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We study theoretically the mutual information between reflected and transmitted speckle patterns
produced by wave scattering from disordered media. The mutual information between the two speckle
images recorded on an array ofN detection points (pixels) takes the form of long-range intensity correlation
loops that we evaluate explicitly as a function of the disorder strength and the Thouless number g. Our
analysis, supported by extensive numerical simulations, reveals a competing effect of cross-sample and
surface spatial correlations. An optimal distance between pixels is proven to exist that enhances the mutual
information by a factor Ng compared to the single-pixel scenario.
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When waves propagate in complex environments, their
information content is spread out in space and encoded into
complicated speckle patterns, eventually recorded as two-
dimensional images at the output of the medium. A central
issue is the quantification of the information content in
speckle patterns, and its use for imaging, power deposit, or
information transfer [1–3]. Much effort has been made to
take advantage of the existence of spatial correlations in
speckles measured in transmission. Various schemes based
on the memory effect of short-range correlations (termed
CTT
1 hereafter) have been developed to image an object

through an opaque screen [4,5], while long-range correla-
tions (CTT

2 ), which capture nonlocal information, have been
demonstrated to be useful for increasing energy delivery
through turbid media [6,7].
Very recently, the existence of cross-correlations

between speckle patterns measured in reflection and trans-
mission has been demonstrated, and the shape of the
intensity correlation function has been characterized in
regimes ranging from quasiballistic to diffusive transport
[8,9]. These correlations suggest the possibility to acquire
information about a transmitted speckle from a measure-
ment restricted to the reflection half-space. This is of
crucial importance for sensing, imaging, and communicat-
ing through turbid media, and for the control of wave
transmission through disordered scattering environments
by wave front shaping techniques [1,2,10]. In this Letter,
we quantify the amount of mutual information (MI)
between transmitted and reflected speckles, and analyze
the dependance of the MI on the disorder strength and the
geometrical parameters characterizing the detection process
(number of detectors and their interdistance). Our theory is
formulated in terms of the transport mean free path
(independently of the details of the microstructure), and
applies for an arbitrary space dimension as long as the wave
propagation remains diffusive.

The scheme of the gedanken experiment is represented in
Fig. 1(a). A slab of a disordered medium is illuminated by a
planewave, and the speckle intensity profile is recordedwith
a CCD camera placed at the input side. The transmitted
speckle, potentially recorded with another camera, is
assumed to be unknown. Let IRi ¼ jEij2 be the reflected
intensity measured on pixel i (or detector i) and xi ¼
IRi =hIRi i be the normalized intensity, the brackets h� � �i
denoting an ensemble average over statistical realizations
of the disordered medium. The reflected speckle image is
represented by the vector x of sizeN equal to the number of
pixels of the camera. Similarly, the transmitted unknown
image is wrapped up into a vector y. In a statistical
description of the disordered medium, configurations of
disorder are generated by a stochastic process, and x and y
are random variables. A quantitative estimate of the stat-
istical dependence betweenx and y, or equivalently between
the two speckle images, is given by their MI, defined as the
difference between the entropy of x and y considered
separately and the entropy of the pair fx; yg [11]:

I ¼
ZZ

dxdypðx; yÞlog2
�

pðx; yÞ
pðxÞpðyÞ

�
: ð1Þ

Here, pðxÞ, pðyÞ, and pðx; yÞ are joint probability density
functions (PDFs). The MI is sensitive to all types of
statistical dependence, beyond that captured by correlations.
In particular, a vanishing MI is strictly equivalent to
statistical independence. Moreover, it provides a direct
connection with Shannon entropy and information theory
concepts. Note the important difference with the study of
channel capacity for multiple-input multiple-output proto-
cols, in which the MI between input and output signals is
evaluated [3,12–14]. Contrary to these protocols, here the
input signal is not random, there is no external noise, andx is
not the injected signal but the output signal in reflection.

PHYSICAL REVIEW LETTERS 120, 073901 (2018)

0031-9007=18=120(7)=073901(5) 073901-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.073901&domain=pdf&date_stamp=2018-02-12
https://doi.org/10.1103/PhysRevLett.120.073901
https://doi.org/10.1103/PhysRevLett.120.073901
https://doi.org/10.1103/PhysRevLett.120.073901
https://doi.org/10.1103/PhysRevLett.120.073901


One difficulty in evaluating the MI lies in the fact that the
PDFs pðxÞ, pðyÞ, and pðx; yÞ are theoretically unknown.
Only marginal distributions, such as pðx1Þ and pðy1Þ, as
well as two-point correlations functions (CRR

ii0 ¼ hδxiδxi0 i,
CTT
jj0 ¼ hδyjδyj0 i, and CRT

ij ¼ hδxiδyji with δx ¼ x − 1 and
δy ¼ y − 1) have been calculated for disordered media
[9,15,16]. In the limit of small pairwise correlations,
however, we will show that I can be expressed as a
combination of the previous correlators only, even if the
field amplitudes Ei cannot be modeled as complex
Gaussian random variables.
First, we express pðx; yÞ in terms of pðxÞ and pðyÞ. This

joint PDF is entirely characterized by the set of correlators
hxfngyfmgi ¼ hxn11 � � � xnNN ym1

1 � � � ymN
N i. Since x and y are

weakly correlated in the multiple scattering regime [8,9],
we search for leading corrections to the independent variable
result hxfngyfmgi ¼ hxfngihyfmgi. To proceed, we represent
the field Ei as a sum of propagators along all possible
scattering trajectories S inside the medium, Ei ¼

P
SE

S
i .

Hence, each term xnii ∝ jEij2ni contains ni replica of
complex propagators ES

i and ES�
i . The leading correction

to the independent result involves all combinations of
correlations between two reflection propagators and
two transmission propagators. Counting these combina-
tions yields hxfngyfmgi ¼ hxfngihyfmgi þP

i;jn
2
i n

2
jhδxiδyji

hxfng−1iihyfmg−1ji, where the notation xfng−1i ¼
xn11 � � � xni−1i � � � xnNN is used. This expression gives the
moments of pðx; yÞ in terms of the moments of pðxÞ and
pðyÞ. Then, standard algebra, detailed in the Supplemental
Material [17], allows us to cast the joint PDF in the form
pðx; yÞ ¼ pðxÞpðyÞ½1þP

i;juijðx; yÞ� with

uijðx; yÞ ¼ hδxiδyji
∂xi ½xi∂xipðxÞ�

pðxÞ
∂yj ½yj∂yjpðyÞ�

pðyÞ : ð2Þ
Second, we insert the previous decomposition into

Eq. (1), and express the logarithm as a power series of

the correlation function
P

ijuijðx; yÞ. By keeping the first
nonzero term in the power expansion, we obtain the
following trace formula [17]:

I ≃ 1

2 ln 2
Tr½CRTC̄TTCRTC̄RR�: ð3Þ

In this expression we have introduced three N × N matri-
ces, with elements defined as CRT

ij ¼ hδxiδyji,

C̄TT
jj0 ¼

Z
dy

∂yj ½yj∂yjpðyÞ�∂yj0 ½yj0∂yj0pðyÞ�
pðyÞ ; ð4Þ

and C̄RR
ii0 in which pðyÞ is replaced by pðxÞ. Equation (3)

has a clear interpretation: the MI between the reflected and
transmitted speckle patterns is the sum of all correlation
loops ði → j → j0 → i0 → iÞ, as illustrated in Fig. 1(b). In
each loop, the correlation between pixels in different
images is carried by pairwise cross-sample long-range
coupling (CRT

ij and CRT
j0i0 ), whereas the correlations within

each image (C̄RR
i0i and C̄TT

jj0 ) are more complicated since they
are nonlocal, involving the full distributions pðxÞ and pðyÞ.
To make the interpretation of the trace formula (3) even

more transparent, we further assume that the distance
between pixels in each image is larger than the free-space
wavelength λ, so that correlations within each image remain
small. As detailed in the Supplemental Material [17], this
allows us to approximate the transmission PDF as
pðyÞ ¼ Q

kpðykÞ½1þ
P

j<j0 ujj0 ðyj; yj0 Þ�, where pðykÞ ¼
e−yk ½1þ CTT

2 ðy2=4 − yþ 1=2Þ�. Here, CTT
2 ≃ hðδyÞ2i − 1

is the leading non-Gaussian local correction to Rayleigh
statistics [25,26]. The reflection side PDF pðxÞ takes the
same functional form, with CRR

2 replacing CTT
2 . With this

simplification, the matrix elements (4) reduce to

C̄TT
jj0 ¼ ð1 − CTT

2 Þδjj0 − ð1 − 2CTT
2 Þhδyjδyj0 ið1 − δjj0 Þ: ð5Þ

This result is a first order expansion in CTT
2 that can be

generalized to higher order if needed, as discussed in the
Supplemental Material [17]. However, if we operate in a
regime where local corrections CTT

2 and CRR
2 are much

smaller than unity, we simply get C̄TT ¼ 1 − CTT and
C̄RR ¼ 1 − CRR, where the diagonal elements of the matri-
ces CTT and CRR are zero. In this case, the trace formula (3)
becomes

I ≃ 1

2 ln 2
Tr½ð1 − CTT − CRRÞðCRTÞ2�: ð6Þ

Hence, the existence of pairwise long-range correlations
inside each image tends to reduce the MI between the two
images compared to the result without surface correlation,
Tr½ðCRTÞ2�=2 ln 2 [see Fig. 1(c) for an illustration].
This means that long-range cross-sample correlations

(a)

(b)

(c)

FIG. 1. (a) Schematic view of a disordered slab illuminated by a
plane wave. The reflected speckle x produced at the sample
surface is registered on a CCD camera with N pixels, and its
mutual information I with the transmitted speckle y is evaluated.
(b) Diagrammatic representation of the trace formula (3) as a sum
of correlation loops. (c) Diagrammatic representation of the
approximation (6).
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and long-range surface correlations compete with each
other, suggesting that a balance can be found that max-
imizes the MI for certain geometrical configurations of
detectors. This effect is analyzed at the end of this Letter.
In order to validate the theoretical prediction (3) or its

approximation (6), we have performed numerical simula-
tions of wave propagation in two-dimensional (2D) dis-
ordered slabs with various thicknesses L and scattering
mean free paths l. Subwavelength dipole scatterers were
placed at random positions inside the slab, and the scalar
wave equation was solved numerically using the coupled-
dipole method [17]. For each set of parameters, M ¼ 108

disorder realizations were typically generated numerically,
and x and y were calculated at the sample input and output
surfaces, for various numbers N of detectors and inter-
distances a between detectors. Then, from the sets of data
fxα; yαgα¼1;…;M, an estimator of the MI was built, based on
entropy estimates from nearest neighbor distances [17,27].
Such an estimator is expected to be more accurate than
binning estimators—which consist in partitioning the sup-
port of x and y into bins—for which the bias potentially
grows exponentially with the dimension N of x and y [28].
Let us first analyze the simplest situation where a single

pair of detection points is considered (N ¼ 1). The
approximation (6) takes the simple form I ≃ CRTðΔrÞ2=
2 ln 2, where Δr is the transverse distance between the
detection points placed on both sides of the sample. As
shown in Fig. 2(a), this prediction agrees well with the
direct estimate of Eq. (1), proving that the MI between x
and y essentially boils down to the square of their
correlation function CRT for N ¼ 1. In the multiple scatter-
ing regime (kL ≫ kl ≫ 1 with k ¼ 2π=λ) CRT is trans-
ported along diffusive paths exploring a transverse distance
∼L [9], and the MI is vanishingly small for Δr≳ L.
For a larger number of detectors (N > 1), the behavior of

the MI becomes more complex. Let us analyze its

dependence on the interdistance a between detectors.
Results corresponding to samples with two different
thicknesses L are presented in Fig. 2(b). Here, also we
obtain very good agreement between numerical estimates
and the trace formula (3) completed by Eq. (5), in which the
values of correlators have been obtained from simulations.
This confirms that the MI in multiple scattering environ-
ments can be computed from the combination of pairwise
correlators only. We distinguish three regimes in Fig. 2(b)
that can be interpreted by means of the approximation (6).
For detector spacing a larger than the extent L of CRTðΔrÞ,
the MI is driven by detectors placed in front of each other
only. Thus, it is independent of a and N times larger than
the MI obtained with a single pair of detectors with Δr ¼ 0
[see Fig. 2(a)]. When a is progressively reduced, the MI
starts to increase since more and more pairwise cross-
sample correlations get activated. In the absence of corre-
lations between the various components of x or y, this
increase would hold for arbitrary small spacing a. However,
we observe that the MI reaches a maximum for a certain
critical spacing below which it falls down, thereby
revealing the effect of surface correlations. The latter
contain both short-range and long-range contributions
[15]. Short-range contributions, responsible for the size λ
of speckle spots, explain the convergence of the MI towards
its N ¼ 1 limit when a ≪ λ. Indeed, the MI cannot be
increased by adding detectors located in the same speckle
spot. Nevertheless, a qualitative analysis of Eq. (6) only
does not allow us to infer which contribution triggers the
value of the critical distance, and to explain why the MI is
globally reduced when the thickness of the medium
increases.
To clarify these observations, we studied the dependence

of the correlators CRTðΔrÞ, CTTðΔrÞ, and CRRðΔrÞ on L
and l (in the regime kL ≫ kl ≫ 1). Simulation results for
plane wave illumination and various sets of parameters

(a) (b)

FIG. 2. MI as a function of distances between detectors. The theoretical prediction (3) (lines) is compared to the numerical estimation
(dots) for various numbers of detectors N, thicknesses L, and mean free paths l. (a) MI between the intensities measured in reflection
(x ¼ IR=hIRi) and transmission (y ¼ IT=hITi) versus transverse distance Δr. Parameters in the simulation: kL ¼ 30, kl ¼ 10. (b) MI
between two sets of N ¼ 5 detectors versus detector spacing a, for two thicknesses kL ¼ 30 (solid line) and kL ¼ 80 (dashed line), and
fixed kl ¼ 10. The constant residual biases in the numerical estimates (dots) have been removed, according to the procedure detailed in
the Supplemental Material [17]. Note that the agreement between simulations and theory for ka ≲ 1 can only be qualitative since the
hypothesis of weak surface correlations is not fully satisfied.
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fkL; klg are shown in Fig. 3. When properly normalized,
data points collapse on single curves, suggesting the
following scalings: CRTðΔrÞ ¼ −f1ðΔr=LÞ=ðkLÞd−1 for
all Δr, and CTTðΔrÞ ¼ ðL=lÞf2ðΔr=LÞ=ðkLÞd−1 and
CRRðΔrÞ ¼ −f3ðΔr=lÞ=ðklÞd−1 for Δr≳ l. Here, f1,
f2, and f3 are three positive decaying functions of range
and amplitude close to unity, and d is the space dimension.
Theoretical justifications for these scalings are given in the
Supplemental Material [17]. Note that, contrary to the well-
established behavior of the long-range component of CTT ,
CRT andCRR do not scale as ∼1=g, where g ¼ klðkLÞd−2 is
the Thouless number of a box of size L [29–31]. In
particular, CRT is independent of l. This means that our
initial assumption of weak reflection-transmission correla-
tion is a priori robust against mechanisms affecting the
transport mean free path, such as structural correlation of
the medium [32–34], or near-field coupling between
scatterers in dense materials [35–37]. We also point out
that the long-range component of CRR is negative, extend-
ing over a few mean free paths because waves explore such
a distance in the transverse direction before being reflected
[38,39]. Finally, for practical calculations, it is instructive to
note that the functions f1, f2, and f3 are reasonably well
fitted by a Gaussian and two exponentials (see Fig. 3).
The simple scaling forms of the three correlators allow us

to push forward the analytic calculation of the trace
formula (3), in particular in the interesting limit of a large
number of detectors (N ≫ 1). As CRT , CTT , and CRR are
Toeplitz-type matrices, we may use an extension of Szegö’s
theorem to evaluate the trace for arbitrary spacing a [40].
To simplify the discussion, we focus on the situation where
detectors (pixels) are equally spaced in all directions on the
surface, in the regime l≲ a ≪ L (see the Supplemental
Material [17] for a study in the general case). In this regime,
the contribution of CRR is negligible, and the remaining
sums over indices in the development of the trace of the
matrix product can be replaced by space integrals on the
surface. The approximation (6) becomes [17]

I ≃ N
2 ln 2½ðkLÞðkaÞ�d−1

�
cRT −

cTT
ðkaÞd−1

L
l

�
; ð7Þ

where cRT ¼ R
drf1ðrÞ2 and cTT ¼ ∬ drdr0f1ðrÞf2ðr0Þ×

f1ðjrþ r0jÞ are two numerical constants of order unity. The
result in Eq. (7) supports previous qualitative observations:
the MI scales linearly with the number of detectors,
and decreases when the sample thickness increases because
the cross-sample correlation CRT itself is reduced.
Interestingly, when we normalize Eq. (7) by the MI
measured for a single detector I1 ¼ CRTð0Þ2=2 ln 2, we
obtain I=I1 ∝ NðcRTu − cTTu2=gÞ, where u ¼ ðL=aÞd−1.
This shows that I exhibits a maximum triggered by the
long-range component of CTT , of the form Imax ∼ NgI1,
for a critical interdistance a� much larger than the wave-
length and potentially larger than l [ðL=a�Þd−1 ¼
ðcRT=2cTTÞg so that a� ∼ λðL=lÞ1=ðd−1Þ]. Hence, the MI
for an array of N detectors with optimized interdistance is
enhanced by a factor Ng ≫ 1 compared to the MI for a
single detector. These considerations are confirmed in
Fig. 4 by the good agreement between the numerical

(a) (b) (c)

FIG. 3. Scaling of the three correlation functions that are building blocks of the MI: (a) CRTðΔrÞ, (b) CTTðΔrÞ, and (c) CRRðΔrÞ.
Numerical results (dots) were obtained by solving the wave equation in 2D, for different values of L and l (see inset). Gaussian
contributions (CTT

1 and CRR
1 ), which are short range, have been removed for clarity. Dashed lines are simple fitting functions for Δr ≳ l

[Gaussian in (a) and exponentials in (b) and (c)].

FIG. 4. MI computed from the trace formula (6). Open circles
are numerical calculations of the trace, using the scaling functions
for CRT, CTT , and CRR identified in Fig. 3. Solid lines stand for
the analytic result presented in the Supplemental Material [17],
and dashed lines for its approximation (7) valid for l≲ a≲ L.
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evaluation of the trace (6) and the full analytic prediction
detailed in the Supplemental Material [17] and its approxi-
mation (7). In particular, denoting by I∞ ¼ NI1 the MI
obtained in the large spacing regime a≳ L where only
front side correlations contribute, we clearly observe the
enhancement factor Imax=I∞ ∼ g.
In summary, we have presented a quantitative treatment

of the MI between two speckle images produced on
opposite sides of a multiple scattering medium. The
dependence of the MI on length scales characterizing the
medium and on the detection geometry highlights the
entangled and competitive contributions of long-range
intensity correlations. In particular, using an array of N
detectors with interdistance a to record the speckle image,
the MI can be increased by a factor of Ng compared to the
single detector case for a critical value of a ≫ λ. This
enhancement factor could guide the development of exper-
imental protocols to measure the MI, in configurations such
as that in Ref. [9] for which Ng can be made very large.
Although our approach does not give the recipe to recover
from x the information contained in y, or vice versa, it
provides quantitative estimates of the MI, and conditions
for its optimization, that should help the design of new
setups dedicated to information recovery or transfer in
complex media.
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I. PROOF OF THE TRACE FORMULA

Our goal here is to prove Eqs. (3), (5), and (6) of the
main text (MT), and provide a generalization of Eq. (5)
that includes second-order corrections in CTT2 .

First we search for an expression of the jpdf p(x,y) in
terms of p(x) and p(y). This distribution is characterized
by the set of correlators

〈x{n}y{m}〉 = 〈xn1
1 ...xnN

N ym1
1 ...ymN

N 〉. (1)

As explained in the MT, we are interested in lead-
ing corrections to the independent result 〈x{n}y{m}〉 =
〈x{n}〉〈y{m}〉. We adopt a path-integral-type representa-
tion of each field Ei (Ei =

∑
S E
S
i , where S is a scattering

trajectory), such that each term xni
i ∝ |ERi |2ni contains

ni replica of propagators ER,Si , ER,S∗i . The same repre-
sentation is used for y

nj

j ∝ |ETj |2nj . We insert this de-
composition into Eq. (1) and retain trajectories that pro-
vide non-zero contributions after averaging over scatterer
positions. Leading corrections to the independent result
are due to correlations that involve propagator quadru-

plets, such as {ER,S1i , ER,S2
∗

i , ET,S3j , ET,S4∗j }. The num-

ber of these quadruplets formed from replica is n2in
2
j . In

addition, their weight is 〈δxiδyj〉 = 〈xiyj〉−〈xi〉〈yj〉. The
correlator (1) becomes:

〈x{n}y{m}〉 ' 〈x{n}〉〈y{m}〉

+
∑
i,j

n2in
2
j 〈δxiδyj〉〈x{n}−1i〉〈y{m}−1j 〉, (2)

where we use the notation x{n}−1i =
xn1
1 . . . xni−1

i . . . xnN

N . Then, we compute the char-
acteristic function

g(z, z′) = 〈ez.x+z′.y〉. (3)

By inserting the result (2) into the series expansion of
g(z, z′) and using the property

∞∑
ni=0

niz
ni
i

(ni − 1)!
x{n}−1i = zi ∂zi

(
zi

∞∑
ni=0

zni
i

ni!
x{n}

)
, (4)

we get

g(z, z′) = g(z)g(z′)

+
∑
i,j

〈δxiδyj〉 zi ∂zi [zig(z)] z′j ∂z′j
[
z′jg(z′)

]
. (5)

The distribution p(x,y) follows by taking the inverse
Laplace transform of g(z, z′). It can be written in the
following convenient form:

p(x,y) = p(x)p(y)[1 + u(x,y)], (6)

where the correction term u(x,y) involves all possible
pairwise correlations between the reflected and the trans-
mitted speckles:

u(x,y) =
∑
i,j

〈δxiδyj〉vi(x)vj(y), (7)

vi(x) =
∂xi [xi∂xip(x)]

p(x)
. (8)

We are now in position to compute explicitly the mu-
tual information (MI). With the representation (6), it
reads

I =
1

ln2

∫∫
dxdyp(x)p(y)[1 + u(x,y)] ln [1 + u(x,y)] .

(9)
We then expand the integrand as

(1 + u) ln(1 + u) = u+

∞∑
n=2

(−1)n

n(n− 1)
un, (10)

and note that the first term of this series does not con-
tribute to (9). Indeed, using the notation 〈. . . 〉0 =∫∫

dxdyp(x)p(y)(. . . ), we obtain

〈u(x,y)〉0 =
∑
i,j

〈δxiδyj〉〈vi(x)〉0〈vj(y)〉0

= 0, (11)

since
∫

dx ∂xi [xi∂xip(x)] = 0. This result holds whatever
the distributions p(x) and p(y). Therefore, MI reduces
to

I =

∞∑
n=2

(−1)n

n(n− 1)
〈u(x,y)n〉0. (12)

Inasmuch as the images x and y are weakly correlated,
we retain in the expansion (12) the first term only. The
term 〈u(x,y)2〉0 gives rise to the trace formula:

I ' 1

2ln2
Tr
[
CRT C̄TTCRT C̄RR

]
, (13)
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where we introduced three N × N matrices defined by
their elements, CRTij = 〈δxiδyj〉 ,

C̄TTjj′ = 〈vj(y)vj′(y)〉0 (14)

=

∫
dy

∂yj [yj∂yjp(y)]∂yj′ [yj′∂yj′p(y)]

p(y)
,

C̄RRi′i = 〈vi′(x)vi(x)〉0 (15)

=

∫
dx

∂xi′ [xi′∂xi′p(x)]∂xi [xi∂xip(x)]

p(x)
.

Next, we assume that the distance a between consec-
utive pixels or detectors used to record the images is
larger than the wavelength λ. In this case, only weak
but long-range parts of pairwise correlations inside each
image contribute to the jpdf p(y) and p(x). In order to
find explicit forms for these distributions, we proceed in
the same way as for the moments (1), i.e. we consider in
the expansion of 〈y{n}〉 (or 〈x{n}〉) all corrections due to
the correlation of field quadruplets. We get an expansion
similar to Eq. (2):

〈y{n}〉 =
∏
j

〈ynj 〉+
∑
j<j′

n2jn
2
j′ 〈δyjδyj′〉〈ynj−1〉〈ynj′−1〉

×
∏

k 6=j,k′ 6=j′
〈ynk

k 〉〈y
nk′
k′ 〉. (16)

Note that the sum runs over indices j < j′ instead of
i, j in Eq. (2) to avoid redundant counting of pair corre-
lations in the same image. The corresponding distribu-
tion, obtained by computing the inverse Laplace trans-
form of the characteristic function, has the same struc-
ture as Eq. (6):

p(y) =
∏
k

p(yk)

1 +
∑
j<j′

〈δyjδyj′〉vj(yj)vj′(yj′)

 , (17)

where the definiton of vj(yj) follows from Eq. (8):

vj(yj) =
∂yj [yj∂yip(yj)]

p(yj)
. (18)

The remaining unkown quantity in Eq. (17) is the
distribution of intensity recorded on a single detector,
p(y). This distribution has been calculated exactly in
the nineties using random matrix theory as well as mi-
croscopic diagrammatic approaches [1, 2]. Here, we are
interested in a tractable approximation of this distribu-
tion, that includes second-order corrections in CTT2 '
〈(δy)2〉 − 1. For this purpose, we follow the approach of
Ref. 3, which is similar in spirit to the counting procedure
used previously to evaluate the moments. The moment

〈yn〉 are given by

〈yn〉 '
E(n/2)∑
k=0

(
CTT2

2

)k
Nn,k, (19)

= (n!)2
E(n/2)∑
k=0

(
CTT2

)k
4kk!(n− 2k)!

. (20)

Here CTT2 is the weight of non-Gaussian corrections
to the Rayleigh statistics, due to correlations of field
quadruplets in the form of Hikami boxes. In addition,
Nn,k is the number of field combinations that contain k
Hikami boxes and n − 2k pairs of fields that form diffu-
sons. In the following we keep terms in Eq. (20) up to the
second-order (k ≤ 2), so that the characteristic function
g(z) = 〈ezy〉 reads

g(z) =
1

1− z
+

z2

2(1− z)3
CTT2 +

3z4

4(1− z)5
(CTT2 )2, (21)

and the distribution p(y) becomes

p(y) = e−y
[
1 + h1(y)CTT2 + h2(y)(CTT2 )2

]
, (22)

with h1(y) = (y2 − 4y + 2)/4 and h2(y) = (y4 − 16y3 +
72y2 − 96y + 24)/32. Hence, the coefficient given by
Eq. (18) and appearing in Eq. (17) is explicitly given
by

vj(yj) = δyj + h3(yj)C
TT
2 + h4(yj)(C

TT
2 )2, (23)

with δyj = yj − 1, h3(y) = −y2 + 3y − 1 and h4(y) =
(7y3−39y2 +50y−10)/4. The jpdf p(x) has a functional
form identical to Eq. (17) with CRR2 replacing CTT2 in
Eq. (22).

Finally, we compute the matrix elements (14) and (15),
using Eqs. (17), (22) and (23). This is a tedious but
straightfoward calculation. For example, the first-order
expansion in CTT2 and 〈δyjδyα〉 of the coefficient given
by Eq. (8) that enters into the definitions (14) and (15)
reads

vj(y) = δyj + (1− 2yj)
∑
α6=j

〈δyjδyα〉δyα + h3(yj)C
TT
2

+
∑
α 6=j

〈δyjδyα〉[h5(yj)δyα + (1− 2yj)h3(yα)]CTT2 , (24)

with h5(y) = 5y2 − 12y + 3. The final result, obtained
after integration over y, looks quite simple:

C̄TTjj′ =
[
1− CTT2 + 5

(
CTT2

)2]
δjj′

− (1− 2CTT2 )〈δyjδyj′〉(1− δjj′). (25)

This completes the proof of Eq. (5) of the MT, including
second-order correction in CTT2 . We note that second-
order correction shows up in the diagonal matrix element
only. We also stress that the result (25) is a first order
expansion in 〈δyjδyj′〉 (j 6= j′), as the distribution (17)
itself. Numerical simulations confirm that this approxi-
mation is sufficient for a & λ.
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II. WAVE EQUATION SIMULATIONS WITH
THE COUPLE DIPOLE METHODS

The numerical simulations were performed using the
coupled-dipole method [4]. This is an exact method pro-
viding that the scatterers can be described by dipoles of
subwavelength dimension. Here we considered cylindrical
scatterers of subwavelength cross-sections illuminated by
an incident field polarized along their longitudinal axis,
so that the wave equation is effectively two dimensional.
We first generate a configuration of the disorder by plac-
ing randomly Nc cylinders in a box, the longitudinal size
of which is given by the thickness L. The other dimension
is chosen to be large enough to mimic a slab geometry (10
times the thickness L). To avoid scatterers overlaps, a
minimum distance is forced between them. This distance
is small enough not to introduce disorder correlations.
Moreover, to lower the number of scatterers inside the
system and save computational time, the polarizability
α of each scatterer has been chosen such that it max-
imizes the scattering cross-section σs = k3|α|2/4 while
verifying energy conservation [i.e. the scattering cross-
section σs should be equal to the extinction cross-section
σe = k Im(α)]. This leads to α = 4i/k2. By adjusting the
number density of scatterers ρ, we can simulate systems
with different scattering mean-free paths ` = 1/(ρσs).
The multiple interactions between the scatterers are de-
scribed by a set of Nc linear equations which reads

Ej = E0(rj) + k2α

Nc∑
n=1,n6=j

G0(rj − rn)En (26)

where Ej is the exciting electric field on scatterer j lying
at position rj . E0 is the incident field (plane-wave at
normal incidence) and G0(r−r0) is the Green function in
vacuum which gives the electric field produced at position
r by a source dipole lying at position r0. Its expression
reads

G0(r− r0) =
i

4
H0(k|r− r0|), (27)

where H0 is the Hankel function of the first kind. Once
this system is solved and the exciting fields are known,
a similar equation is used to compute the field at any
position at the sample surfaces:

E(r) = E0(r) + k2α

Nc∑
n=1

G0(r− rn)En. (28)

Finally, disorder averages are performed to compute the
speckle correlation function CRT (∆r), CTT (∆r), and
CRR(∆r). These correlation function are defined as

CXY (∆r) =
〈IX(r)IY (r′)〉
〈IX(r)〉〈IY (r′)〉

− 1, (29)
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Figure 1. MI between two detectors as function of their trans-
verse distance ∆r. Numerical estimates (dashed lines) are
computed from Eq. (33) and compared to the theoretical re-
sult I = CRT (∆r)2/2 ln 2 (solid line).

where r′ = r + ∆r, the superscripts X and Y stand
for R or T , and the intensities are defined as IX(r) =
|δEX(r)|2, with δEX(r) = EX(r) − 〈EX(r)〉. As an ex-
ample, for disorder strength k` = 10 and sample thick-
ness kL = 100, we used Nc = 1750 dipoles and 6.4 mil-
lions of configurations.

III. MUTUAL INFORMATION ESTIMATION

Most intuitive estimators of MI between x and y are
binning estimators, that consist in partitioning the sup-
ports of x and y into bins, representing jpdf by his-
tograms built from M realizations, and approximating
MI by a finite sum. Generally, these estimators suffer
from bias due to finite M and finite bin size [5]. In di-
mension N = 1, it is possible to find a bin size that
minimizes the bias, but no such strategy is available for
the case N > 1. In particular, bias remain non-zero in
the limit M → ∞ and it grows drastically with the di-
mension N .

In order to limit the previous bias issue, we used an es-
timator of MI based on entropy estimates built from near-
est neighbor distances, measured in the space spanned by
x and y [6]. In the following, we briefly summarize the
approach of Ref. [6], with the aim of clarifying the bias
dependence on the system parameters. First we inter-
pret the entropy H(x,y) as the average of log p(z), with
z = (x,y). Its unbiased estimator, built from the data set

{zα}α=1...M , is H̃(x,y) = −log p(zα), where we use the

notation (. . . )α = M−1
∑M
α=1(. . . )α. Then, we construct

an estimate of log p(zα) by considering the ball centered
in zα that contains its K nearest neighbors. Let us de-
note by εα the diameter of this ball. If it is small enough,
we approximately have p(zα) ∝ pα(εα)/ε2Nα , where pα(ε)
is the probability to get a realization in the ball of diam-
eter ε centered at zα. Up to an irrelevant constant, we
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Figure 2. Dependence of the bias Ĩ −I on the number of realizations M and neighbors K (a), on the MI I that decreases with
∆r (b), and on the numbers of detectors N (c). Scaling of the standard deviation of the estimator given in Eq. (33) (d). In all

panels, the estimator Ĩ has been averaged over Ms sets of M realizations to reduce the standard deviation. Parameters of the
wave propagation simulation are kL = 30 and k` = 10.

obtain

H̃(x,y) ' −log pα(εα) + 2N log εα. (30)

This representation is useful because we can replace the
first term by its average

∫
dεPK(ε) log p(ε), where PK(ε)

is the probability to find a ball of diameter ε containing
K realizations. By expressing PK(ε) in terms of p(ε), we
easily compute the previous integral to obtain

H̃(x,y) ' −ψ(K) + ψ(M) + 2N log εα, (31)

where ψ is the digamma function. Formula (31) is true, in
principle, for any value of K. However, εα increases with
K, so that previous approximations may break down at
large K, resulting in a large bias (see below for illustra-
tion).

The same procedure can be adopted to construct an
estimator of H(x). The only subtle point is that K has
been defined in the space of dimension 2N spanned by z,
so that the effective number of neighbors in the marginal
space of dimension N is different from K. In particular,
this number depends on the choice of the norm. In the
following, we use the maximum norm |z| = max(|x|, |y|),
so that ε = max(εx, εy). In that case, the number of
neighbors in the marginal space is approximately Kx '
nx + 1, where nx is the number of elements contained

in the ball (defined in the marginal space) of diameter ε.
Hence, we have

H̃(x) ' −ψ(nxα + 1) + ψ(M) +N log εα. (32)

By combining Eq. (31) and Eq. (32), we finally obtain an
estimator of I = H(x) +H(y)−H(x,y):

Ĩ = ψ(K) + ψ(M)− 1

M

M∑
α=1

[ψ(nxα + 1) + ψ(nyα + 1)] .

(33)
An important property of this estimator is that its bias
remains moderate even at large N and it tends to zero
when M tends to infinity.

In practice, we transform the data {zα}α=1...M to make
them almost uniformly distributed, in view of minimiz-
ing the bias. This is possible because MI is invariant
under homeomorfic tranformation of the variables x and
y. Using the fact that the marginal distributions of the
components of x and y are close to the Rayleigh dis-
tribution, we apply the transformation xi → x′i = e−xi

and yj → y′j = e−yj for i, j = 1 . . . N . Then, we choose
a value of K (according to a strategy discussed below)
and, for each z′α, we search for εα which is twice the
distance to the Kth neighbor of z′α in the sense of the
maximal norm. Finally, we evaluate nx

′

α and ny
′

α in the
two marginal spaces and compute (33).
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Figure 3. MI between two sets of N detectors vs detector spacing a, for two thicknesses kL = 30 (a) and kL = 80 (b), and fixed
k` = 10. Insets show the same data in log scale, in order to emphasize that the position and the amplitude of the maximum
are in agreement with theoretical predictions: ka∗ ∝ L/` and Imax/I∞ ' k`/4 ' 2.5 (cRT ' cTT ' 1.2 in 2D, see Sec. V for
details).

In order to establish a reliable procedure for minimiz-
ing errors in estimates of MI, we studied the dependence
of the the bias B = 〈Ĩ〉 − I and standard deviation σĨ
of the estimator (33) on the different parameters of the
problem: number of realizations M , number of nearest
neighbors K, value of the true MI I, and number of de-
tectors N . An illustration of the strong dependence of
the bias on M and I is given in Fig. 1, where we repre-
sent the same content as Fig. 2(a) of the MT — i.e. the
MI between two detectors as a function of their trans-
verse distance — for different values of M . The com-
parison with the theoretical result I = CRT (∆r)2/2ln2
(solid lines) shows that the bias decreases at large M and
gets smaller when we reduce I by increasing ∆r. More
precisely, the analysis of the bias for fixed values of N
and I reveals that the latter depends on the parameter
K/M only. This scaling dependence is shown in Fig. 2(a)
and agrees with similar analysis performed in Ref. 6. In
addition, the bias appears to be proportional to I [see
Fig. 2(b)], so that it can be expressed in the form

B ' I fN

(
K

M

)
. (34)

The function fN is represented in Fig. 2(c) for various N .

We also studied the behavior of the standard deviation
σĨ and found that it is independent of I and N (data not
shown), while it depends on M and K as ∼ (KM)−1/2.
As expected from the construction of the estimator (33),
σĨ decreases at large K whereas the bias increases with
K. We can further reduce σĨ without affecting signifi-
cantly the computation time of the estimator by averag-
ing Eq. (33) over Ms sets of M realizations. Hence, the
standard deviation takes the form:

σĨ '
α√

KMsM
, (35)

where α ' 1.3, according to Fig. 2(d).

In our simulations, we used the scaling forms (34) and
(35) to infer the values of K and M that are required to
minimize errors in MI estimates. For a standard devia-
tion satisfying σĨ/I . ε where ε is some small number,
we get K & α2/M ′I2ε2 ' 10−8/I2ε2, since the prod-
uct M ′ = MsM is kept fixed in our study (M ′ = 108).
This gives us the value of K required to estimate I. Fur-
thermore, a constraint on the relative bias in the form
B/I . ε translates into fN (K/M) . ε, from which we
find the constraint on M using Fig. 2(c). Following this
analysis, we chose the following parameters in the MT:
K = 102, M = 105 in Fig. 2(a) of the MT; K = 10,
M = 105 for kL = 30 and K = 102, M = 106 for kL = 80
in Fig. 2(b) of the MT.

Finally, we provide more details about Fig. 2(b) of
the MT which focuses on the dependence of MI on the
distance a between detectors. We have represented in
Fig. (3) the MI computed from Eq. (33) for various num-
ber N of detectors. We observe that the estimate is not
exactly linear with N , which is the signature of residual
bias in the data. In order to get rid of them, we take
advantage of Eq. (34) to express the true MI in the form

I = βĨ, (36)

β = [1 + fN (K/M)]
−1
. (37)

The proportionality coefficient β depends on N only. In
particular, it is independent of the distance a, so that we
can evaluate it in the large spacing regime a� L where
only frontside correlators contribute to MI:

β =
NI1
Ĩ∞

. (38)

Figure 2(b) of the MT was obtained from Fig. (3) by
applying the rescaling given by Eqs. (36) and (38), with
I1 deduced from Eqs. (13) and (25).
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IV. SCALING FORMS FOR THE LONG-RANGE
COMPONENTS OF CRT , CTT , AND CRR

The correlations functions CRT , CTT , and CRR are
defined according to Eq. (29), where the intensities are
square modulus of the fluctuating parts of the fields.
In this way, we remove spurious interferences between
mean fields and scattered fields, that vanish in the limit
L � ` � λ. The Gaussian contribution to Eq. (29),
denoted C1, is obtained by pairing fields to form aver-
ages of complex conjugate pairs. On the other hand,
non-Gaussian contributions necessarily involve scattering
paths that connect four fields, since 〈δEX(r)〉 = 0. By
noting 〈. . . 〉c the non-Gaussian contributions and omit-
ting the spatial dependence in the notation, we obtain

CXY (∆r) =
|〈δEXδEY ∗〉|2

〈IX〉〈IY 〉
+
〈δEXδEX∗δEY δEY ∗〉c

〈IX〉〈IY 〉
.

(39)
The first term of Eq. (39) is the C1 contribution. As
far as CTT and CRR are concerned, this contribution is
of the order of unity at short distances ∆r . λ. On the
other hand, it is negligible in CRT for all distances as long
as L � λ [7]. In the following, we disregard this well-
known contribution and focus on the non-Gaussian term
in Eq. (39). In the weak scattering regime k` � 1, it is
dominated by four field correlations made of one Hikami
box, which are termed C2. CTT2 and CRR2 contain both
short-range and long-range components, while CRT2 does
not contain any short-range feature. In what follows,
we provide scaling forms for long-range components only,
which we will label C2,long.

Two frameworks are available to compute CXY2,long(∆r):
the microscopic diagrammatic approach and random ma-
trix theory (RMT) [8, 9]. The diagrammatic formalism
is in principle more powerful since it allows to compute
all short-range and long-range features of the correlation
functions. However, great care must be taken to properly
account for leading contributions, in particular when re-
flected fields are involved [10, 11]. To avoid such compli-
cations, we will mostly rely on the RMT approach which
accounts, by construction, for all contributions ensuring
flux conservation [12]. As we will show below, one major
drawback is that it is based on an isotropy assumption
that captures, in an open slab geometry, the integrated
correlation

∫
CXY2,long(∆r)d∆r only. This turns out to be

sufficient to infer the scalings we are interested in.

With the help of the path-integral-type representation
already used in Section I, we can show that far-field cor-
relation functions, CXY (kb,kb′), are simply related to
speckle correlation functions recorded at the sample sur-
face, CXY (∆r). In particular if we compute the correla-
tors in the observation directions kb = kb′ , C

XY
2 satisfy

the following relations:

CTT2 (kb,kb) = 2

∫
d∆r

A
CTT2,long(∆r), (40)

CRR2 (kb,kb) = 2

∫
d∆r

A
CRR2,long(∆r), (41)

CRT2 (kb,kb) =

∫
d∆r

A
CRT2 (∆r), (42)

where A = W d−1 is the transverse area covered by the
input illumination. Note the difference in the prefactors:
there are two possibilities to form field pairing between
the surface and the far-field for CTT2 and CRR2 , while
there is only one for CRT2 (the remaining pairing is neg-
ligible because it is made of mean fields crossing the full
sample).

Next, we evaluate the left hand-side of previous equa-
tions using RMT. Let us remind briefly the approach
[13, 14]. First we express the intensities IX(kb) as ele-
ments of transmission and reflection matrices of the slab,
t and r: IT (kb) ∝ |tba|2 and IR(kb) ∝ |rba|2, where the
subscript a stands for the input plane wave ka. Sec-
ond we use singular value decomposition of t and r, tak-
ing into account constraints imposed by flux conservation
and time-reversal symmetry:

t = U
√
τV †, (43)

r = −V ∗
√

1− τV †. (44)

The RMT approach consists in assuming that U , V , and
τ are three independent random matrices, with U and
V uniformly distributed in the unitary group, and τ a
diagonal matrix whose elements are the so-called trans-
mission eigenvalues. The size of the matrices is equal
to the number of propagating channels inside a waveg-
uide of transverse section A, N1 = (kW/π)d−1. Using
well-known statistical properties of random unitary ma-
trices, we first compute the leading contributions to the
correlators 〈IX(kb)I

Y (kb′)〉 in the limit N1 � 1:

〈IT (kb)I
T (kb′)〉 ∝

1 + δb,b′

N4
1

[(
1− 1

N1

)
〈Tr2(τ)〉

+ 〈Tr(τ2)〉
]
, (45)

〈IR(kb)I
R(kb′)〉 ∝

1 + δb,b′

N4
1

[(
1− 2

N1

)
〈Tr2(1− τ)〉

+ 〈Tr(1− τ)2〉
]
, (46)

〈IR(kb)I
T (kb′)〉 ∝

1 + δb,b′

N4
1

[(
1− 1

N1

)
〈Tr(τ) Tr(1− τ)〉

+ 〈Tr(τ(1− τ)〉
]
. (47)

We stress that the RMT approach does not capture prop-
erly the dependence of these correlators in kb − kb′ ,
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Figure 4. Spatial dependence of the non-Gaussian part of the three correlation functions that build up the MI: (a) CRT (∆r)
(b) CTT (∆r) (c) CRR(∆r). Numerical results were obtained by solving the wave equation in 2D, for different values of L and
` (see inset). The gaussian contribution to the correlation [first term of Eq. (39)], which is short-range, has been removed for
clarity.

.

because it assumes a quasi-one-dimensional geometry
(W � L), in which the density of states filters out
wave-vector components kb 6= kb′ . However, in the case
kb = kb′ , there is no filtering so that predictions from
RMT are valid in the slab geometry as well (W � L).

From Eqs. (45), (46), and (47), we can evaluate
the correlation functions CXY (kb,kb′) explicitly, using
〈Tr(τ2)〉 = 2N1τ̄ /3, where τ̄ ∝ `/L is the mean trans-
mission eigenvalue. After having removed the C1 contri-
bution, we finally obtain

CTT2 (kb,kb) =
4

3

1

N1τ̄
, (48)

CRR2 (kb,kb) =
2

N1

(
−1 +

2τ̄

3

)
, (49)

CRT2 (kb,kb) =
1

N1

−2/3 + τ̄

1− τ̄
. (50)

We now have all the building blocks to evaluate the
scaling forms of CXY2,long(∆r). Combining previous for-
mula with Eqs. (40), (41), and (42), in the regime τ̄ � 1,
we find (

k

π

)d−1∫
d∆r CTT2,long(∆r) =

2

3τ̄
, (51)(

k

π

)d−1∫
d∆r CRR2,long(∆r) = −2, (52)(

k

π

)d−1∫
d∆r CRT2 (∆r) = −2

3
. (53)

Typical transmitted waves, which cross the sample
through a diffusion process, explore a transverse distance
∼ L. On the other hand, typical reflected waves explore
a transverse distance ∼ `. For these reasons, we look for
scaling functions in the form CRT (∆r) = αRT f1(∆r/L),
CTT2,long(∆r) = αTT f2(∆r/L), and CRR2,long(∆r) =
αRRf3(∆r/`), where f1, f2, and f3 are three positive
decaying function of range and amplitude close to unity.

Inserting these trials functions into Eqs. (51), (52), and
(53), we find

αRT = − 1

(kL)d−1
, (54)

αTT =
1

(kL)d−1
L

`
, (55)

αRR = − 1

(k`)d−1
, (56)

where numerical prefactors have been absorbed in the
definition of f1, f2, and f3. Hence, we recover the scal-
ing CTT2,long ∼ 1/g, with g = k`(kL)d−2, which has been

popularized in the eighties, as well as the scaling of CRT

established recently with the help of the microscopic di-
agrammatic approach [7, 15–17].

We confirmed in Fig. 3 of the MT the validity of pre-
vious scaling functions by showing that correlation func-
tions, computed numerically from wave equation simula-
tion, collapse on single curves when properly normalized.
For completeness, we report in Fig. 4 the same data with-
out normalization.

V. ANALYTIC CALCULATION OF THE TRACE
FORMULA

We provide here an analytic evaluation of the trace
formula (13), in the form of the approximation (6) of the
MT. We reproduce it for convenience:

I ' 1

2ln2
Tr
[
(1− CTT − CRR)(CRT )2

]
. (57)

The elements of the three N×N matrices under the trace
are assumed to be of the following form:
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CRTij = − 1

(kL)d−1
f1 (|ri − rj |/L) , (58)

CTTjj′ =
1

(kL)d−1
L

`
f2 (|rj − rj′ |/L) , (59)

CRRii′ = − 1

(k`)d−1
f3 (|ri − ri′ |/`) , (60)

where d is the space dimension and the functions f1, f2,
and f3 are three positive decaying functions of amplitude
and range close to unity (see Sec. IV for justification of
these scalings). In the following, we focus for simplic-
ity on the situation where detectors are separated by a
distance a in all directions of the surface.

Let us start our analysis with the regime where the
density of detectors is sufficiently large to approximate
sums overs indices appearing in the development of
Eq. (57) by integration over surface positions. According
to the range of f1, f2, and f3, this regime requires a . L
for CRT and CTT , and a . ` for CRR. In fact, this last
condition may be relaxed since the contribution of CRR

will turn out to be negligible for all values of λ . a . L
(see the discussion below). In this continous limit, we
make the approximations:∑
i,j

(CRTij )2 ' N
∫

d∆r

ad−1
CRT (∆r)2, (61)

∑
i,α,β

CRTiα CXX
αβ C

RT
βi ' N

∫∫
d∆r d∆r′

a2(d−1)
CRT (∆r)

× CXX(∆r′)CRT (|∆r + ∆r′|), (62)

where the superscript X stands for R or T . Let us note
A(W ) the area of each image, parametrized by a typi-
cal transverse dimension W : A(W ) ∼ W d−1. With the
scaling expressions (58), (59), and (60), the mutual in-
formation (57) becomes

I ' N

2ln2[(kL)(ka)]d−1

[
cRT −

cTT (L/`)− cRR
(ka)d−1

]
, (63)

where we introduced the coefficients

cRT =

∫
A(W/L)

drf1(r)2, (64)

cTT =

∫∫
A(W/L)

drdr′f1(r)f2(r′)f1(|r + r′|), (65)

cRR =

∫
A(W/L)

dr

∫
A(W/`)

dr′f1(r)f3(r′)f1 (|r + (`/L)r′|) .

(66)

In the limit W � L � `, these coefficients become con-
stants of the order of unity and the result (63) reduces
to Eq. (7) of the MT. For example, if we use the fit-

ting functions f1(r) = α1e
−β1r

2

and f2(r) = α2e
−β2r

as shown in Fig. 3 of MT, we get, in dimension d = 2,

cRT = α2
1

√
π/2β1 ' 1.2 and cTT = πα2

1α2e
β2
2/2β1 [1 −

erf(β2/
√

2β1)]/β1 ' 1.2 (α1 ' 1.05, β1 ' 1.3, α2 ' 2,
and β2 ' 3.8 were used to fit the data).

We now turn to the analytic evaluation of the trace
(57) without assuming any condition on a. This is pos-
sible in the limit of large number of detectors (N � 1),
where we can use powerful theorems for spectral prop-
erties of Toeplitz matrices [18]. Furthermore, we restrict
the analysis to the dimension d = 2, where numerical sim-
ulations have been performed (see Sec. II). In this case,
the matrices CRT , CTT , and CRR are standard Toeplitz
matrices (Cij depends on i − j only), while for d = 3
we would have to deal with block Toeplitz matrices. Ex-
tension of the Szegö’s theorem for products of Toeplitz
matrices allows us to express the trace (57) as

I =
N

2ln2

∫ 2π

0

dµ

2π

[
1− C̃TT (µ)− C̃RR(µ)

]
C̃RT (µ)2,

(67)
where

C̃XY (µ) =

∞∑
n=−∞

CXY (a|n|)einµ. (68)

Using Eqs. (58), (59), and (60) for d = 2, we obtain

I =
N

2ln2(kL)2

(
SRT − STT − SRR

k`

)
, (69)

where SRT , STT , and SRR are three series defined as

SRT =
∑
n

f1

(
|n|a
L

)2

, (70)

STT =
∑
n,p

f1

(
|n|a
L

)
f1

(
|p|a
L

)
f2

(
|n+ p|a

L

)
, (71)

SRR =
∑
n,p

f1

(
|n|a
L

)
f1

(
|p|a
L

)
f3

(
|n+ p|a

`

)
. (72)

As discussed in the MT, f1 is well approximated by a
Gaussian function, f1(r) = α1e

−β1r
2

, so that SRT re-
duces to a Jacobi theta function:

SRT = α2
1 θ

[
2β1

( a
L

)2]
. (73)

Here we use the notation θ(x) ≡ θ3(0, e−2x), where

θ3(u, q) = 1 + 2
∑∞
n=1 q

n2

cos(2nu). If we also use

Gaussian models for f2 and f3 [f2(r) = α2e
−β2r

2

and

f3(r) = α3e
−β3r

2

], we find

STT = α2
1α2 θ

[
(β1 + β2)

( a
L

)2]
× θ

[
β1
β1 + 2β2
β1 + β2

( a
L

)2]
. (74)
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and

SRR = α2
1α3 θ

[(
β3 + β1

`2

L2

)(a
`

)2]
× θ

[
β1

2β3 + β1`
2/L2

β3 + β1`2/L2

( a
L

)2]
. (75)

Simple approximations of these functions can be obtained
using θ(x) '

√
π/x for x� 1, and θ(x) ' 1 for x� 1. In

this way, we can recover the result (63). We also find that
STT ∼ (L/a)2 for a� L, SRR ∼ L/a for `� a� L, and
SRR ∼ (`/a)(L/a) for a � `. Hence, SRR � STT for
a � L in the multiple scattering regime L � `. This is
the reason why we neglected the contribution of reflection
correlations to mutual information in Eq. (7) of the MT.
In the opposite limit a� L, we find SRT ∼ 1, STT ∼ 1,
SRR ∼ 1, so that surface correlations become negligible
and I∞ ∼ N/(kL)2.

Although Gaussian fits for f2(r) and f3(r) in the
regime r & ` are satisfactory, we used in the MT expo-
nential fits [f2(r) = α2e

−β2r and f3(r) = α3e
−β3r] that

give better agreement with correlation functions com-
puted from wave propagation simulations. The solid line
in Fig. 4 of the MT represents the result (69) with SRT

given by Eq. (73), and STT and SRR by Eqs. (71) and
(72) with exponential forms for f2 and f3.
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[6] A. Kraskov, H. Stögbauer, and P. Grassberger, Phys.

Rev. E 69, 066138 (2004).
[7] I. Starshynov, A. M. Paniagua-Diaz, N. Fayard,

A. Goetschy, R. Pierrat, R. Carminati, and J. Bertolotti,
(2017), arXiv:1707.03622.

[8] C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
[9] M. C. W. van Rossum and T. M. Nieuwenhuizen, Rev.

Mod. Phys. 71, 313 (1999).
[10] D. B. Rogozkin and M. Y. Cherkasov, Phys. Rev. B 51,

12256 (1995).
[11] D. B. Rogozkin and M. Y. Cherkasov, Phys. Lett. A 214,

292 (1996).
[12] P. A. Mello, J. Phys. A 23, 4061 (1990).
[13] P. A. Mello, E. Akkermans, and B. Shapiro, Phys. Rev.

Lett. 61, 459 (1988).
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