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The transient response of an elastic cylinder to a laser impact is studied. When the laser source is a

line perpendicular to the cylinder axis, modes guided along the cylinder are generated. For a milli-

metric steel cylinder up to ten narrow resonances can be locally detected by a laser interferometer

below 8 MHz. These resonances correspond to Zero-Group Velocity guided modes or to circumfer-

ential modes. The authors observe that the theory describing the propagation of elastic waves in an

isotropic cylinder is not sufficient to precisely predict the resonance spectrum. In fact, the texture of

such elongated structure manifests as elastic anisotropy. Thus, a transverse isotropic (TI) model is

used to calculate the dispersion curves and compare them with the measured ones, obtained by

moving the source along the cylinder. The five elastic constants of a TI cylinder are adjusted, lead-

ing to a good agreement between measured and theoretical dispersion curves. Then, all the reso-

nance frequencies are satisfactorily identified. VC 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4921608]

[ANN] Pages: 3325–3334

I. INTRODUCTION

Elongated cylindrical structures like rods, cable strands,

or fibers are widely used in the industry or in civil engineering.

Characterization of mechanical properties of constitutive

materials is important for testing their structural integrity.

Non-Destructive Evaluation (NDE) of these properties is usu-

ally carried out with elastic waves. Various methods like

Resonant Ultrasonic Spectroscopy/pulse-echo contact-method,

or pulsed/continuous Laser-Ultrasound (LU) contactless-

method are used. Cylindrical structures support the propaga-

tion along their axes of elastic waves of different types: longi-

tudinal (L), flexural (F), or torsional (T). Many theoretical and

numerical studies and few experimental results were published

the past 50 years on the propagation of time harmonic guided

modes in solid or hollow cylinders.1–3 In the 19th century,

Pochhammer4 and Chree5 first established the equation of lon-

gitudinal waves in free isotropic cylindrical structures. In

1943, Hudson studied the fundamental flexural mode in a solid

cylinder6 and longitudinal modes of a bar were examined by

Davies7 in 1948. Gazis reported the first exact solutions of the

frequency equation,1 as well as a complete description of

propagative modes, displacement, and stress distributions for

an isotropic elastic hollow cylinder in vacuum. Pao and

Mindlin8,9 as well as Onoe et al.10 studied all the branches of

the complete three-dimensional problem of a free solid cylin-

der. A thorough review of elastic wave propagation in iso-

tropic elastic cylinders and plates was given by Meeker and

Meitzler.3 Later, Zemanek investigated elastic wave propaga-

tion in a cylinder, both experimentally and theoretically.11

All these works deal with isotropic material, however

transverse anisotropy is exhibited by elongated cylindrical

structures due to their manufacturing processes (poly-crystal-

line metals)12 or their texture (carbon fibers used in reinforced

polymers). Then, non-destructive measurement of elastic con-

stants of transverse isotropic (TI) materials is of great inter-

est,13 especially in aeronautic and aerospace industries. Morse

first established the frequency equation for longitudinal waves

propagating in TI cylinders.14 The extension of Gazis formula-

tion to orthotropic and TI waveguides was initiated by Mirsky

in 1964 for infinite and finite cylinders.15,16 Then, several

researchers investigated the propagation or the scattering of

elastic waves in free or fluid-loaded TI cylinders.17–21 Ahmad

and Rahman22 also studied the scattering of acoustic wave inci-

dent on a TI cylinder and showed that Buchwald’s representa-

tion23 yields much simpler equations.24 This representation is

beneficial to simplify the description of the potential functions

and economizes laborious calculations. This model provides

perfectly similar results with the models of Honarvar and

Sinclair25 and Honarvar et al.26 and can be applied to study

both isotropic and TI cylinders. Honarvar et al. also obtained

the frequency equations of axisymmetric and asymmetric free

vibrations of finite TI cylinders.27 Several other researchers

proposed to use the impedance matrix theory28,29 or a semi-

analytical finite element method to study transient thermoelas-

tic waves in isotropic/anisotropic cylinders.30

Frequency equations determining the angular frequency

x(¼2pf) versus the axial wave number k(¼2p/k) have to be

solved numerically. For a given circumferential order n, the

various solutions (integer m) can be grouped into different fam-

ilies: longitudinal L(0, m) and torsional T(0, m) modes with

displacements independent of the azimuthal angle h, or flexurala)Electronic mail: jerome.laurent@espci.fr
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F(n, m) modes with displacements varying as sin nh or cos nh.

Each mode is represented by a dispersion curve x(k). Many

similarities exist between the families of modes found in plates

and cylinders. Indeed, torsional modes T(0, m) are similar to

shear horizontal modes SH in plates. Longitudinal L(0, m) and

first flexural F(1, m) modes in cylinders are analogous to sym-

metrical Sm and anti-symmetrical Am Lamb modes in plates.

Major differences appear in the frequency spectrum for flexural

modes F(n, m) with family number n� 2.

The laser-based ultrasonic technique is a convenient tool

for the generation and detection of guided elastic waves in

plates31 or cylinders.32 It has been shown that this non-contact

technique is very efficient to observe Zero Group Velocity

(ZGV) Lamb modes corresponding to a frequency minimum

of the dispersion curves x(k).33,34 At the ZGV frequencies,

guided modes have a finite phase velocity but vanishing group

velocity. The interference of forward and backward guided

waves having opposite wave numbers gives rise to a standing

wave pattern.35 For these specific points, the energy deposited

by the laser pulse remains trapped under the source. The result-

ing local and narrow resonances can be detected at the epicen-

ter with an optical interferometer. This non-contact method

allowed us to perform accurate measurements of elastic proper-

ties of isotropic or TI materials.36,37 For cylinders, a line laser

source can be used to control the propagation direction. For a

line source parallel to the cylinder axis, circumferential

Rayleigh and whispering gallery waves are excited, giving rise

to resonances at all n integer values of the normalized circum-

ferential wave number38 ka. This configuration was also used

by Mounier et al. to study resonances of a micrometric fiber at

sub-gigahertz frequencies and to determine the elastic constants

using an isotropic model.39 Circumferential resonances occur

at cutoff frequencies of longitudinal and flexural modes where

the axial wave number vanishes. They are analogous to thick-

ness resonances in plates at cutoff frequencies of Lamb modes.

In the case of a TI cylinder, this configuration is not appropriate

to determine the whole set of elastic constants.

In this paper, we investigate the mechanical response of a

transversely isotropic cylinder to a laser line source perpen-

dicular to the axis. In this case, the generated waves guided

along the cylinder axis are sensitive to the material anisotropy.

We performed measurements in a millimeter steel cylinder

and many resonances are observed in the megahertz range.

They can be roughly identified from the minimum frequency

of some branches of the dispersion curves of longitudinal and

flexural modes calculated for an isotropic cylinder. However,

significant discrepancies remain between the isotropic model

and experimental resonance frequencies. Dispersion curves

are then calculated using a TI model. The five independent

elastic constants are adjusted such that all measured resonance

frequencies can be precisely predicted. Moreover, experimen-

tal dispersion curves, measured by moving the laser source,

are compared with the theoretical ones.

II. EXPERIMENTS

Measurements were performed with an optical interfer-

ometer at the center of the source. Compared to a point

source, the use of a laser line perpendicular to the cylinder

axis significantly reduces the excitation of most circumferen-

tial modes. Resonances were extracted from the spectrum of

the temporal signal. Their frequencies were compared with

minimum frequencies of dispersion curves calculated from

an isotropic material.

A. Laser-ultrasonic setup

The experimental setup is shown Fig. 1. The sample is an

austenitic stainless steel (AISI 304L, Weber Metaux, Paris)

solid cylinder (length 420 mm, diameter 2a¼ 0.775 mm, and

mass density is q¼ 7.91� 103 kg m–3). The rod is supported

by two beveled metallic pieces to reduce the mechanical con-

tact (friction). Elastic waves were generated by a Q-switched

Nd:YAG (yttrium aluminum garnet) laser providing 8-ns

pulses of 15-mJ energy at a 100-Hz repetition rate (Quantel

Centurion). The spot diameter of the unfocused beam is equal

to 2.5 mm. A beam expander (�4) and a cylindrical lens

(focal length 250 mm) were used to enlarge and focus the

laser beam into a narrow line on the surface. The optical

energy distribution was close to a Gaussian and the absorbed

power density was below the ablation threshold. The full

length of the source at 1/e of the maximum value was found

to be 10 mm and the width was estimated to be 0.3 mm. In the

thermoelastic regime, the line source is equivalent to a set of

force dipoles distributed on the surface and parallel to the cyl-

inder axis.40 The estimated Rayleigh range of the Gaussian

laser beam (0.8 mm) is only twice the cylinder radius

(0.39 mm). Then, the energy deposited along the cylinder cir-

cumference depends on the azimuthal angle h. Moreover, the

optical absorption decreases with h from the normal incidence

(h¼ 0) on both sides of the sample. A priori, this asymmetry

favors the excitation of some flexural modes.

Local vibrations were measured by a heterodyne interfer-

ometer equipped with a 100-mW frequency doubled Nd:YAG

laser (optical wavelength K¼ 532 nm). This interferometer is

sensitive to any phase shift D/ along the path of the optical

probe beam, and then to the mechanical displacement ur nor-

mal to the surface. The calibration factor (85 nm/V), deduced

from the phase modulation D/¼ 2pur/K of the reflected

beam, was constant over the detection bandwidth

(20 kHz–20 MHz). Large low frequency phase-shifts due to

FIG. 1. (Color online) Source and probe geometry used to excite and to

detect local resonances in a cylinder. S: laser source, I: interferometer, C:

cylindrical lens.
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thermal effect or first flexural F(1,1) mode are eliminated by

interposing, before amplification, a high-pass filter having a

cutoff frequency equal to 1.5 MHz.41 Measurements were

conducted at room temperature (21 6 0.5 �C). Signals

detected by the optical probe were fed into a digital sampling

oscilloscope and transferred to a computer.

B. Zero-group velocity resonances

The propagation of elastic waves along the cylinder axis

is represented by dispersion curves calculated from

Zemanek’s equation.11 The steel sample is assumed to be ho-

mogeneous with longitudinal and transverse velocities

VL¼ 5650 m/s and VT¼ 3010 m/s, respectively. The numeri-

cal algorithm used to find the roots of the secular equation

was proposed by Seco and Jim�enez.42 First, the cutoff fre-

quencies are evaluated with a bisection method, then a zero-

finding algorithm is applied to determine each branch succes-

sively. The roots were obtained with an acceptable error of

less than 10�6. Finally, the dispersion curves are determined

for longitudinal modes and the first seven families of flexural

modes in less than 1 min on a personal computer, with a reso-

lution Dk¼ 10�3 mm�1. As shown in Fig. 2(a), dispersion

curves obtained for longitudinal L(0, m) and first flexural

F(1, m) modes are similar to those obtained for an isotropic

elastic plate. Dispersion curves of higher order flexural modes

F(n, m) are plotted in Fig. 2(b). As the interferometer is only

sensitive to the normal displacement, torsional modes are not

presented. Branches of the dispersion curves are obtained sep-

arately, thus ZGV frequencies are easily determined by

searching for minimum frequencies for finite wave numbers.

A typical signal, corresponding to the mechanical dis-

placement normal to the cylinder surface, is given in Fig. 3(a).

As previously explained, the oscillations in the first 5 ls are

due to the large displacements associated with the low fre-

quency components of the flexural mode F(1, 1) similar to the

A0 mode in plates. As shown in the insert, the low amplitude

tail for t> 5 ls is not noise but high frequency oscillations due

to ZGV or circumferential resonances. The spectra of out-off

plane displacement are shown in Fig. 3(b). Seven resonances

dominate between 1.5 and 8 MHz. The peak at 2.77 MHz can

be ascribed to the ZGV resonance at the minimum frequency

of the F(2, 1)-mode, while peaks at 4.38 and 4.29 MHz corre-

spond to L(0, 2) and F(3, 1)-ZGV modes, respectively. The

peak at 3.42 MHz can be associated with a circumferential res-

onance [horizontal arrow in Fig. 2(a)] at the cutoff frequency

(3.46 MHz) of the F(1, 3) mode. The peak at 5.61 MHz is rela-

tively close to the minimum frequency (5.79 MHz) of the

F(4, 1) mode. Higher frequency peaks at 6.83 and 7.70 MHz

do not correspond to any minimum frequency on the dispersion

curves. Except for L(0,2) which is estimated at 0.2%, relative

errors from 2% to 4% are observed for the other resonances.

The good agreement for the L(0, 2) and F(1, 3) resonances was

obtained with the chosen pair of bulk wave velocities. Another

pair of velocities (VL¼ 5500 m/s, VT¼ 2920 m/s) is needed to

accurately predict the resonance frequencies of higher order

modes (n� 2). Thus, the isotropic model with two elastic con-

stants is not suitable. A higher number of material parameters

are required for a better prediction of the resonance frequen-

cies. In Sec. III, we apply the model with five elastic constants,

developed by Ahmad and Rahman for TI cylinder.22

The Q-factor (Q¼ f0/Df0) can be estimated from the

half-power width Df0 of the resonance peak at the ZGV

FIG. 2. (Color online) Dispersion

curves for an isotropic stainless steel

solid cylinder (diameter 0.775 mm). (a)

Longitudinal L(0, m) and first flexural

F(1, m) modes. (b) Higher order flex-

ural modes F(n, m). Vertical arrows

indicate minimum frequencies corre-

sponding to ZGV modes.
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point. In order not to underestimate the Q-factor, the signal

acquisition time window � must be larger than the inverse

of the bandwidth. We performed a measurement of the

out-of-plane displacement at the epicenter with a signal ac-

quisition time window �¼ 4 ms. We obtained thinnest

resonances and a Q-factor at L(0, 2)-ZGV frequency of

4� 103 (Df¼ 1.1 kHz and f0¼ 4.38 MHz). For flexural

ZGV resonances, the Q-factors are slightly lower and vary

from 2� 103 to 2.5� 103. With such high Q values, the

influence of the ultrasound attenuation can be neglected.

III. TI MODEL

In the linear theory of elasticity, anisotropic media are

described by the stiffness tensor cijkl (with i, j, k, l¼ 1–3).

Using the Voigt’s notation, they are represented by a 6� 6

symmetric matrix cab (a, b¼ 1–6). Given the Cartesian coor-

dinates (x1, x2, x3) with the x3-axis parallel to the cylinder z
axis, the sample is supposed to be isotropic in the (x1, x2)

plane. Such TI medium is described by five independent

elastic constants: c11, c13, c33, c44, and c66. Other elastic con-

stants are related to these coefficients: c22¼ c11, c23¼ c13,

c55¼ c44, c12¼ c11 - 2c66 or vanish.

A. Dispersion equation

As mentioned by Honarvar et al.,26 the displacement

vector u(r, h, z, t) can be derived from three scalar potential

functions u, v, and w.25,43 A simple representation initiated

by Buchwald23 and used by Ahmad and Rahman22 is the

following:

u¼$uþ $� ðvêzÞþ
@w
@z
� @u
@z

� �
êz: (1)

In cylindrical coordinates (r, h, z), the above representa-

tion leads to the following displacement components:

ður; uh; uzÞ ¼
@u
@r
þ 1

r

@v
@h
;
1

r

@u
@h
� @v
@r
;
@w
@z

� �
:

Harmonic solutions are given by

un ¼ UJnðbrÞ cosðnhÞ exp½iðkz� xtÞ�;

wn ¼ WJnðbrÞ cosðnhÞ exp½iðkz� xtÞ�;

vn ¼ XJnðbrÞ sinðnhÞ exp½iðkz� xtÞ�;

where Jn is the Bessel function of the first kind of order n.
They correspond to the superposition of plane waves of

wave vector k¼ (b cos h, b sin h, k) which satisfy the propa-

gation equation in a meridian plane. The radial component b
of the wave vector k must satisfy the Christoffel equation

c11c44b
4 � Eb2 þ F

� �
c66b

2 þ c44k2 � qx2
� �

¼ 0: (2)

The first term corresponds to waves polarized in the merid-

ian plane (x2, x3) and the second term corresponds to pure

shear wave (polarized along x1). The coefficients E and F
are given in the Appendix [Eq. (A2)]. The above equations

are similar to those obtained by Mirsky.16 Omitting the prop-

agation term exp i(kz � xt) for simplicity, the three inde-

pendent solutions are found to be

ðu1n;w1n;v1nÞ¼
�
Jnðb1rÞcosðnhÞ;q1Jnðb1rÞcosðnhÞ;0

�
;

ðu2n;w2n;v2nÞ¼
�
q2Jnðb2rÞcosðnhÞ;Jnðb2rÞcosðnhÞ;0

�
;

ðu3n;w3n;v3nÞ¼
�
0;0;Jnðb3rÞsinðnhÞ

�
:

The three roots of the Christoffel equation, b1, b2, and b3 are

given in Eq. (A3) and q1, q2 are the potential amplitude

ratios provided by Eq. (A4). Hence, the displacements are as

follows:

ðu1r; u1h; u1zÞn ¼ b1J0n b1rð Þcos nhð Þ;� n

r

� �
Jn b1rð Þsin nhð Þ; ikq1Jn b1rð Þcos nhð Þ

� �
;

ðu2r; u2h; u2zÞn ¼ q2b2J0n b2rð Þcos nhð Þ;� n

r

� �
q2Jn b2rð Þsin nhð Þ; ikJn b2rð Þcos nhð Þ

� �
;

ðu3r; u3h; u3zÞn ¼
n

r

� �
Jn b3rð Þcos nhð Þ;�b3J0n b3rð Þsin nhð Þ; 0

� �
: (3)

FIG. 3. (a) Radial displacement measured by the optical interferometer.

Inset: zoom on a portion of the temporal displacement. (b) Frequency spec-

trum filtered by an analog high-pass filter (f� 1.5 MHz).
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The first two solutions correspond to a coupling between

quasi-longitudinal and quasi-shear waves polarized in the

meridian plane. The last solution having zero displacement

component along the z axis corresponds to a pure shear

wave. These solutions must be combined with weighting fac-

tors Bn, Cn, Dn to satisfy the boundary conditions at the free

surface r¼ a. These conditions imply that normal stresses

vanish: rrr(a)¼rrh(a)¼ rrz(a)¼ 0 and lead to the following

homogeneous linear system:

a11 a12 a13

a21 a22 a23

a31 a32 a33

2
64

3
75

Bn

Cn

Dn

2
64

3
75 ¼

0

0

0

2
64
3
75; (4)

where the matrix elements aij are listed in Eq. (A1). The dis-

persion equation results from the secular equation

detðaijÞ ¼ 0: (5)

For n¼ 0, Eq. (5) splits into two parts: a23¼ 0, i.e.,

ðb3aÞJ000 ðb3aÞ ¼ J00ðb3aÞ similar to the equation given by

Mirsky16 for torsional modes T(0, m) and a11a32¼ a12a31

corresponding to longitudinal modes L(0, m).

B. Cutoff frequencies

As the wave number k is equal to zero, the motion at the

cutoff frequencies is independent of the axial coordinate x3.

This implies k2q1¼ 0, q2¼ 0, and a12¼ a22¼ 0. The disper-

sion equation [Eq. (5)] for longitudinal and flexural modes in

a solid cylinder at k¼ 0 reduces to

b2aJ0nðb2aÞða13a21 � a11a23Þ ¼ 0; (6)

where the four aij simplify as

a11¼c11ðb1aÞ2J00n ðb1aÞþc12fðb1aÞJ0nðb1aÞ�n2Jnðb1aÞg;
a13¼2nc66fðb3aÞJ0nðb3aÞ�Jnðb3aÞg;
a21¼�2nfðb1aÞJ0nðb1aÞ�Jnðb1aÞg;
a23¼�ðb3aÞ2J00n ðb3aÞþðb3aÞJ0nðb3aÞ�n2Jnðb3aÞ:

To find the cutoff frequencies, the above equation can be

solved for xc(¼ 2pfc), for various values of n and m. The first

two roots b1,2 are simplified using the reduced expressions of

D ¼ ðc11 � c44Þqx2
c , E ¼ ðc11 � c44Þqx2

c , and F ¼ q2x4
c

[Eq. (A3)] as b1 ¼ xc

ffiffiffiffiffiffiffiffiffiffiffi
q=c11

p
and b2 ¼ xc

ffiffiffiffiffiffiffiffiffiffiffi
q=c44

p
. The

third root reduces to b3 ¼ xc

ffiffiffiffiffiffiffiffiffiffiffi
q=c66

p
. The cutoff frequency

equation [Eq. (6)] is simplified as a11J0nðb2aÞ ¼ 0 for L(0, m).

C. Dependence of ZGV frequencies on elastic
constants

A sensitivity analysis was performed to characterize the

elastic constant influence on the dispersion curves and espe-

cially on ZGV frequencies. Figure 4 displayed the longitudi-

nal and the first two flexural mode families as a function of

elastic constants.

Each constant was successively varied by 65% and

610% around the following average values (in GPa):

c11¼ 240, c13¼ 110, c33¼ 250, c44¼ 70, and c66¼ 70. The

curves obtained for the average values are displayed by the

dashed line. It appears that each ZGV resonance depends on

specific constants. For example, the elastic constants which

mainly affect the L(0, 2)-ZGV frequency are c11 and c44.

These elastic constants are proportional to the square of longi-

tudinal and shear velocities in directions perpendicular to the

cylinder axis x3. While F(1, 4)-ZGV frequency slightly

depends on c11 and more strongly on c44 and c66 which is pro-

portional to the square of the shear velocity in the direction

perpendicular to the cylinder axis. When the values of c11,

c13, and c33 increase or when c44, c66 decrease, the F(1, 4)-

ZGV frequency disappears, i.e., the slope of the spectral line

at the cutoff frequency becomes positive. It should be noted

that F(2, 1)-ZGV frequency is almost independent of the first

four elastic constants while it significantly depends on c66.

IV. RESULTS AND DISCUSSION

In this section, we identify all the resonance frequencies

and accurately determine the five elastic constants. The ex-

perimental dispersion curves were fitted with those obtained

theoretically with the TI model.22 Then, we compared iso-

tropic and TI models to highlight the anisotropy of the stain-

less steel cylinder.

A. Dispersion curves measurements

Experimental dispersion curves were measured with the

laser ultrasound setup displayed in Fig. 1. The out-of-plane

displacement was recorded with the interferometer at a sin-

gle point in the middle of the cylinder, while the line source

was moved on 40 mm along the cylinder axis by 0.1 mm

steps. For each source position, the normal displacement was

recorded during 180 ls at a 50 MHz sampling frequency. To

increase the signal to noise ratio, 1024 signals were aver-

aged. First, apodization (Hanning) windows were applied in

both dimensions (time and distance) to avoid secondary

lobes. Then, a two-dimensional Fourier transform was

applied to the obtained B-scans. Since cylindrical wave-

guides support backward-propagation with opposite group

and phase velocities,35 the spatial Fourier transform was

extended to negative wave numbers [Fig. 5(b)].

The counter propagative modes are observed in the cylin-

der both for longitudinal and flexural modes and occur in the

vicinity of k¼ 0. For example, at the L(0, 2)-ZGV frequency

(4.34 MHz) the L(0, 2) and L(0, 3)b modes having opposite

wave vectors interfere. The power spectrum was computed at

a frequency of 4.40 MHz, slightly higher than the L(0, 2)-

ZGV resonance frequency, for which the modes are propaga-

tive. Figure 5(a) shows that this spectrum is composed of two

main peaks. The peak at a negative value of k, similar to the

larger one in the positive k domain, demonstrates the back-

ward propagation in cylinders. Afterwards, the dispersion

curves (backward region) for negative wave number x(�k)

were folded and added to positive ones [Fig. 5(c)]. We can

clearly identify five ZGV frequencies. One at 4.34 MHz

corresponding to the L(0, 2)-ZGV resonance and four

others at 2.77, 4.28, 5.60, and 6.60 MHz corresponding to

F(2, 1), F(3, 1), F(4, 1), and F(1, 4) flexural-ZGV resonances,
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respectively. The wavelengths at these ZGV frequencies

extend from 2.3 to 3.2 mm (k/2a � 3–4) except for F(1, 4)-

ZGV frequency which has a 14.3 mm wavelength (k/2a
� 18.6).

The theoretical dispersion relation x(k) [Eq. (5)] was

calculated by solving the secular equation with the zero-

finding algorithm.42 Experimental dispersion curves were

fitted with the TI model. Bulk modes whose bulk velocities

are proportional to stiffness constants c33 and c44 were elimi-

nated by dividing the determinant by (qx2 � c33k2)(qx2

�c44k2). We calculated longitudinal modes and the first

seven families of flexural modes. Starting from the two pairs

of bulk wave velocities previously determined with the iso-

tropic model, theoretical dispersion curves were fitted heu-

ristically (i.e., without any minimization algorithm) by

adjusting the five elastic constants. Finally, we observe [Fig.

5(c)] good agreement between experimental dispersion

curves and those predicted by the TI model. The parameters

used for the TI model are listed in Table I. The dashed and

dotted lines correspond to the longitudinal and first flexural

modes, respectively, the solid and long-dashed lines indi-

cated the flexural modes with n� 2. Although most modes

are well fitted by the theory, a few experimental branches

are not explained. This may be due to a small remaining

error on the estimated constants or to a slight discrepancy

with transverse anisotropy.

B. Elastic parameters

We now explain the physical meaning of the five sound

velocities implicitly involved in the TI model. Stiffness con-

stants c11 and c33 determine the longitudinal (L) ultrasound

velocities in perpendicular (VL1) and parallel (VL3) directions

with respect to the cylinder axis x3,

c11 ¼ qV2
L1; c33 ¼ qV2

L3: (7)

Stiffness constants c44 and c66¼ (c11 � c12)/2 determine the

shear (S) velocities in directions perpendicular to the

FIG. 4. (Color online) Influence of the elastic constants on the dispersion curves of a transversely isotropic cylinder. From top to bottom: for longitudinal

modes and the first two flexural mode families. Vertical arrows depict the ZGV frequencies and tilted arrows show increasing cij.
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cylinder axis with polarizations either perpendicular (VS1) or

parallel (VS3) to the x3-axis

c44 ¼ qV2
S1; c66 ¼ qV2

S3: (8)

The remaining stiffness constant c13 should be adjusted man-

ually. Hence, two Young’s modulus can be defined: Ek ¼ E33

for a stress parallel to the cylinder axis and E? ¼ E11 ¼ E22 for

a stress perpendicular to the cylinder axis. They are given by

Ek ¼
c2

c11 � c66

; E? ¼
4c66c2

c2 þ c33c66

; (9)

where c2 ¼ c33ðc11 � c66Þ � c2
13 is the determinant of the

sub-matrix of elastic constants cij. This effective stiffness

constant c is proportional to the bar velocity of the waves

propagating along the cylinder axis: Vb ¼ ðEk=qÞ1=2
[see Eq.

(44) of Mirsky16]. Three Poisson’s ratios44,45 can be defined,

�12 and �31 for longitudinal extension in the basal plane and

�13 along the six-fold axis

�12 ¼
c12c33� c2

13

c2þ c33c66

; �31¼
2c66c13

c2þ c33c66

; �13¼
c13

c11þ c12

:

C. Comparison between isotropic and TI model

Theoretical dispersion curves obtained with isotropic

(dashed lines) and transversely isotropic (solid lines) models

are plotted in Fig. 6. The longitudinal modes are displayed in

Fig. 6(a) and the first six flexural mode families [Figs.

6(b)–6(g)]. The frequency spectrum recorded at the epicenter

is shown in Fig. 6(h). This representation allows to distinguish

the different propagation modes and to precisely identify each

resonance peak. It obviously appears that the isotropic model

FIG. 5. (Color online) (a) Spatial Fourier transform of the normal displacement at 4.40 MHz illustrating backward propagation with a negative wave number.

Each backward mode is coupled to the upper mode of the same family (n, mþ 1). To avoid confusion they are indicated by the index b. (b) Experimental dis-

persion curves obtained for negative and positive wave numbers. (c) Negative dispersion curves x(�k) were folded and added to the positive ones. The experi-

mental dispersion curves were fitted with the TI model (the control parameters used are listed in Table I).

TABLE I. Elastic constants cij (or sound velocities) used in the TI model. a

and q were measured.

Stiffness constants (GPa)

c11 c12 c13 c33 c44 c66

239 109 110 252 72 65

Sound velocities (m/s) Diameter (lm)

VL1 VS1 VL3 VS3 Vb 2a

5500 2875 5650 3010 4808 775 6 2

Young’s modulus (GPa) Poisson’s ratio Density (kg/m3)

E? E|| �12 �13 �31 q
183 172 0.317 0.316 0.298 7910 6 5
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is not appropriate to interpret experimental results and clearly

confirms the TI nature of the cylinder. Five ZGV resonances,

F(2, 1), F(3, 1), L(0, 2), F(4, 1), F(1, 4), and eight circumfer-

ential resonances, F(1, 3), L(0, 3), F(4, 2), F(5, 1), F(1, 5),

F(6, 1), F(1, 6), and F(2, 5), can be identified from the disper-

sion curves calculated with the TI model. Both ZGV and cut-

off frequencies are estimated with a relative error less than

0.6%, except for Fc(1, 3) for which the error is close to 1.1%.

D. Displacements at cutoff frequencies

In order to explain why several circumferential resonan-

ces (at k¼ 0) are observed while others are not, we analyzed

the displacements generated inside the cylinder. To this end,

we calculated ur, uh, and uz, using Eq. (3). The radial and axial

displacements (ur) and (uz) were calculated at h¼ 0 and the

azimuthal displacement (uh) at hmax¼p/2n. They are dis-

played in Fig. 7 at the cutoff frequencies of the modes L(0, 3),

L(0, 4), F(1, 2), and F(1, 3) which, respectively, correspond to

the frequencies 4.834, 8.673, 2.276, and 3.343 MHz. For

Lc(0, 3) and Fc(1, 3) circumferential resonances, the radial

displacement at the cylinder surface r¼ a is significant.

Conversely, for the modes Lc(0, 4) and Fc(1, 2) the radial dis-

placement vanishes for r¼ a, but have essentially a large dis-

placement along the z axis. This explains why, at these cutoff

frequencies, no resonances are observed.

V. CONCLUSION

In summary, elastic guided waves propagating in a stain-

less steel cylinder of millimetric diameter were investigated by

laser ultrasonic techniques. Using a laser line source perpendic-

ular to the cylinder axis, ZGV resonances were observed both

for longitudinal and flexural modes. One of the major interests

is to identify each resonance to characterize elastic properties

of materials. We demonstrated that isotropic model was not rel-

evant to describe the behaviour of elastic guided waves in a

steel rod. A TI model allowed us to describe the propagation

and to calculate dispersion curves x(k). The five elastic con-

stants were estimated from experimental dispersion curves

measured by the LU technique. A good agreement between

theoretical and experimental dispersion curves was obtained

both for longitudinal and flexural modes.

In the future, it would be useful to build a numerical inver-

sion procedure to improve the accuracy of the material parame-

ter estimation. Furthermore, it will be interesting to investigate

the relationship between ZGV modes and elastic constants.

This could be done by calculating the second order derivatives

of the dispersion curves at cutoff frequencies to determine the

existence of backward modes. Finally, it will be interesting to

conduct other studies in materials with different types of

FIG. 6. (Color online) Comparison of isotropic model (dashed lines) with TI model (solid lines). (a) Longitudinal modes L(0, m). (b)–(g) Flexural modes F(n, m)

for n extends from 1 to 6. (h) Frequency spectrum recorded at epicenter. The subscript c denotes the cutoff frequencies. Inset: two resonance frequencies are

observed corresponding to F(1, 4)-ZGV and Fc(4, 2), respectively. The squares indicate the cutoff frequencies calculated with Eq. (6).

FIG. 7. (Color online) Displacement components produced at (a) L(0, 3),

(b) F(1, 2), (c) L(0, 4), and (d) F(1, 3) cutoff frequencies. The solid, dashed,

and long-dashed lines indicate ur, uh, and uz, respectively.
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anisotropy. This technique can be also applied in the

sub-gigahertz range with a laser line source of width compara-

ble to the cylinder diameter to study micrometric fibers.
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APPENDIX

The scalar functions u, v, and w satisfy the following

wave motion equations:

c11 $2 � @2

@z2

� �
uþ c44

@2u
@z2
þ c13 þ c44ð Þ @

2w
@z2
¼ q

@2u
@t2

;

c13 þ c44ð Þ $2 � @2

@z2

� �
uþ c44 $2 � @2

@z2

� �
w

þ c33

@2w
@z2
¼ q

@2w
@t2

;

c66 $2 � @2

@z2

� �
vþ c44

@2v
@z2
¼ q

@2v
@t2

:

The longitudinal L (represented by u) and the vertically polar-

ized quasi-transverse SV (represented by w) waves are

coupled, whereas the pure transverse wave SH (represented

by v) is decoupled from the others. The dispersion equation of

torsional, longitudinal, and flexural guided modes in a trans-

versely isotropic cylinder with free boundary conditions

results in the vanishing of the determinant of a 3� 3 matrix aij,

detðaijÞ ¼

a23 ¼ 0 for Tð0;mÞ;
a11a32� a12a31 ¼ 0 for Lð0;mÞ;
a11ða22a33� a23a32Þ�
a12ða21a33� a23a31Þþ
a13ða21a32� a22a31Þ ¼ 0 for Fðn� 1;mÞ;

8>>>>>><
>>>>>>:

where the matrix elements are

a11 ¼ c11ðb1aÞ2J00n ðb1aÞ
þ c12fðb1aÞ2J0nðb1aÞ � n2Jnðb1aÞg
� c13q1ðkaÞ2Jnðb1aÞ;

a12 ¼ c11q2ðb2aÞ2J00n ðb2aÞ
þ c12q2fðb2aÞJ0nðb2aÞ � n2Jnðb2aÞg
� c13ðkaÞ2Jnðb2aÞ;

a13 ¼ 2nc66fðb3aÞJ0nðb3aÞ � Jnðb3aÞg;
a21 ¼ �2nfðb1aÞJ0nðb1aÞ � Jnðb1aÞg;
a22 ¼ �2nq2fðb2aÞJ0nðb2aÞ � Jnðb2aÞg;
a23 ¼ �ðb3aÞ2J00n ðb3aÞ þ ðb3aÞJ0nðb3aÞ � n2Jnðb3aÞ;
a31 ¼ ð1þ q1Þðb1aÞJ0nðb1aÞ;
a32 ¼ ð1þ q2Þðb2aÞJ0nðb2aÞ;
a33 ¼ nJnðb3aÞ; (A1)

respectively. The first and second derivatives of the Bessel

function of the first kind of order n can be expressed in terms

of Jn � 1, Jn, Jnþ1, etc., by using recurrence relations. The

coefficients E and F used in the Christoffel equation [Eq.

(2)] are defined as

E¼ðc13þc44Þ2k2þc44ðqx2�c44k2Þþc11ðqx2�c33k2Þ
¼E2

1þc44F1þc11F2;

F¼ðqx2�c44k2Þðqx2�c33k2Þ¼F1F2: (A2)

Finally, the three roots (b) of the Christoffel equation are

b1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E7D

2c11c44

s
and b3 ¼

ffiffiffiffiffiffi
F1

c66

r
; (A3)

where D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � 4c11c44F:
p

At last, the amplitude ratio q1

and q2 are given by

q1 ¼
F1 � c11b

2
1

kE1

; q2 ¼
kE1

F1 � c11b
2
2

: (A4)
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