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Coherence properties [1,2] of partially polarized light
have been the subject of several investigations in the last
decade [3–8]. Motivated initially by the analysis of beam
propagation in free space or in atmospheric turbulence
[9,10], these studies have generally been restricted to par-
axial electromagnetic fields, where the field polarization
can fluctuate only in 2D. However, there exist several
physical situations in which the polarization can fluctu-
ate in 3D. This can occur, for instance, in the near field of
planar structures [11–13], or in multiple-scattering (disor-
dered) media [14–16]. Such situations are commonly en-
countered and have already prompted investigations on,
e.g., the definition of a 3D degree of polarization [17–20].
This Letter proposes a generalization of the intrinsic

coherence theory to 3D fluctuating fields. Several coher-
ence properties of partially polarized light, already
known in 2D, are demonstrated in 3D. This is the case,
in particular, for the mean-square coherence [21,22], and
for the analysis of the irreversible behavior of light when
it is subjected to random linear transformations [23,24]
described with matrix vector multiplications. These
properties are illustrated with the example of light propa-
gation in disordered media with frozen and nonfrozen
disorder, where an emphasis is given to the proper appli-
cation of disorder averages in the analysis of intrinsic
coherence.
The field in the time or in the frequency domain and at

two locations, r1 and r2, will be written E�r1� and E�r2�.
The field is assumed statistically circular [1] and to fluc-
tuate in 3D. Thus

E�r� � �Ex�r�; Ey�r�; Ez�r��T ; (1)

where aT denotes the transpose vector of a. The
mutual coherence and the polarization matrices are,
respectively,

Ω�r1; r2� � hE�r1�E�r2�†i (2)

and

Γ�ri� � hE�ri�E�ri�†i; (3)

where a† is the conjugate transpose of a and where hi is
the statistical average. In the spectral domain, Ω�r1; r2�
and Γ�ri� correspond, respectively, to the spectral coher-
ence and to the spectral polarization matrices.

It can be interesting to analyze coherence properties of
partially polarized fields with measures of coherence.
The intrinsic degrees of coherence possess several inter-
esting properties that can be generalized to fields in 3D.
Mathematically, the intrinsic degrees of coherence
μE;j�r1; r2�, with j � 1, 2, 3, between E�r1� and E�r2�, cor-
respond to canonical correlation coefficients [25] and are
equal to the singular values of the normalized coherence
matrix [5]

M�r1; r2� � Γ�r1�−1∕2Ω�r1; r2�Γ�r2�−1∕2; (4)

which will be considered with the convention
μE;1�r1; r2� ≥ μE;2�r1; r2� ≥ μE;3�r1; r2�. In the following,
the analysis will be limited to locations for which the
polarization matrices are nonsingular.

If A�ri� � J�ri�E�ri�, where J�ri� are nonsingular deter-
ministic matrices, then μA;j�r1; r2� � μE;j�r1; r2� where
μA;j�r1; r2� are the intrinsic degrees of coherence between
A�r1� and A�r2� [5]. The intrinsic degrees of coherence or
one-to-one transformations of these quantities are the
only parameters of the mutual coherence and polariza-
tion matrices that possess this property of invariance [5].

Several interesting properties discussed for 2D fields in
[21,22] can be easily generalized to 3D fields when the
three intrinsic degrees of coherence are equal to 1.

Property A: The three intrinsic degrees of coherence
between the fields E�r1� and E�r2� with nonsingular
polarization matrices are equal to 1 (i.e., μE;j�r1; r2� � 1
for j � 1, 2, 3), if and only if there exists a nonsingular 3 ×
3 deterministic matrix J�r1; r2� such that

E�r1� � J�r1; r2�E�r2� (5)
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in the mean-square meaning, i.e., such that
h‖E�r1� − J�r1; r2�E�r2�‖2i � 0 where ‖‖ is the Euclidean
norm.
If the field possesses this property in a spatial domain,

D, then the property discussed in [22] can be generalized
as well.
Property B: The three intrinsic degrees of coherence

between the fields E�r1� and E�r2� with nonsingular
polarization matrices are equal to 1 in a domain, D, if
and only if, in this domain:

(1) the field can be written in the mean-square,
meaning

E�r� � ϵ1Ψ1�r� � ϵ2Ψ2�r� � ϵ3Ψ3�r� (6)

or equivalently:
(2) the mutual coherence matrix can be written

Ω�r1; r2� �
X3

j�1

λjΨj�r1�Ψ†
j �r2�; (7)

where λj > 0, Ψ1�r�, Ψ2�r� and Ψ3�r� are geometrically
independent deterministic vector fields [i.e., one vector
Ψj�r� is not the linear combination of the two others
Ψn�r� and Ψm�r�], and where ϵj are statistical uncorre-
lated complex random variables (i.e., hϵ�j ϵki � 0 if j ≠ k).

Mean-square coherent light in 3D in a domain, D, cor-
responds to fields that satisfy property B and that are
thus equal to the sum of three independent (statistically
and geometrically) totally polarized fields that satisfy the
factorization condition at order one introduced in [26] in
the context of quantum optics.
The other limit situation for which the three intrinsic

degrees of coherence are all equal to 0 is also worth no-
tice. In that case, the mutual coherence matrix is equal to
the null matrix, and no correlation can exist between any
component of E�r1� and any component of E�r2�.
Let us now consider the general case where the intrin-

sic degrees of coherence can have any value between 0
and 1. The properties presented below have been shown
in 2D, but their generalization to 3D is not always
straightforward, in which case the proofs are given in
the Appendices.
A first property [5] is that the maximal modulus of the

standard degree of coherence that can be obtained in in-
terference experiments with optimized totally polarized
component of the fields E�r1� and E�r2� is equal to
μE;1�r1; r2�. The generalization of this property to 3D leads
to Property C.
Property C: The maximal value of the modulus of the

degree of coherence between the totally polarized fields
Eu�ri� obtained with

Eu�ri� � ui�ri�†E�ri�; (8)

is equal to μE;1�r1; r2� when u1�r1� and u2�r2�, which
represent the action of two perfect polarizers, are
optimized.
It has been shown [23,24] that the intrinsic degrees of

coherence are able to describe the irreversible behavior

that exists when fields that fluctuate in 2D are multiplied
by random Jones matrices. These results can be general-
ized to fields that fluctuate in 3D.

Property D: If the fields are modified such that

A�ri� � J�ri�E�ri�; (9)

where J�ri� is a random matrix, then the largest intrinsic
degree of coherence μA;1�r1; r2� between A�r1� and A�r2�
satisfies

μA;1�r1; r2� ≤ μE;1�r1; r2�: (10)

The proof of this property is provided in Appendix A. It
is interesting to determine if only μE;1�r1; r2� is able to de-
scribe the irreversible behavior that exists when the
fields are modified by random linear transformations rep-
resented by matrix vector multiplications. The following
property is shown in Appendix B.

Property E: Any continuous and differentiable func-
tion that can be determined with second-order statistical
characteristics and which value cannot increase with ran-
dom transformations of Eq. (9) is a one-to-one increasing
function of the largest intrinsic degree of coherence.

A more precise result than Property D has been ob-
tained in 2D [24] when the linear random transformations
are uncorrelated. Property F, shown in Appendix C, gen-
eralizes this result for fields in 3D.

Property F: When the fields are modified accordingly
to Eq. (9) with random uncorrelated matrices J�r1� and
J�r2� then, for j � 1, 2, 3, the intrinsic degrees of coher-
ence μA;j�r1; r2� between A�r1� and A�r2� satisfy

μA;j�r1; r2� ≤ μE;j�r1; r2�: (11)

It is interesting to note that if A�r1� � E�r1� and
A�r2� � J�r2�E�r2� then μA;j�r1; r2� ≤ μE;j�r1; r2� for
j � 1, 2, 3, since the conditions of application of Property
F are fulfilled. The difference between Properties D and F
shows that correlation between the linear random trans-
formations can increase some intrinsic degrees of coher-
ence but not the largest.

Let us illustrate these properties when light propagates
in a 3D disordered medium (see Fig. 1) and at locations
for which the polarization matrix is nonsingular. A
source located at r0 emits the field E�r0� with a polariza-
tion matrix Γ�r0� that is nonsingular. The field is thus par-
tially polarized in 3D, and we also assume that the time

Fig. 1. Illustration of the considered example of light propaga-
tion in a disordered medium from a source located at r0 with a
nonsingular polarization matrix.
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propagation between two locations in the medium is
small in comparison to the coherence time of the differ-
ent components of the vector field E�r0�, so that the field
at location r1 can be written E�r1� � J�r1; r0�E�r0�, where
J�r1; r0� is a matrix. The situations of frozen and nonfro-
zen disorders will be considered. Frozen disorder corre-
sponds to cases for which the measurements can be
performed for one particular realization of the disorder.
This is, for example, the case when the disorder does not
fluctuate in time, and the coherence is measured be-
tween two fixed points. Nonfrozen disorder corresponds
to cases for which the measurements are described with
averages over the disorder. This is, for example, the case
when the disorder fluctuates in time.
Assuming first that the disorder is frozen, the field sat-

isfies Property A in the medium and corresponds to a
mean-square coherent field that satisfies Property B.
With Eq. (6), the field at location r can thus be written:
E�r� � ϵ1Ψ1�r� � ϵ2Ψ2�r� � ϵ3Ψ3�r�, where Ψ1�r�, Ψ2�r�
and Ψ3�r� are geometrically independent deterministic
vector fields and where ϵj are statistical uncorrelated
complex random variables. The intrinsic degrees of co-
herence between E�r1� and E�r0� are all equal to 1, as well
as the intrinsic degrees of coherence between E�r1� and
E�r2� where r1 and r2 are locations in the disordered
medium.
On the other hand, when the disorder is not frozen,

e.g., as in [16], the relation E�r1� � J�r1; r0�E�r0� is no
more deterministic since J�r1; r0� now corresponds to
a random matrix. In that case, Property F shows that
the random linear transformation can result in intrinsic
degrees of coherence between E�r1� and E�r0� smaller
than 1. This is also the case when coherence properties
are analyzed at two locations, r1 and r2, since E�r1� �
J�r1; r0�E�r0� and E�r2� � J�r2; r0�E�r0�. Let hiJ denote
average over the disorder [i.e., over the random matrices
J�ri; r0�]. With strong fluctuations of the disorder, the
average value hJ�r1; r0�iJ can become very small, and
the intrinsic degrees of coherence between E�r0� and
E�r1� can also become very small. Furthermore, when
the distance between r1 and r2 increases the matrices,
J�r1; r0� and J�r2; r0� can become uncorrelated, and the
intrinsic degrees of coherence between E�r1� and E�r2�
can also become very small.
These examples show that different results are ob-

tained if the averages over different disorder realizations
of the media (i.e., hiJ) are applied to the intrinsic degrees
of coherence or to the mutual coherence and polarization
matrices. Indeed, since the intrinsic degrees of coher-
ence of frozen disordered media are equal to 1, their aver-
ages are still equal to 1 while the intrinsic degrees of
coherence of the averaged mutual coherence and polari-
zation matrices can be very small. This difference reflects
the ability that the fields at two locations can interfere
with nonzero visibility when the disorder is frozen, while
it is not the case with nonfrozen disorder when the intrin-
sic degrees of coherence are equal to zero.
Let us finally assume that the field E�r� can be written

E�r� � Ecoh�r� � Einc�r�. The field Ecoh�r� is totally polar-
ized and totally coherent and can be generated, for exam-
ple, with a dipole source located at r0 or, more precisely,
Ecoh�r� � ϵΨcoh�r�, where ϵ is a random variable and
Ψcoh�r� is a deterministic vector field. The field Einc�r�

is assumed unpolarized and totally incoherent [i.e., the
mutual coherence matrix between Einc�r1� and Einc�r2�
is equal to the null matrix when r1 ≠ r2 and the mutual
coherence matrix between Einc�r1� and Ecoh�r2� is also
equal to the null matrix for any r1 and r2]. In practice,
this may be produced by a secondary unpolarized and
incoherent source.

The mutual coherence matrix Ω�r0; r1� is then equal to
hEcoh�r0�Ecoh�r1�†i and has thus only one nonzero singu-
lar value. However, the polarization matrix at location ri
is hEcoh�ri�Ecoh�ri�†i � hEinc�ri�Einc�ri�†i, which is there-
fore assumed nonsingular.

Thus, when the disorder is frozen, only one intrinsic
degree of coherence between E�r0� and E�r1� is non-null.
This is also the case between E�r1� and E�r2�.

When the disorder is not frozen, the intrinsic degree
μE;1�r1; r0� between the field at locations r1 and r0 can de-
crease while Property F shows that the two others,
μE;2�r1; r0� and μE;3�r1; r0�, remain equal to 0. The situa-
tion is different between two locations, r1 and r2. Indeed,
the mutual coherence matrix Ω�r1; r2� is now equal to
hJ�r1;r0�hEcoh�r0�Ecoh�r0�†iJ�r2;r0�†iJ . Since J�r1; r0� and
J�r2; r0� can be correlated μE;2�r1; r2�, and μE;3�r1; r2�
can increase and can thus be positive.

To conclude, several coherence properties demon-
strated with the intrinsic degrees of coherence for 2D
fluctuating fields have been generalized to 3D. These
properties have been illustrated with the example of light
propagation in 3D disordered media. The concept of
mean-square coherent light and the irreversible evolu-
tions of the intrinsic degrees of coherence have been
shown to be useful notions for the analysis of coherence
properties in disordered media. In particular, clear dis-
tinctions between frozen and nonfrozen disorders can
be observed. With frozen disorders, applying the average
over the disorder to the intrinsic degrees of coherence or
to the mutual coherence and polarization matrices can
lead to different results with different physical signifi-
cance. With nonfrozen disorders, the average has to be
applied to the mutual coherence and polarization matri-
ces since these average quantities are those that can be
measured.

Appendix A: Proof of Property D

In the appendices, the notations are simplified so that
V�r1� → V1 and hiJ � hi. The modulus square of the sca-
lar degree of coherence between u†1A1 and u†2A2 is
η2A � ju†1ΩAu2j2∕��u†1ΓA;1u1��u†2ΓA;2u2��, and Property C
lets us know that the maximal value of η2A is μ2A;1. Equa-

tion (9) shows that ΩA � hJ1ΩEJ
†
2i. Equation (4) and the

singular value decomposition ME � UE;1DEU
†
E;2, where

DE is a diagonal matrix of diagonal values μE;j lead to

u†1ΩAu2 � hc†1DEc2i with ci � U†
E;iΓ

1
2
E;iJ

†
iui. It can be che-

cked that u†iΓA;iui � hc†icii and that η2A � jhc†1DEc2ij2∕
�hc†1c1ihc†2c2i�. Furthermore, η2A � ηvr1r2 with ηv �
jhv†1v2ij2∕�h‖v1‖2ih‖v2‖2i� where vTi � � ���������

μE;1
p ci;1;���������

μE;2
p

ci;2;
���������
μE;3

p
ci;3�, and ri � h‖vi‖2i∕h‖ci‖2i. Then

μ2A;1 ≤ μ2E;1, since ηv ≤ 1 and ri ≤ μE;1.
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Appendix B: Proof of Property E

A quantity F that characterizes the coherence properties
at second order has to be a function of Γ1, Γ2, andΩE, i.e.,
F � F�Γ1;Γ2;ΩE�. This quantity can describe an irrevers-
ible behavior with random local linear transformations
only if it is invariant with deterministic local linear trans-
formations [23], which implies that F�Γ1;Γ2;ΩE� �
F�Id; Id;DE� where Id is the identity matrix in 3D. This
relation can also be written [5] F�Γ1;Γ2;ΩE� �
f �μ1; μ2; μ3� where μj � μE;j. With random local linear
transformations, μj are transformed into μj � dμj with
dμ1 ≤ 0. If jdμjj are small and f � f �μ1; μ2; μ3�,
then df ≃

P
3
j�1�∂f ∕∂μj�dμj.

However, when μj < 1 for j � 2, 3, it is always possible
to find physical situations and transformations so that
dμj � −αjdμ1 with αj arbitrarily large for j � 2, 3. This
is, for example, observable when ΩE is diagonal with
diagonal elements Ijμj and if the same random rotation
of random angle θ is applied to both fields, E1 and E2 (see
[23], for example, for details in 2D, and the rotation can
be applied with axes along the second or third coordinate
of DE). Thus df ≤ 0 for all physical situations implies that
∂μ1f ≥ 0 and ∂μj f � 0 for j � 2, 3 and thus that f is inde-
pendent of μ2 and μ3.

Appendix C: Proof of Property F

We consider here random matrices J1 and J2 that are
uncorrelated. In that case, MA � hK1iMEhK†

2i with
Ki � hJiΓiJ

†
i i−

1
2JiΓ

1
2
i, since K1 and K2 are also uncorre-

lated. Let σk�X� denote the singular values of the matrix
X ordered by decreasing values. The equality σ1�hKii�2 �
v†hKiihK†

i iv holds for some vectors v with ‖v‖ � 1.
But h‖K†

iv−hK†
i iv‖2i≥0⇒v†hKiihK†

i iv≤v†hKiK
†
i iv and

hKiK
†
i i � Id ⇒ ‖hK†

i iv‖2 ≤ 1. Thus σ1�hKii� ≤ 1.
It can be shown [27] that σk�AB� ≤ σ1�A�σk�B�. Thus

σk�hK1iMEhK†
2i�≤σ1�hK1i�σk�MEhK†

2i�≤σ1�hK1i�σ1�hK2i�
σk�ME� or μA;k ≤ μE;k for k � 1, 2, 3 since σk�ME� � μE;k
and σk�MA� � μA;k.
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