operating in
the transparent conditions showing weak variability of the absorption mean free path `Ha
with the correlations.

As the extinction length is only given by the absorption length `Ha , the weak variability
observed in the curves shows that `Ha is weakly affected by the presence of structural correlations.
This is shown here for stealth hyperuniform media but it was already stressed for hard-spheres
correlations [27, 28].

Nevertheless, a dummy fit by an exponential shows that the absorption mean free path deviates
approximately by a factor `Ha /`Ba ' 1/1.4 ' 0.7 compared to the ISA absorption mean-free
path and the normalized absorbed power is not exactly unity for very large absorption optical
thickness. This comes from the fact that small corrections have to be taken into account due to the
correlations in the scatterers positions, but also from the rather high density of scatterers (chosen
due to computational constraints) and index mismatch at the interface [as shown by Eq. (30)].
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For very dilute systems, the index mismatch can be neglected and assuming `Ha ∼ `Ba , we
obtain a simplified fully analytical expression for the average power absorbed by the hyperuniform
structure given by 〈

PH
a

〉
P0

=

[
1 − exp

(
−

L
`Ba

)]
(31)

which is the expression used to evaluate the average absorption power in the stealth hyperuniform
case of Fig. 9. Note that the assumption `Ha ∼ `Ba is a convenient approximation but is not strictly
correct as specified above.

G. Average absorbed power for the uncorrelated structure

In this appendix, we derive an analytic expression of the average power absorbed by an uncorrelated
cloud using the diffusion approximation. Compared to Monte Carlo simulations, the derivation
leads to a simple formula of the estimated gain for very large optical thicknesses. The diffusion
approximation is valid (1) whenever the size of the cloud L is much larger than the scattering
mean-free path `Bs , (2) under the weak absorption condition `Bs � `Ba and (3) in dilute systems
such that k0`

B
s � 1. The system is considered diluted enough to neglect index mismatch at

the interfaces and to set `Us = `Bs and `Ua = `Ba . Finally, as we consider uncorrelated point
dipoles scatterers, the transport mean-free path is `∗ = `Bs . The diffusion equation for the 2D
slab geometry and for a plane-wave illumination at normal incidence is given by [52]

c`Bs
2

d2ũ
dz2 −

cũ
`Ba
= −

P
`Bs

(32)

where ũ is the energy density of the diffuse part of the beam and

P(z) = P0 exp
(
−

z
`Be

)
(33)

is the ballistic source term. To take into account properly the boundary conditions, we use

ũ(z = 0) − z0
dũ
dz
(z = 0) = 0, (34)

ũ(z = L) + z0
dũ
dz
(z = L) = 0, (35)

where z0/`
B
s = π/4 is the 2D extrapolation length [35]. The solution of this set of equations reads

ũ =
P0γ

c

[
α+ exp

( z
`

)
+ α− exp

(
−

z
`

)
− exp

(
−

z
`Be

)]
(36)

where

α± =

[
∓

(
1 +

z0

`Be

) (
1 ∓

z0
`

)
exp

(
∓

L
`

)
±

(
1 −

z0

`Be

) (
1 ±

z0
`

)
exp

(
−

L
`Be

)]
×

[
2

(
1 +

z2
0
`2

)
sinh

(
L
`

)
+ 2

z0
`

cosh
(

L
`

)]−1

, (37)

γ =
2

1 + `Bs
2
/`Ba

2 (38)
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and ` =
√
`Ba `

B
s /2. The power absorbed by the slab is given by〈

PU
a

〉
=

c
`Ba

∫ L

0
〈u(z)〉 dz (39)

where 〈u(z)〉 = u(z) + ũ(z) is the average energy density. We have u(z) = P(z)/c, thus we obtain〈
PU
a

〉
P0

=
`Be

`Ba
[1 − γ]

[
1 − exp

(
−

L
`Be

)]
+

`

`Ba

{
α+

[
exp

(
L
`

)
− 1

]
+ α−

[
1 − exp

(
−

L
`

)]}
(40)

which is the expression used to evaluate the average absorption power in the uncorrelated case of
Fig. 9.

H. Estimation of the asymptotic maximum gain

✶ ✷ ✸ ✹ ✺ ✻

�

✁
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✄

☎

✆

✼

Fig. 9. Estimated gain for large optical thicknesses.

To estimate the asymptotic maximum gain that we can get, we use Eq. (31) for the stealth
hyperuniform structure. Regarding the uncorrelated system, we need to simplify Eq. (40) under
the conditions L/`Be � 1, L/` � 1. By keeping only the second order terms of the expansion in
`Bs /`

B
a we obtain〈

PU
a

〉
P0

=

(
1 +

z0

`Bs

) √
2`Bs
`Ba
−

[
1 + 2

z0

`Bs

(
1 +

z0

`Bs

)]
`Bs

`Ba
+ O

(
`Bs

`Ba

)
. (41)

The second term may be used to estimate the relative error commited by keeping only the first
term. For instance, for `Ba = 40`Bs , the relative error is approximately 25 % and for `Ba = 240`Bs ,
the relative error is about 10 %. We then keep only the first term and we define the gain through
the relation

G
(

L
`Bs
,

L
`Ba

)
=

〈
PH
a

〉〈
PU
a

〉 . (42)

The maximum gain is obtained when

∂G
∂(L/`Ba )

= 0 (43)
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which leads to [
L
`Ba

]
optimum

= 1.256, (44)

max

[ 〈
PH
a

〉〈
PU
a

〉 ]
∼ 0.243

√
L
`Bs
. (45)

From this expression, we predict a gain of the order of 4 for L = 200`Bs and 7 for L = 600`Bs (see
Fig. 9). It is important to note that Eq. (44) gives only an order of magnitude of the maximum
gain and refinements are needed to be more accurate by taking into account the real effective
refractive index for both the hyperuniform and the uncorrelated structures and the multiple
scattering process beyond the diffusion approximation.
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