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• Local plate resonances are measured with pulsed laser ultrasonic techniques.
• Resonance amplitudes depend on the curvature D of the Lamb mode dispersion law.
• Time decay of zero group velocity Lamb mode resonances scale with (Dt)−0.5.
• Time decay of thickness-shear resonances scale with (Dt)−1.5.
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a b s t r a c t

This paper investigates the dependence on Poisson’s ratio of local plate resonances in low
attenuating materials. In our experiments, these resonances are generated by a pulse laser
source and detected with a heterodyne interferometer measuring surface displacement
normal to the plate. The laser impact induces a set of resonances that are dominated
by Zero Group Velocity (ZGV) Lamb modes. For some Poisson’s ratio, thickness-shear
resonances are also detected. These experiments confirm that the temporal decay of ZGV
modes follows a t−0.5 law and show that the temporal decay of the thickness resonances
is much faster. Similar decays are obtained by numerical simulations achieved with a
finite difference code. A simple model is proposed to describe the thickness resonances.
It predicts that a thickness mode decays as t−1.5 for large times and that the resonance
amplitude is proportional to D−1.5 where D is the curvature of the dispersion curve ω(k) at
k = 0. This curvature depends on the order of the mode and on the Poisson’s ratio, and it
explains why some thickness resonances are well detected while others are not.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Small amplitude vibrations of an elastic plate are governed by the three-dimensional equations of the linear theory of
elasticity. For an infinite homogeneous plate, the frequency f = ω/2π depends on the wavelength λ = 2π/k in the plane of
the plate. When the faces of the plate are free of traction, no energy leakage occurs, then for any real k, the secular equations
established by Rayleigh [1] yield an infinite number of real roots inω. The dispersion curves of these symmetric (Sn) and anti-
symmetric (An) propagating modes, guided by the plate, are represented by a set of branches in the (ω, k)-plane [2–4]. The
complete Lamb mode spectrum depends on material parameters, either expressed by the longitudinal to transverse wave
velocity ratio VL/VT or by the Poisson’s ratio ν [5]. Dispersion curves ω(k) of high order modes start from the k = 0 axis at
a finite ordinate ωc . At these cut-off frequencies fc = ωc/2π multiple reflections of longitudinal or shear waves between
the top and bottom faces of the plate, give rise to thickness-shear resonances (modes S2n or A2m+1) or to thickness-stretch
resonances (modes S2m+1 or A2n) at infinite wavelength.
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Fig. 1. (a) Spectrum of the normal vibration of a Duralumin plate of thickness d = 1 mm generated and detected by laser. Vertical scale: fd/VT .
(b) Normalized dispersion curves for a Duralumin plate with bulk wave velocities VL = 6370 m/s and VT = 3150 m/s (ν = 0.338). (c) Dimensionless
cutoff frequencies andminimum frequencies of Lambmodes versus Poisson’s ratio (horizontal line: thickness-shear modes, dashed line: thickness-stretch
modes, and thick line: ZGV modes).

In many applications, the plate undergoes a local and impulsive excitation. The spectra of the transient waves in an
elastic plate has been analyzed by Weaver and Pao [6] and Santosa [7]. When surface stresses are induced by a laser
source, the coupling of the thermo-elastic source with elastic waves is a complex problem [8]. The theory and simulation
of laser generated waves propagating in plates has been the object of several studies [9,10]. In a recent paper, Laguerre and
Tresseyde [11] proposed a method to calculate the excitability of both propagating and non propagating modes. In practice,
the energy deposited on the plate by the source of finite dimensions rapidly flows out of the source area except for non
propagative modes. Zero group velocity (ZGV) modes were observed experimentally with various techniques: air-coupled
transducers [12], impact echomethod [13], laser ultrasonics [14,15]. These experiments demonstrate that the local vibration
spectrum of a free plate is dominated by the resonance at the minimum frequency of the S1 Lamb mode. This frequency is
slightly lower than the fundamental thickness frequency fc = VL/2d and corresponds to the junction of S1 and S2b branches,
where b stands for backward wave [16]. This is why we chose the notation S1S2-ZGV resonance [17]. In fact, except for the
first three (S0, A0 and A1) Lambmodes, all higher ordermodes exhibit aminimum frequency for some Poisson’s ratio [18,19].
Frequencyminima always occur below the cut-off and correspond towavelengths of the order of the plate thickness. Because
of their finite wavelength, ZGV modes dominate the frequency spectrum of the normal surface displacement after a local
impact. However, it was observed that some thickness resonances (infinite wavelength) are also detected when the signal
to noise ratio is sufficiently high. For example, Fig. 1(a) displays the resonance spectrum measured at the source point
(source spot 2.5mm), on a 1mm-thickDuralumin plate. The three observed resonances can be identified from the dispersion
curves shown in Fig. 1(b). The first and the third ones correspond to the S1S2 and the S3S6-ZGVmodeswhile the second one is
associated to the A3 thickness-shearmode. Fig. 1(c) presents the dimensionless cutoff frequencies andminimum frequencies
of Lamb modes versus the Poisson’s ratio: the horizontal lines correspond to thickness-shear modes, the dashed lines to
thickness-stretch modes and the thick lines to ZGV modes. For ν = 0.338 (vertical line), only two ZGV resonances exist
at normalized frequencies below 3.2. It appears that the A3 thickness-shear resonance, although 20 dB below the S1S2-ZGV
resonance, is clearly detected, while for example the A1 or the A5 thickness-shear resonances are not observed.

The objective of this paper is to explain these observations using theory, simulation and experiments. It is organized as
follows: in Section 2, a simple model is proposed to estimate the temporal decay of ZGV and thickness-shear resonances.
The relative amplitudes of thickness resonances, excited and detected by laser techniques, are predicted through simple
approximations. Then, Section 3 presents experimental results obtained on Duralumin and fused silica plates. The temporal
decay of the different resonances are observed and compared to those obtained with a finite difference code.

2. Analysis of the resonance temporal decay

In order to compare the ZGV and thickness resonance behavior, we propose a simple approach only valid for low
attenuation materials. The temporal decay of the S1S2-ZGV Lamb mode resonance was studied in Prada et al. [20]. In this
paper [Eq. (3)], the normal surface displacement associated to a given Lamb mode was expressed as

u(r, t) =
1
2π


+∞

0
Cth(k)Q (ω)B(k)J0(kr)eiωtkdk, (1)
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Fig. 2. Curvature of S1S2 and A2A3-ZGV modes as a function of the Poisson’s ratio. Inset, dispersion curve of S1S2 mode in a Duralumin plate. Fit (red line)
by Eq. (3) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where Cth(k) is the coefficient of thermo-elastic conversion into the normal displacement of the mode, Q (ω) is the spectral
content of the laser pulse, and B(k) is the spatial Fourier transform of the distribution of energy b(r) deposited on the surface.
For a Gaussian source beam of radius R at 1/e

b(r) =
E

πR2
exp


−

r2

R2


, (2)

where E is the deposited energy. The spatial 2D-Fourier transform is then

B(k) = B(0) exp(−sk2),

with s = R2/4 and B(0) = E/
√

πR2. This integral can be calculated for large times t using a Taylor expansion of the
dispersion relationω(k) in the vicinity of a resonance frequency. As the normal surface displacement vanishes for thickness-
shear resonances and not for ZGV resonances, the solution is derived in a different manner for each type of resonances.

2.1. Normal displacement for a ZGV resonance

The result established in [20] is recalled. In the vicinity of a zero group velocity point (k0, ω0), the second order Taylor
expansion of the dispersion curve is written

ω(k) = ω0 + D(k − k0)2 + O[(k − k0)3], (3)

where the curvature D at ZGV point depends on the mode order and on the Poisson’s ratio. Then the integral of Eq. (1) can
be approximated by the stationary phase method as

u(r, t) =
Cth(k0)
√
4πDt

Q (ω0)B(k0)J0(k0r)k0ei(ω0t+
π
4 ) ∼ (Dt)−0.5. (4)

It appears that the temporal decay of the resonance follows a t−0.5 law. Furthermore, the resonance amplitude is proportional
to the inverse square root of the curvature of the dispersion curve D. The coefficient D normalized to the product of the
transverse wave velocity by the plate thickness is a dimensionless coefficient δ(ν) = D/VTd which only depends on the
Poisson’s ratio ν. This parameter, numerically calculated for the first two ZGV modes S1S2 and A2A3, is displayed in Fig. 2. It
is interesting to notice that for the S1S2 mode, δ(ν) is maximum for a Duralumin plate (ν = 0.338) and approximately equal
to 0.305.

2.2. Normal displacement for a thickness-shear resonance

In the vicinity of a cut-off frequency fc = ωc/2π , the slope of the dispersion curve generally vanishes. As shown by
Mindlin [4], this is not true when there is a coincidence between a thickness-shear and a thickness-stretch resonance of the
same symmetry. The coincidence occurs for symmetrical modes S2m+1 and S2n when the bulk velocity ratio VL/VT is equal to
2n/(2m+ 1), and for anti-symmetrical modes A2m+1 and A2n when VL/VT = (2m+ 1)/2n. Except for these particular cases,
in the vicinity of a cut-off frequency (kd ≪ 1), the dispersion law ω(k) can be developed to the second order as

ω(k) = ωc + Dk2 + O(k3). (5)
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For a thickness-shear resonance, (k = 0), the normal surface displacement and the conversion coefficient vanish: Cth(0) = 0.
Then, the first order Taylor expansion of this coefficient can be written as

Cth(k) = Ck + O(k2). (6)

The normal surface displacement can be approximated as

u(r, t) =
1
2π

CQ (ωc)eiωc t


+∞

0
B(k)eiDk

2tk2dk,

or

u(r, t) =
1
2π

CQ (ωc)eiωc tB(0)


+∞

0
e(iDt−s)k2k2dk. (7)

Using the parameter u = k2, and the Laplace transform [21] equation


+∞

0 e−xuu1/2du = Γ (3/2)x−3/2 with ℜ(x) > 0 for
x = s − iDt , the displacement can be approximated by

u(r, t) =
Γ (3/2)

4π
CQ (ωc)B(0)

eiωc t

(s − iDt)3/2
.

For times t ≫ s/D the displacement is

u(r, t) =
Γ (3/2)

4π(Dt)3/2
CQ (ωc)B(0)e

i

ωc t+ 3π

4


∼ (Dt)−1.5. (8)

It results that the decay of thickness mode resonance is much faster than the decay of the ZGV mode resonance, this point
will be discussed in the next section. In order to explain why the A3 resonance is detected while, for example, the A1 or the
A5 are not, it is necessary to compare the relative amplitude of the resonances and thus to estimate the coefficients D and C .
The dependences of D and C with respect to the Poisson’s ratio and the order of the resonance are now investigated.

2.3. Curvature of the dispersion law at thickness resonance

For thickness resonances, the curvatures of the dispersion curve were derived by Mindlin and can be found in Shuvalov
and Poncelet [18]. The coefficient DT

n of a thickness-shear resonance at frequency fc = nVT/2d is

DT
n =

VTd
2πn


1 +

16
nπ


VT

VL


tan


nπ
2


1 −

VT

VL


. (9)

The normalized curvature δ(ν) = D/VTd of the dispersion curve at the origin k = 0 for the S2 and the A3 thickness-
shear resonances are displayed in Fig. 3. For the A3 mode, the curvature diverges for ν = 0.1 (VT/VL = 2/3) when the A3
shear resonance intersects the A2 stretch resonance [Fig. 3(b)]. Above this point, the curvature is negative [Fig. 3(d)], which
means there is a backward wave branch emanating from the thickness-shear mode and ending on the ZGVmode. Then, the
curvature vanishes for ν = 0.319, which corresponds to the upper limit of the ZGVmode. At this point, according to Eq. (4),
the amplitude of the thickness resonance diverges. The Duralumin Poisson’s ratio is just above this limit and the curvature
is δA3 = 0.01which leads to δ−1.5

A3
= 1000. On the contrary, for the S2 mode the curvature is much larger [Fig. 3(c)], |δS2 | > 1

which explains why the S2 thickness-shear resonance cannot be detected. For thickness-stretch resonances of order n, the
curvatures DL

n found in [18] are equal to

DL
n =

VLd
2πn


1 +

16
nπ


VT

VL

3

tan

nπ
2


1 −

VL

VT


. (10)

2.4. Conversion coefficient Cth

The dependence of the conversion coefficient Cth on the Poisson’s ratio is complex. Here,we present a simplified approach
for thickness modes. For a metallic surface and in the thermo-elastic regime, the source mostly induces an in-plane force.
Thus, one can consider that the conversion coefficient is proportional to the in-plane component uP of the mode at the
surface. As the normal displacement uN is detected at the surface, the conversion coefficient can be defined as the product
of the two components normalized to the integral of the squared displacement through the plate thickness

Cth(k) =
|uP(h, k)||uN(h, k)|

∥u∥2
, (11)

where h is the half-plate thickness (−h 6 x2 6 h). In the vicinity of a thickness-shearmodewehave |uP(x2, k)| ≫ |uN(x2, k)|
and

∥u∥
2

=

 h

−h


|uP(x2, k)|2 + |uN(x2, k)|2


dx2 ≈ |uP(h, k)|2

 h

−h
sin2


l
π

2
x2
h


dx2 = h|uP(h, k)|2.
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a b

c d

Fig. 3. Normalized resonance frequencies for S1S2-ZGV modes and S1 stretch and S2 thickness-shear modes (a) and for A2A3-ZGV modes and A3 shear and
A2 thickness-stretch modes (b). Normalized curvature of the thickness-shear modes S2 (c) and A3 (d) as function of the Poisson’s ratio. The vertical lines
indicate coincidence frequencies and upper limits of ZGV modes.

The conversion coefficient simplifies into

Cth(k) ≈
|uN(h, k)|
h|uP(h, k)|

.

The general expressions of the in-plane (uP) and normal (uN) displacements of symmetrical (α = 0) and anti-symmetrical
(α = π/2) modes are given in [22]

uP(x2, k) = −ikB cos(px2 + α) + qA cos(qx2 + α)
uN(x2, k) = −pB sin(px2 + α) + iAk sin(qx2 + α)

(12)

where p2 = (ω/VL)
2
− k2 and q2 = (ω/VT )

2
− k2. The coefficients A and B depend on k and satisfy the two equations

(k2 − q2)B cos(ph + α) + 2ikqA cos(qh + α) = 0 (a)
2ikpB sin(ph + α) + (k2 − q2)A sin(qh + α) = 0 (b).

(13)

In the vicinity of the thickness-shear resonance of order l we have the following Taylor expansion

qh =
ωch
VT

+ O(k2) = l
π

2
+ O(k2)

ph =
ωch
VL

+ O(k2) = l
π

2
VT

VL
+ O(k2).

For a symmetrical (α = 0) shear resonance of order l = 2n, we have sin(qh+α) = O(k2) and cos(qh+α) = (−1)n +O(k2)
and Eq. (13)(a) gives lπB cos[l(π/2)(VT/VL)+α] = 4ikh(−1)nA. The expressions of the displacements at the surface become

|uP(h, k)| = Al
π

2h
+ O(k2)

|uN(h, k)| = 2Ak
VT

VL

tanlπ2 VT

VL
+ α

+ O(k2).

For an anti-symmetrical shear resonance (α = π/2) of order l = 2m + 1, analogous equations can be written. Finally, the
coefficients of the leading term of Cth [Eq. (6)] is

CT
l =

4
lπ

VT

VL

tanlπ2 VT

VL
+ α

 . (14)
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Fig. 4. (a) The constant C/D1.5 as a function of the Poisson’s ratio for the first five thickness-shear resonances (A1 , S2 , A3 , S4 , A5). (b) The constant C/D1.5

as a function of the Poisson’s ratio for the first four thickness-stretch resonances (S1 , A2 , S3 , A4) of frequencies below 5VT /2d.

A similar derivation for the thickness-stretch modes is given in Appendix A and leads to the following coefficients

C L
l =

4
lπ

VT

VL

cotlπ2 VL

VT
+ α

 . (15)

These coefficients diverge if VT/VL is rational which corresponds to a coincidence between thickness-shear and thickness-
stretch resonances. As mentioned in Section 2.2, the model is no more valid in this case. According to Eq. (4), the amplitude
of the resonance is proportional to C/D1.5. This parameter is plotted as a function of the Poisson’s ratio in Fig. 4(a) for the
thickness-shear modes and in Fig. 4(b) for the first four thickness-stretch modes. For sake of clarity the coefficients were
plotted only for resonance frequencies below the fifth shear resonance frequency fc < 5VT/2d. The two green dash lines
indicate Poisson’s ratios of fused silica and Duralumin. It appears that for fused silica the coefficient of the S4 thickness-
shear resonance is higher by at least one order of magnitude than for the other modes. It means that the S4 resonance will
dominate the other thickness resonances. The same observation can be done for the A3 thickness-shear mode in Duralumin.
This graph also indicates that the thickness-stretch resonances should not be easily detected. Is it important to underline that
these curves give the relative weights of thickness resonances for a given Poisson’s ratio. To compare resonance amplitudes
for two different materials, one should consider other parameters like optical absorption or thermal dilatation also involved
in the conversion process.

3. Experimental results

A heterodyne interferometer [23] associated with a Q-switched Nd:YAG laser at Λ = 1064 nm was used. Lamb waves
were generated in the thermo-elastic regime by the absorption of a short pulse (duration ∆ = 20 ns, energy 3.1 mJ,
repetition rate of 20 Hz, spot diameter 2.5 mm). The calibration factor for mechanical displacements normal to the surface
(10 mV/nm) is constant over the detection bandwidth (20 kHz to 45 MHz). Measurements were made on two materials,
Duralumin and fused silica, having a low attenuation (less than 1 dB/m in the MHz frequency range). For fused silica, a thin
aluminum layer was deposited for a sufficient optical absorption at the surface.
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a b c

Fig. 5. Normal displacements measured as function of the distance from the source on a 1-mm thick Duralumin plate (colorbar: absolute displacement
in logarithmic scale) (a). Temporal Fourier transforms around S1S2 , A3 and S3S6 resonances frequencies (b). Maximum amplitude (dots) and fit with zero
order Bessel function (solid line) (c).

3.1. Displacement profile at ZGV and thickness-shear resonance frequencies

The spatial profile of the resonanceswasmeasured on a 1-mm thick Duralumin plate. The ratio R/d is equal to 1.25which
corresponds to R ∼ 0.32λS1S2 . The normal surface displacements, detected by scanning the probe across the source along a
30-mm line, is displayed in Fig. 5(a) for the first 15 µs. After about 8 µs most propagating modes have escaped the scanned
area. A standing mode is clearly observed immediately after. The temporal Fourier transforms of these signals calculated
on the same time-window (7 µs–80 µs) reveal 3 resonances at 2.923 MHz, 4.827 MHz and 9.560 MHz. As expected, they
correspond respectively to S1S2, A3 and S3S6 resonances. The amplitude distributions around the resonance frequencies are
displayed in Fig. 5(b). The type of resonance can be distinguished from their spatial profiles. For ZGV resonances, they follow
a Bessel function J0(2πr/λ) with λ = 3.85 mm for S1S2 and λ = 3.20 mm for S3S6, corresponding to the interference
of backward and forward waves of opposite phase velocities. The profile of the thickness resonance is different and only
corresponds to propagative forward modes. Contrary to ZGV modes, the profile depends on the time window used in the
Fourier transform especially at short times.

3.2. Resonance temporal decays

The normal surface displacements were detected at the source location during 300 µs on both Duralumin and fused
silica plates. The Fourier transforms of these signals are displayed in Fig. 6(a) and (b). In both cases, the S1S2 mode
dominates. According to the previous analysis, higher order resonances for fused silica are different than for Duralumin
and correspond to A2A3-ZGV mode and S4 thickness-shear mode. The signals filtered (bandwidth 0.3 MHz) around the
resonance frequencies of the S1S2-ZGV mode and thickness-shear modes A3 for Duralumin and S4 for fused silica are
displayed in Fig. 6(c) and (d). It is clearly observed that amplitudes of thickness modes decay much faster than ZGV
mode amplitudes. The temporal decays were estimated by using a Hilbert transform of the filtered signals. As shown
in Fig. 7(a) and (b), the amplitudes decrease like t−0.5 for S1S2-ZGV modes. Similar decays were observed for S3S6-ZGV
mode in Duralumin and A2A3-ZGV mode in fused silica. This result is in good agreement with the theory [Eq. (4)].
For thickness-shear modes, the power law fit provides a −1.4 exponent for Duralumin and −1.2 for fused silica, which
is slightly different than the −1.5 predicted by the above theory [Eq. (8)]. Using a homemade finite difference code, the
local response was also calculated and similar temporal decays (−1.4) were obtained for both resonance types as shown in
Fig. 7(c) and (d). This decay is observed for time higher than 10 µs, which is consistent with the validity condition t ≪ sD,
since sD is equal to 2µs for the A3 mode in the Duralumin plate. For thicknessmodes, the discrepancy between experiments
and theory could be ascribed to the various approximations made in the model.

4. Conclusion

The local elastic resonances of a plate excited by a laser sourcewas studied for low attenuationmaterials. It was observed
that while the dominant resonances are associated to zero group velocity Lamb mode of finite wavelength, some thickness
resonances are also detected. The type of resonance can be determined from the spatial profiles. For ZGV resonances, it
follows a Bessel function corresponding to the interference of counter propagating modes of opposite phase velocities. The
profile of thickness resonance is very different and only correspond to interferences of forward modes. In the experiment,
the A3 thickness-shear resonance is detected in Duralumin plates and the S4 thickness-shear resonance is detected in fused
silica, while the other thickness modes are not observed. This is explained through a simplified model which shows that the
amplitude of the resonances is proportional to D−1.5 where D is the curvature of the dispersion law and that the temporal
decay of the resonance is also different: for ZGV modes it follows a power law t−0.5, while for thickness resonances the
decay ismuch faster. The proposed theory predicts that the decay is as t−1.5 while experimental and numerical results reveal
slightly slower decay as t−1.4. This discrepancy can be ascribed to the approximations made in the theory. The development
of a more complete model should be the object of further studies.
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a b

c d

Fig. 6. Normal surface displacement generated and detected at the same point on a 1-mm thick Duralumin (left) and fused silica (right) plates: (a) and (b)
Fourier transforms, (c) and (d) signals filtered around S1S2-ZGV frequencies (black line) and around the A3 thickness frequency for Duralumin and around
S4 thickness frequency for fused silica (gray line).

a b

c d

Fig. 7. Experimental (a, b) and numerical (c, d) temporal power law decays in logarithmic scales.
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Appendix. Coefficient of thermo-elastic conversion for the thickness-stretch modes

Following the same approach than for thickness-shear resonances, the conversion coefficient Cth for thickness-stretch
resonances can be approximated as

Cth(k) ≈
|uP(h, k)|
h|uN(h, k)|

.

For a resonance of order l: ωch = lVLπ , and the following Taylor expansions can be written as
qh =

ωch
VT

+ O(k2) = l
π

2
VL

VT
+ O(k2)

ph =
ωch
VL

+ O(k2) = l
π

2
+ O(k2).

For a symmetrical resonance of order l = 2m+1 andα = 0, we have sin(ph+α) = (−1)m+O(k2) and cos(ph+α) = O(k2).
Using the first order development and inserting the above equation in Eq. (13)(b), it becomes

2ik(−1)mB = l
π

2


VL

VT

2

A sin

l
π

2
VL

VT
+ α


,

and the parallel and normal displacements become
uP(h, k) = qA cos(qh + α) = −(−1)m2ikB

VT

VL
cot


(2m + 1)

π

2
VL

VT
+ α


uN(h, k) = −pB sin(ph + α) = (−1)mB(2m + 1)

π

2h
.

It follows that the coefficient C L
2m+1 is

C L
2m+1 =

4
(2m + 1)π

VT

VL
cot


(2m + 1)

π

2
VL

VT


. (A.1)

For an anti-symmetrical resonance of order l = 2n and α = π/2, we have sin(ph + α) = −(−1)n + O(k2) and
cos(ph + α) = O(k2). Using the first order development of Eq. (13)(b) we have

2ik(−1)nB = l
π

2


VL

VT

2

A sin

l
π

2
VL

VT
+ α


.

The displacements become

uP(h, k) = (−1)n2ikB
VT

VL
cot


π

2
VL

VT
+ α


uN(h, k) = −(−1)nBl

π

2h
and the coefficient of the leading term of Cth

C L
2n =

4
2nπ

VT

VL
cot


2n

π

2
VL

VT
+ α


. (A.2)

More generally, we obtain for thickness-stretch modes of order l:

C L
l =

4
lπ

VT

VL
cot


l
π

2
VL

VT
+ α


(A.3)
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