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Speckle fluctuations resolve the interdistance between incoherent point sources in complex media
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We study the fluctuations of the light emitted by two identical incoherent point sources in a disordered
environment. The intensity-intensity correlation function and the speckle contrast, obtained after proper temporal
and configurational averaging, encode the relative distance between the two sources. This suggests the intriguing
possibility that intensity measurements at only one point in a speckle pattern produced by two incoherent sources
can provide information about the relative distance between the sources, with a precision that is not limited by
diffraction. The theory also suggests an alternative approach to the Green’s-function retrieval technique, where
the correlations of the isotropic ambient noise detected by two receivers are replaced by a measurement at a
single point of the noise due to two fluctuating incoherent sources.
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I. INTRODUCTION

Pushing the resolution limits of light microscopy and un-
derstanding optical phenomena on scales below the diffraction
limit have been the driving force of what is known today as
nano-optics [1]. To overcome this limit, most of the early
work focused on near-field optical microscopy and related
techniques [2]. However, in recent years, new concepts in
fluorescence microscopy have pushed the resolution of far-
field imaging down to the nanometer range [3]. Most of these
methods [4] rely on the accurate localization of individual
fluorescent markers, which are isolated from one another on
the basis of one or more distinguishing optical characteristics
or by selective or random activation of a bright and a dark state
[3]. Determining the location of an isolated fluorescent marker
is limited only by photon noise and not by the diffraction
barrier.

A key issue affecting these subwavelength imaging methods
is the optical transparency of the media surrounding the light
emitters. Taking advantage of the transparency of cells, fluo-
rescence microscopy uniquely provides noninvasive imaging
of the interior of cells and allows the detection of specific
cellular constituents through fluorescence tagging. However,
certain biological tissues or soft-matter systems (such as foams
or colloidal suspensions) look turbid due to intense scattering
of photons traveling through them [5]. The image formed at a
given point in the observation plane consists in a superposition
of multiple fields, each arising from a different scattering
sequence in the medium. This gives rise to a chaotic intensity
distribution with numerous bright and dark spots known as
a speckle pattern, producing a blurred image carrying no
apparent information about the source position [6].

Techniques to measure the distance between individual
nano-objects without actually imaging their position exist
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[7], fluorescence resonance energy transfer (FRET) being
the most widespread example [8]. It relies on the near-field
energy transfer between two fluorophores (donor and acceptor)
emitting at different wavelengths. The FRET signal (e.g.,
the ratio between the intensities emitted by the donor and
the acceptor at different wavelengths) depends on the donor-
acceptor distance in the range 2–10 nm. As such, it is not
very sensitive to scattering problems. However, determining
distances between two emitters in the range 10–500 nm in
a scattering medium still remains a challenging problem,
not accessible by either fluorescence microscopy or FRET
techniques. Our main goal here is to introduce an alternate
approach to obtain information about the relative distance
between two identical incoherent point sources in a disordered
environment, based on the analysis of the fluctuations of the
emitted light. This is an issue of much interest, for example, in
the study of conformational changes in biomolecules in living
tissues. Sensing the distance between two incoherent sources
in a complex medium could also provide an alternative to
Green’s-function retrieval techniques based on the correlations
of the isotropic ambient noise measured at two receivers [9].

In this paper we propose a method to capture the interaction
between two identical sources in a scattering environment,
based only on the measurement of intensity fluctuations. The
principle of the method is schematically illustrated in Fig. 1 and
is based on the analysis of the intensity-intensity correlation
function and the intensity fluctuations in the speckle pattern
formed by two identical and mutually incoherent point sources.
This approach permits, in principle, one to monitor the relative
distance between the sources in the range 10–500 nm, with
a precision that is not limited by diffraction but by the
microstructure of the scattering medium. In application to
Green’s-function retrieval in complex media, the approach
replaces the two-point field-field correlation of the background
noise by a measurement at a single point of the intensity noise
due to the two fluctuating sources. This might simplify the
technique, in particular at visible or near-IR frequencies where
time-domain field-field correlations are not easy to measure.
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FIG. 1. (Color online) The intensity radiated by two incoherent
point sources in a complex medium forms a speckle pattern that
fluctuates in both space and time. The speckle fluctuations encode
the relative distance between the sources.

The results in this paper also illustrate the fact that multiple
scattering, which had long been considered as an unavoidable
nuisance, can actually enhance the performance of sensing,
imaging, and communication techniques [10], as already
demonstrated in the context of spatiotemporal focusing by
time reversal [11,12], wavefront shaping of multiply scattered
waves [13], or improvement of the information capacity of
telecommunication channels [14].

II. FLUCTUATIONS IN THE POWER EMITTED BY TWO
INCOHERENT SOURCES

We consider two point sources of light (electric dipoles)
located at r1 and r2 in a disordered medium. The sources
are characterized by their electric dipole moments p1(t) and
p2(t), which are fluctuating quantities of the form pk(t) =
pk exp[iφk(t)] exp(−iωt)uk with φk(t) a slowly varying ran-
dom phase, pk a complex amplitude, and uk a unit vector defin-
ing the orientation of the dipole moment. This corresponds
to a classical model for a quasimonochromatic temporally
incoherent source, such as a fluorescent source emitting at
frequency ω. We assume that the two sources are uncorrelated
(or mutually incoherent), so exp[iφ1(t)] exp[−iφ2(t)] = 0,
where the bar denotes averaging over the fluctuations of the
sources. Using the (dyadic) Green’s function G(r,r′,ω) of
the disordered medium, the electric fields at any point r can
be written

E(r) = μ0ω
2G(r,r1,ω)p1 + μ0ω

2G(r,r2,ω)p2. (1)

The intensity associated with this field is a time fluctuating and
spatially varying quantity that forms a time-dependent speckle
pattern.

Let us first consider the total power P emitted by the two
sources. It reads

P =
∫

S

ε0c

2
|E(r)|2dS, (2)

where S is a sphere with radius R → ∞ that encloses the
disordered medium and c is the speed of light in vacuum.
For a nonabsorbing medium, the following relation can be
derived from the vector form of Green’s second identity [15]
(the frequency dependence in the Green’s function is dropped

for simplicity):

ω

c

∫
S

G(r,r1)p1 · G∗(r,r2)p∗
2dS = p1 · Im[G(r1,r2)]p∗

2. (3)

From Eqs. (1)–(3) we obtain

P = μ0ω
3

2

2∑
j,j ′=1

pjp
∗
j ′ ImGjj ′ , (4)

where the notation ImGjj ′ = uj · Im[G(rj ,rj ′ ,ω)]uj ′ has been
introduced for the sake of simplicity.

We first assume that a temporal averaging over the fluctua-
tions of the sources can be performed in one configuration of
the disordered medium (frozen disorder). The fluctuation time
scale of the emitted power can be associated with the coherence
time, as usually defined for partially coherent sources [16].
For fluorescent sources, this time is on the order of the
lifetime τ of the excited state. For emission in the visible
range, expected orders of magnitude are τ ∼ 1–10 ns for dye
molecules or quantum dots and τ ∼ 1–100 μs for rare-earth
ions. The averaged power P is simply the sum of the averaged
power emitted by each source independently since the terms
with j �= j ′ in Eq. (4) vanish upon time averaging. It reads

P = πω2

4ε0
(|p1|2ρ11 + |p2|2ρ22), (5)

where ρjj = (2ω/πc2)ImGjj is the electric part of the local
density of states (LDOS) at point rj [17]. However, a cross term
survives in the fluctuations of the total emitted power. Indeed,
calculating the variance of P from Eq. (4), one obtains [18]

P 2 − P
2 = μ2

0ω
6

4
[2|p1|2|p2|2(ImG12)2]. (6)

The imaginary part of the two-point Green’s function
ImG12 in Eq. (6) is known to enter the expression of field-field
spatial correlations in random fields, such as blackbody radia-
tion or volume speckle patterns [19–22] and the description of
time-reversed fields [12], and is at the core of Green’s-function
retrieval techniques based on ambient noise correlations [9].
It is proportional to the cross density of states (CDOS), which
was introduced in a different context for the description of
spatial coherence in complex systems [23]. Physically, the
CDOS counts the number of photonic eigenmodes connecting
two points (in our case the source points) at a given frequency
[24]. More precisely, the CDOS connecting rk to rj is given by
ρjk = (2ω/πc2)ImGjk [25]. Using the CDOS and assuming
that the two sources have the same amplitude (p1 = p2 ≡ p),
the variance of the total emitted power can be rewritten as

P 2 − P
2 = π2ω4

8ε2
0

|p|4ρ2
12. (7)

This equation is the first result in this paper. It provides a
direct relationship between the temporal fluctuations of the
total power emitted by two incoherent sources and the CDOS
connecting the source points in an arbitrary environment. This
suggests that a retrieval of the amplitude of the CDOS (or
equivalently of the imaginary part of the Green’s function at
two different points) is possible in a structured medium from
a measurement of temporal fluctuations of the emitted power

023807-2



SPECKLE FLUCTUATIONS RESOLVE THE . . . PHYSICAL REVIEW A 91, 023807 (2015)

emerging from two incoherent sources. Such a measurement
would resemble the Green’s-function retrieval from ambient
noise correlations, based on the relationship between field-field
correlations and the imaginary part of the Green’s function
given by the fluctuation-dissipation theorem, initially intro-
duced in the context of electromagnetic thermal fluctuations
[19,26]. The generality of this relationship, also valid for field
fluctuations in speckle patterns [21], has stimulated the devel-
opment of Green’s-function retrieval techniques in acoustics,
in seismology, or with low-frequency electromagnetic waves
[9]. In this approach, the statistical isotropic ambient noise
is detected by two receivers, while in the method suggested
here the Green’s function is encoded in the noise due to the
fluctuations of the two sources. The possibility to measure
power fluctuations instead of field-field correlations might be
an advantage for electromagnetic Green’s-function retrieval
in the visible or near-IR frequency range. Equation (7) also
shows that the power fluctuations encode the interdistance
between the sources. At this stage, since the CDOS ρ12 is
specific to the sample under study and unknown, changes in
power fluctuations could reflect changes in the interdistance,
but the interdistance could not be determined without solving
a difficult inverse problem. We will see how the problem
can be simplified in the presence of multiple scattering in
a disordered medium by performing an ensemble averaging
over the configurations of disorder.

III. CONFIGURATIONAL AVERAGING IN
A DISORDERED MEDIUM

We now assume that in addition to a temporal averaging
over the fluctuations of the sources, an average over the
configurations of the disordered medium can be performed.
A specific situation would be that of sources embedded in
a dynamic medium, with configurational changes occurring
on a time scale much larger than the characteristic time of
the fluctuations of the sources. An equivalent situation is that
of sources moving inside a frozen disordered medium, also
on a sufficiently large time scale, as schematically shown
in Fig. 2(a). If both the sources and the disordered medium
are fixed (i.e., the medium itself does not fluctuate), an
artificial configurational averaging process could be induced
by an external moving diffuser surrounding the medium, as

FIG. 2. (Color online) Illustrations of two situations in which
configurational averaging can be achieved. (a) Two sources embedded
in a dynamic scattering medium or moving inside a static disordered
medium. (b) The sources are pinned in a static medium and the speckle
is produced by an external diffuser surrounding the medium.

shown in Fig. 2(b). In all these situations both averaging
processes can be performed independently and subsequently.
The (temporal) variance of the total emitted power averaged
over the configurations of the disordered medium is readily
obtained from Eq. (7):

〈P 2〉 − 〈P 2〉 = π2ω4

8ε2
0

|p|4〈ρ2
12

〉
, (8)

where we use angular brackets to denote configurational
averaging.

In practice, it is often convenient to work with normalized
statistical quantities. For later convenience, we can introduce
the contrast of the power fluctuations, which we define as

σP ≡ 〈P 2〉 − 〈P 2〉
〈P 〉2

. (9)

Let us point out again the specific use of two noncommuting
averaging processes in this definition, one over the temporal
fluctuations of the sources and subsequently one over the
configurations of the disordered medium. From Eqs. (5) and
(8) the power contrast can be written in terms of the LDOS
and CDOS, leading to

σP = 2
〈
ρ2

12

〉
(〈ρ11〉 + 〈ρ22〉)2

. (10)

In the next section we will derive a simple relationship between
the power contrast σP and the speckle contrast σS deduced
from the radiated intensity measured in a single direction or
equivalently at a single point in the far-field speckle pattern.

IV. SPECKLE CONTRAST

A measurement of the total emitted power P requires a
detection integrated over 4π sr. Measuring fluctuations of the
intensity radiated in a given direction or intensity correlations
between two different directions could be a more convenient
approach in practice. The time-averaged far-field intensity
emerging in a given direction u, per unit solid angle, and
for a polarization state eα is given by

Iα(u) = I1α(u) + I2α(u), (11)

where Ijα(u) is the intensity radiated by the point source pj (t).
The latter reads

Ijα(u) = lim
r→∞

μ0ω
4

2c
r2|eα · G(r,rj )pj uj |2, (12)

with r = ru. The configurational average of the (time-
averaged) total emitted power and fluctuations can be rewritten
as

〈P 〉 =
∫

4π

〈I (u)〉du, (13)

〈P 2〉 =
∑
αα′

∫∫
4π

〈Iα(u)Iα′(u′)〉du du′, (14)

where du means integration over the solid angle, α runs over
the two orthogonal polarization states in the far field, and
I (u) = ∑

α Iα(u). We now assume that the radiated field is a
random statistically isotropic field, under the only constraints
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given by Eqs. (13) and (14). In this case one has 〈I (u)〉 =
〈P 〉/4π and

〈Iα(u)Iα′ (u′)〉 = 1

(8π )2
〈P 2〉(1 + δαα′δuu′), (15)

where δαα′ is the usual Kronecker delta and δuu′ is a Kronecker
delta with respect to detection angles. The derivation of
Eq. (15) is given in Appendix.

At this stage, it is worth noticing that the relation (15)
between the speckle intensity-intensity correlation function
and the fluctuations of the total emitted power is the origin
of the so-called C0 correlation known for a speckle produced
by a single source [27–30]. If we consider the particular case
of a single source at r1 (p2 = 0) that does not fluctuate in
time, the normalized intensity-intensity correlation function
C(u,α; u′,α′) follows directly from Eq. (15) and is given by

C(u,α; u′,α′) = 〈I1α(u)I1α′ (u′)〉
〈I1α(u)〉〈I1α′ (u′)〉 − 1

= C0 + (C0 + 1)δαα′δuu′ , (16)

where

C0 =
〈
ρ2

11

〉 − 〈ρ11〉2

〈ρ11〉2
(17)

is the normalized variance of the LDOS at the position
of the source, which is at the origin of the infinite-range
C0 contribution to the speckle correlation function [29,30].
Therefore, for a single source, Eq. (15) provides another way
of deriving the well-known results related to the C0 correlation.
Moreover, from Eq. (15), the speckle contrast (defined as the
normalized variance of the intensity in a specific direction and
a given polarization channel α) is given by

〈Iα(u)2〉 − 〈Iα(u)〉2

〈Iα(u)〉2
= 1 + 2C0, (18)

a result already obtained by Shapiro [27], based on a micro-
scopic diagrammatic approach for scalar waves. This result
leads to nonuniversal corrections to the Rayleigh statistical
distribution of the intensity in speckle patterns produced by
multiple scattering [27,31].

For two fluctuating sources, assuming again that configura-
tional changes in the disordered medium occur on time scales
larger than the characteristic time of the source fluctuations, we
also have [the derivation is similar to that leading to Eq. (15),
see Appendix]:

〈Iα(u) Iα′ (u′)〉 = 1

(8π )2
〈P 2〉 + 1

(8π )2
〈P 2〉δαα′δuu′ . (19)

Making use of Eqs. (8), (15), and (19) for two sources with the
same amplitude p, we obtain

〈Iα(u)Iα′(u′)〉 − 〈Iα(u) Iα′ (u′)〉 = 1

(8π )2

[
〈P 2〉 − 〈P 2〉

]

= ω4

83ε2
0

|p|4〈ρ2
12

〉
. (20)

This equation shows that the intensities corresponding to
two different speckle spots (u �= u′) in the angular speckle
pattern formed by two incoherent point sources are strongly

correlated, with a correlation given by the fluctuations 〈ρ2
12〉

of the CDOS. We end up with the surprising result that for
two incoherent sources a cross term survives averaging and
induces infinite-range correlations in the speckle pattern. This
correlation is formally very similar to that given by the C0

contribution in the case of a single source, but with the
fluctuations of the CDOS replacing the fluctuations of the
LDOS. Since the CDOS is a two-point quantity, connecting
in this specific situation the two source points, the speckle
correlations encode the distance between the two sources.

Another implication of Eq. (20) is that in the presence of
multiple scattering, CDOS fluctuations can be accessed from
measurements of the directional intensity and not only from
measurements of the total power P as suggested initially by
Eq. (8). More precisely, we will now show that the speckle
contrast measured in a single speckle spot (hereafter denoted
by σS) contains the same information as the contrast σP in
Eq. (10), which assumed a measurement of the total emitted
power. To proceed, we define the speckle contrast for a
detection in a given polarization channel α as

σS ≡ 〈Iα(u)2〉 − 〈Iα(u)
2〉

〈Iα(u)〉2
(21)

in a similar way as the contrast of the total emitted power in
Eq. (9). From Eq. (20), and the relation

〈Iα(u)〉 = 〈P 〉
8π

(22)

one immediately obtains

σS = 〈P 2〉 − 〈P 2〉
〈P 〉2

= σP (23)

or equivalently

σS = 2
〈
ρ2

12

〉
(〈ρ11〉 + 〈ρ22〉)2

. (24)

This equation is the second important result in this paper. It
shows that for two incoherent sources in a disorder medium,
the speckle contrast measured in a single speckle spot,
computed from both temporal averaging over the fluctuations
of the sources and configurational averaging over disorder,
is proportional to 〈ρ2

12〉, which characterizes the fluctuations
of the CDOS connecting the two sources. This means that
the information on the interdistance between the sources is
encoded in the speckle contrast σS measured at a single point.
Changes in the speckle contrast could therefore be used to
detect changes in the interdistance between the two sources.
Compared to a measurement of the total emitted power P ,
a measurement of the speckle contrast σS would require a
simpler instrumentation, but at the cost of a substantial reduc-
tion of the signal level. Note that a parallel detection of the
fluctuations in several speckle spots could be performed using a
CCD camera. In practice, a compromise between simplicity in
instrumentation and signal-to-noise ratio should be found. The
contrast in Eq. (24) would decrease to zero when increasing
the interdistance. This change occurs on a range given by the
width of the CDOS (Green’s function) considered as a function
of the interdistance r12 = |r2 − r1|. This width depends on the
microscopic structure of the disordered medium, providing
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in principle resolution capabilities beyond the free-space
diffraction limit. The determination of the absolute value of
the interdistance from the speckle contrast would require an
expression of 〈ρ2

12〉. The crucial issue in this case is to find
the expression of 〈ρ2

12〉 ∼ 〈(ImG12)2〉 in a disordered medium.
This can be done at least in the weak scattering limit, as
discussed in the next section. Another consequence of Eq. (24)
or (20) is that it provides a way to measure 〈(ImG12)2〉 in a
complex medium from the speckle noise recorded at a single
point, which in the context of Green’s-function retrieval might
provide an alternative to the two-point field-field correlation
technique, as discussed previously in Sec. II.

V. WEAK SCATTERING LIMIT

When the sources are embedded in a weakly disor-
dered, homogeneous, and isotropic medium, it is possible to
give an explicit approximate expression of the fluctuations
of the CDOS 〈ρ2

12〉 = (4ω2/π2c4)〈(ImG12)2〉. In the limit
k0neff�� 1, where neff is the effective refractive index,
k0 = 2π/λ (with λ the wavelength in vacuum), and � is the
Boltzmann scattering mean free path, the averaged Green’s
function is given by the well-known result for homogeneous
and isotropic media and we can write 〈ImGjk〉 as

〈ImGjk〉 ≈
(

u1 · u2 +
(
u1 · ∇r1

)(
u2 · ∇r2

)
k2

eff

)
sin (keffr12)

4πr12
,

(25)

where keff = k0neff + i/2� is the effective wave number. The
description of the scattering medium by a complex effective
wave number breaks down when the distance r12 between
the emitters approaches the size of the homogeneities (more
precisely the correlation length of disorder; see the discussion
in Ref. [32] and references therein). Although this might look
like a severe limitation, this approximation is in practice very
robust and has been shown to model accurately light diffusion
through biological tissues. To lowest order, we can further
approximate 〈(ImGjk)2〉 ≈ 〈ImGjk〉2, which, from Eq. (20)
or (24) and Eq. (25), provides an explicit expression of the
intensity correlation function or the speckle contrast in terms
of the relative distance between the sources. Such an explicit
expression should be of practical interest, e.g., for the sensing
of the interdistance between emitters embedded in biological
tissues. Let us point out that in terms of the detection of changes
in the interdistance (without measuring its absolute value), the
method suggested in this paper does not require any explicit
expression of 〈ρ2

12〉 and relies only on Eq. (7), (10), or (24).

VI. CONCLUSION

The results derived in this paper suggest the intriguing
possibility that intensity measurements at only one point in
a speckle pattern produced by two incoherent sources can
provide information about the relative distance between the
sources. Moreover, this information is in principle not limited
by diffraction. It can be extracted from the speckle contrast
σS obtained after a proper time and configurational averaging
process. The results also suggests an alternative approach to the
Green’s-function retrieval technique. In the latter the statistical

isotropic ambient noise is detected by two receivers, while in
the method suggested here the Green’s function is encoded in
the noise due to two fluctuating incoherent sources measured at
a single point. Finally, let us note that for fluorescent emitters,
the quantum optical equivalent of Eq. (7), (10), or (24) might
be established in terms of decay rate or photocount statistics
of a coupled system and fluctuations could be associated with
superradiant and subradiant states. This quantum treatment is
left for future work.
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APPENDIX: SPECKLE INTENSITY CORRELATIONS:
DERIVATION OF EQS. (15) AND (19) FROM RANDOM

MATRIX THEORY

The far-field intensity radiated by two dipoles emerging in
a given direction u, per unit solid angle, and for a polarization
state eα can be written as

Iα(u) = lim
r→∞

μ0ω
4

2c
r2

∣∣∣∣∣∣
2∑

j=1

eα · G(r,rj )pj

∣∣∣∣∣∣
2

, (A1)

with r = ru. Assuming that the 4π solid angle is divided in a
finite number N � 1 of (solid angle) pixels, the total power
emitted by the two sources is given by

P =
∫

4π

I (u)du = 4π

N

∑
α

N∑
u

Iα(u), (A2)

which can be written in the compact matrix form

P = 4π

N
p̂††p̂, (A3)

where p̂† = (p†
1,p

†
2) = (p∗

1x,p
∗
1y,p

∗
1z,p

∗
2x,p

∗
2y,p

∗
2z) and  is a

2N × 6 matrix (2N comes from the two orthogonal polariza-
tions of the field for each observation angle in the far field).
By using the single-value decomposition, the  matrix can be
factorized as

 = U�V†, (A4)

† = V�2V†, (A5)

where U is a unitary 2N × 2N matrix, � is a 2N × 6
rectangular diagonal matrix with non-negative real numbers
on the diagonal, and V is a 6 × 6 unitary matrix. Equation (4)
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in the main text can now be written as

P = 4π

N
[p̂††p̂] = 4π

N
[p̂†V�2V†p̂]

= μ0 ω3

2

2∑
j,j ′=1

p∗
j ′pj ImGjj ′

= μ0 ω3

2
(p†

1 p†
2)

[
ImG(11) ImG(12)

ImG(21) ImG(22)

](
p1

p2

)
, (A6)

where G(jj ′) ≡ G(rj ,rj ′ ). In terms of these new matrices,
the intensity at a given angle u and polarization α can be
computed as

Iα(u) =
6∑

a,b,a′,b′=1

p̂
†
a′Va′b′�b′b′U

†
b′uα

Uuαb�bbV
†
bap̂a, (A7)

where p̂a corresponds to the ia component of the dipole pja

(with ja = int[(a + 2)/3] and ia = a + 3 − 3ja).
If we assume that the radiated field is statistically isotropic,

we can consider U as a random unitary matrix statistically
independent of the � and V matrices (isotropy hypothesis).
This is one of the key assumptions in the macroscopic scaling
approach of transport theory [33–35]. By using the averages
over the unitary group (evaluated by Mello in Ref. [34]),

〈U †
b′uα

Uu′
α′b〉 = 1

2N
δbb′δuu′δαα′ (A8)

and the ensemble average of the intensity is given by

〈Iα(u)〉 = 1

2N

6∑
a,b,a′=1

p̂
†
a′ 〈Va′b�

2
bbV

†
ba〉p̂a, (A9)

which, from Eq. (A6), gives

〈Iα(u)〉 = μ0ω
3

16π
p̂†[〈ImG〉]p̂ = 1

2

〈P 〉
4π

, (A10)

with p̂ = (p1

p2

)
and

〈ImG〉 =
(〈ImG(11)〉 〈ImG(12)〉

〈ImG(21)〉 〈ImG(22)〉
)

. (A11)

That is, as expected, under the isotropy hypothesis, the
intensity at a given angle is simply proportional to the average
of the total radiated power 〈I (u)〉 = 2〈Iα(u)〉 = 〈P 〉/4π . After
averaging Eq. (A7) over the temporal fluctuations of the
sources we have p̂ap̂b = δjajb

and Iα(u) is simply the sum
of the individual intensities [Eq. (11)], i.e., the nondiagonal
boxes of 〈ImG〉 do not contribute (no cross-talk term). The
same applies for

〈Iα(u)〉 = 〈Iα(u)〉 = 〈P 〉/8π = 〈P 〉/8π (A12)

= μ0ω
3

16π
(p†

1p†
2)

(〈ImG(11)〉 0
0 〈ImG(22)〉

)(
p1

p2

)
.

(A13)

Let us now consider Eq. (14),

〈P 2〉 = (4π )2

N2

∑
αα′

∑
u,u′

〈Iα(u)Iα′ (u′)〉, (A14)

with Iα(u) given by Eq. (A7). Computation of Eq. (A14)
involves again p̂ap̂b = δjajb

together with averages of four
elements of a unitary random matrix [34]

〈U †
b′uα

UuαbU
†
c′u′

α′
Uu′

α′ c〉 =δbb′δcc′ + δbc′δcb′δuαu′
α′

4N2 − 1

− δbc′δcb′ + δbb′δcc′δuαu′
α′

2N (4N2 − 1)
. (A15)

It is easy now to find

〈Iα(u)Iα′ (u′)〉 = N

2(2N + 1)

1

(4π )2
〈P 2〉(1 + δuu′δαα′ ),

(A16)

which, in the large-N limit, gives Eq. (15) in the main text.
Following a similar procedure, one also obtains

〈Iα(u) Iα′ (u′)〉 = N2

4N2 − 1

1

(4π )2
〈P 2〉

(
1 − δuu′δαα′

2N

)

+ N2

4N2 − 1

1

(4π )2
〈P 2〉

(
δuu′δαα′ − 1

2N

)
(A17)

which, in the large N limit, gives Eq. (19).
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