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Inharmonicity of piano tones is an essential property of their timbre that strongly influences the
tuning, leading to the so-called octave stretching. It is proposed in this paper to jointly model
the inharmonicity and tuning of pianos on the whole compass. While using a small number of
parameters, these models are able to reflect both the specificities of instrument design and tuner’s
practice. An estimation algorithm is derived, that can run either on a set of isolated note recordings,
but also on chord recordings, assuming that the played notes are known. It is applied to extract
parameters highlighting some tuner’s choices on different piano types and to propose tuning curves
for out-of-tune pianos or piano synthesizers.

PACS numbers: 43.75.Zz, 43.75.Mn, 43.60.Uv

I. INTRODUCTION

Modelling timbre variations of a specific musical in-
strument across its whole compass is an issue of par-
ticular importance to musical acoustics, for instance in
synthesis, or instrument recognition. It could also be
useful for many other tasks related to Music Information
Retrieval (MIR) such as automatic music transcription
or source separation. The case of the piano is particu-
larly relevant, as it has been central to Western music
in the last two centuries, with an extremely wide solo or
orchestral repertoire. In this paper, a parametric model
which accounts for specifics of both the piano type and
tuning is proposed. More specifically, the variations of
the string inharmonicity and tuning are modelled along
the whole pitch range and estimated from monophonic
or polyphonic recordings.

Despite considerable differences in shape, size, and de-
sign, all pianos share construction elements: keyboard,
hammers, steel strings, bridges, soundboard - all these
contribute to its distinct timbre. In return, these physical
characteristics lead to strong constraints on the tuning
technique, which targets equal temperament3,4. Whereas
the transverse vibrations of an ideal string produce spec-
tra with harmonically related partials, the stiffness of
actual piano strings leads to a slight inharmonicity5. For
instance, the frequency ratio between the second and first
partials is slightly higher than 2, between the third and
second it is higher than 3:2, and so on. This effect de-
pends on many physical parameters of the strings (mate-
rial, length, diameter, ...), and then differs not only from
a piano to another, but also from one note to another. As
a consequence, simply adjusting the first partial of each
note on equal temperament would produce unwanted

a)Portions of this work were presented in two conference
proceedings1,2. This research was partially funded by the French
Agence Nationale de la Recherche, PAFI project.

beatings, in particular for octave intervals. Aural tuning
consists in controlling these beatings6. The final result
then depends on the specific design of each piano, but
also on the tuner practice — he usually focuses on par-
ticular beatings, which may not necessarily be the same
for different tuners7,8. Thus, according to the model of
piano and the choices/abilities of the tuner, the result-
ing tuning is unique, but within some physically-based
constraints. From a musical acoustics perspective its
modelling is hence an interesting challenge that has been
tackled by different viewpoints. A simulation of aural pi-
ano tuning has been proposed4 to help pianists in tuning
their own pianos, replicating the tuner’s work by iter-
atively tuning different intervals. The method is based
on a mathematical computation of the beat rates, and
requires the frequencies of first 5 partials of each note.
More recently, an approach based on psycho-acoustics
considerations has been introduced9. This algorithm ad-
justs the 88 notes at the same time, by an optimization
procedure on modified spectra of the notes according to
psycho-acoustic laws and tuning updates. Besides these
works, number of authors have proposed algorithms to
estimate inharmonicity from isolated note recordings (cf.
state-of-the-art in section III.A).

This paper takes a different, global approach, by jointly
modelling tuning and inharmonicity laws for the whole
compass. This global estimate is made possible thanks
to recent advances in optimization techniques, here based
on a non-negative decomposition scheme. The model can
be run, with no hand tuning of the parameters, either
on isolated notes or chord recordings, assuming that we
know which notes are being played. On sets of isolated
notes for the whole 88-notes compass, this model com-
pares favourably with some algorithms of the state of
the art. However, to the best of our knowledge, it is the
only approach that can still build a global model from a
small subset of the notes, or even from chord recordings.
Although such interpolated model can only capture the
main trends in the inharmonicity and tuning of a given
piano, it should be reminded that one of the objectives
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of piano manufacturing and tuning is precisely to have
a timbre that is as homogeneous as possible, smoothing
out as much as possible the discontinuities of physical
origins: bass break, change in the number of strings per
note, change of strings diameter and winding. Therefore,
it is not only realistic, but also relevant, to try to glob-
ally parametrize the inharmonicity and tuning with only
a few parameters - at least as a first-order approximation.

The obtained synthetic description of a particular in-
strument, in terms of its tuning / inharmonicity pattern,
can be useful to assess its state and also provides clues
on some of the tuner’s choices. In the field of musical
acoustics, the use of such a model could be helpful for
instance for the tuning of physically-based piano synthe-
sizers, where we are otherwise faced with the problem
of having to adjust a large number of parameters, all of
them being inter-dependent. Here a higher-level control
can be obtained, with few physically meaningful param-
eters. In the fields of audio signal processing and MIR,
including a priori knowledge is often done when trying
to enhance the performance of the algorithms10–14. The
herein proposed method is a first step for further use
in tasks such as piano model identification or automatic
transcription of polyphonic piano recordings.

The joint model of inharmonicity and tuning on the
whole compass is introduced in section II. The estimation
of the parameters is then presented in section III. Section
IV describes the results obtained from experimental data,
and discusses possible applications. Finally, conclusions
and perspectives are drawn in section V.

II. PARAMETRIC MODEL OF INHARMONICITY AND
PIANO TUNING

A. Inharmonicity and aural tuning principles

First consider the transverse vibration of a plain stiff
string fixed at end-points. Because of the bending stiff-
ness, the resulting partial frequencies are given by an
inharmonic relation15:

fn = nF0

√
1 +Bn2, n ∈ N∗, (1)

where n is the partial rank, B the inharmonicity coef-
ficient, and F0 the fundamental frequency of vibration
of an ideal flexible string. F0 is related to the speaking
length of the string L, the tension T and the linear mass
µ according to:

F0 =
1

2L

√
T

µ
. (2)

The stiffness is taken into account in B:

B =
π3Ed4

64 TL2
, (3)

where E is the Young’s modulus and d the diameter of the
plain string. Since the mechanical characteristics of the
strings differ from one note to another, obviously F0, but
alsoB are varying along the compass (typical values forB

are in the range [10−5, 10−2]). Hereafter, these quantities
will be indexed by the MIDI note number, m ∈ [21, 108]
(from A0 to C8) as (B(m), F0(m)).

It is worth noting that equation (1) assumes a string
fixed at both ends and then neglects the bridge motion.
The actual partials deviate16 upwards or downwards
from the frequencies given in equation (1), mostly in the
low frequency domain. Moreover, the coupling between
doublets or triplets of strings can lead to multiple
partials and produce double decays and beatings in
piano tones17–19. These phenomena are not considered
in the model presented in this paper though they could
slightly affect the estimation results (this is discussed in
sections IV.B.1 and IV.C).

Aural tuning is based on the perception and the control
of beatings between partials of two different tones simul-
taneously played6, and is then affected by inharmonicity.
It always begins by the tuning of a reference note, in
most cases the A4 at 440 Hz (sometimes 442 Hz). To do
so, the tuner adjusts the tension of the strings to cancel
the beatings produced by the difference of frequency of
the tuning fork and the first partial of the note. Thus,
f1(m = 69) = 440 Hz. Even if there are different meth-
ods, skilled tuners usually begin by the scale tuning se-
quence: the F3-F4 octave is set by approximate equal
temperament6,8. The rest of the keyboard is tuned by
adjusting beatings between the partials of two different
notes, typically octave-related.

When tuning an octave interval by canceling the beat-
ings produced by the second partial of a note indexed
by m and the first partial of a note indexed by m + 12,

the resulting frequency ratio f1(m+12)
f1(m) is higher than 2

because f2(m) > 2f1(m). This phenomenon is called oc-
tave stretching. Depending on where the notes are in the
range of the compass, the amount of stretching can be
different. This fact is linked to the underlying choice of
the octave type (related to perceptual effects and tuner’s
personal choices) during the tuning7. For instance, in a
4:2 type octave, the 4th partial of the reference note is
matched to the 2nd partial of its octave. Depending on
the position in the compass, the piano can be tuned ac-
cording to different octave types: 2:1, 4:2, 6:3, 8:4 ... or
a trade-off between two. This means that the tuner may
not focus only on cancelling beatings between a pair of
partials, but that he controls an average beating gener-
ated by a few partials of the two notes.

In order to highlight this stretching, the tuning along
the compass is usually depicted as the deviation, in cents,
of the first partial frequency of each note from equal tem-
perament (ET):

d(m) = 1200 · log2

f1(m)

F0,ET(m)
, (4)

where F0,ET(m) is the theoretical fundamental frequency
given by the ET:

F0,ET(m) = 440 · 2(m−69)/12. (5)

Usually3,15 the stretching increases gradually from the
mid-range (deviation about ± 5 cents) to the extreme

Modelling/estimating piano inharmonicity and tuning 2



parts of the keyboard, producing deviations down to −30
cents in the low bass and up to +30 cents in the high
treble. The goal of the proposed model is to explain the
main variations of d(m) along the compass (also known
as the Railsback curve) by taking into account the piano
string set design characteristics (model of B(m) along
the compass) and the tuner’s choices (model related to
the octave type).

B. A parametric model for inharmonicity and tuning

The proposed model which simulates aural tuning on
the whole compass is based on octave interval tunings. Its
successive steps are a simplified version of those actually
performed by a tuner, but the most important global
considerations (stretching inherent in the inharmonicity
and the octave type choice) are taken into account. The
model starts by tuning all the octave intervals relatively
to a reference note (for example the A4 at 440 Hz). From
these notes, the tuning is then interpolated on the whole
compass. Finally, the possibility of a global deviation is
added, in order to allow for different tuning frequencies
for the reference note.

1. Octave interval tuning

When tuning an “upper” octave interval (for instance
A5 from A4), the cancellation of the beatings produced
by the 2ρ-th partial (ρ ∈ N∗) of a reference note, indexed
by m (A4), and the ρ-th partial of its octave, indexed by
m+ 12 (A5), can be done by tuning F0(m+ 12) such as:

F0(m+ 12) = 2 F0(m)

√
1 +B(m) · 4ρ2

1 +B(m+ 12) · ρ2
. (6)

This equation clearly shows the influence of the note-
dependent inharmonicity coefficient (B) and of the oc-
tave type (related to ρ) in the stretching of the octave.
In the case of “lower” octave tuning (for instance A3
from A4), the same relation can be inverted and applied
by considering m + 12 (A4) as the reference note and
m (A3) as the note to tune. The next sections describe
parametric models for B and ρ along the whole compass.

2. Whole compass model for B

a. String set design influence on B: In order to keep an
homogeneous timbre along the compass, the strings are
designed in such a way that discontinuities due to physi-
cal parameters variations are smoothed20–22. Three main
design considerations might produce such discontinuities
in B along the keyboard: the bass break between the
bass and treble bridges (jump20 in L), the transitions be-
tween adjacent keys having a different number of strings
(jump15,21 in T ), and the transition between plain strings
to wrapped strings (jump21 in d).

On the treble bridge, from C8 note downwards, B is
decreasing because of the increase of L. Down to middle

C (C4 note, m = 60), the values of B are roughly the
same for all the pianos and B follows a straight line in
logarithmic scale5. This result is mainly due to the fact
that string design in this range is standardized, since it
is not constrained by the limitation of the piano size20.

In the low pitch range, the strings use a different bridge
(the bass bridge) to keep a reasonable size of the instru-
ment. Then, the linear mass of the strings is increased in
order to adjust the value of F0 according to equation (2).
Instead of increasing only the diameter d, which increases
B, the strings are wound with a copper string wire, which
increases the linear mass. Thus, on the bass bridge, B
is increasing from sharpest notes downwards. Note that
the number of keys associated to the bass bridge and the
design of their strings are specific to each piano.

b. Parametric model: According to the string design con-
siderations, B could be modelled by two distinct func-
tions corresponding to the two bridges, and could present
discontinuities at the bass break or at the changes single-
doublets and doublets-triplets of strings. The difficulty
when modelling B on the whole compass is to know the
position of these possible discontinuities, because it is
specific to each piano model. Therefore, we propose a
“continuous” additive model on the whole compass, dis-
cretized for m ∈ [21, 108]. We denote it by Bξ(m), ξ
being the set of modelling parameters.

Usually, the evolution of B along the keyboard is de-
picted in logarithmic scale and presents two linear asymp-
totes. We denote by bT (m) (resp. bB(m)) the treble
bridge (resp. the bass bridge) asymptote of logBξ(m).
Each asymptote is parametrized by its slope and its Y-
intercept:{

bT (m) = sT ·m+ yT ,

bB(m) = sB ·m+ yB .
(7)

According to Young et al.5, bT (m) is similar for all the
pianos so sT and yT are fixed parameters. Then, the
set of free (piano dependent) parameters reduces to ξ =
{sB , yB}. Bξ(m) is set as the sum of the contributions
of these two curves (7) in the linear scale:

Bξ(m) = ebB(m) + ebT (m) (8)

It should be emphasized that this additivity does not
arise from physical considerations, but it is the simplest
model that smoothes discontinuities between the bridges.
Experimental data will show that it actually describes
well the variations of B in the transition region around
the two bridges.

The model is presented on figure 1(a) for three differ-
ent typical values of the set of parameters: ξ1, ξ2 and ξ3,
corresponding to low, medium and highly inharmonic pi-
anos, respectively. The asymptotes corresponding to the
bass and treble bridges are also drawn for Bξ2(m).

3. Whole compass model for ρ

The octave tuning relation, given in equation (6), con-
siders the cancellation of the beatings produced by a sin-
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gle pair of partials. In practice, the deviation F0(m+12)
2F0(m)

could be a weighted sum of the contribution of two pairs
of partials, because the amount of stretching may result
from a compromise between two octave types7. An al-
ternative model to take into account this weighting is to
allow non-integer values for ρ ∈ [1,+∞[. For example, if
the octave tuning is a compromise between a 2:1 and 4:2
type octaves, ρ will be in the interval [1, 2]. This model
loses the physical meaning because ρ is not anymore re-
lated to a partial rank ; it will however be shown in part
III.B.2 that it allows the inversion of equation (6), in
order to estimate ρ from the data.

We choose arbitrarily to model the evolution of ρ along
the compass as follows:

ρφ(m) =
κ

2
·
(

1− erf

(
m−m0

α

))
+ 1, (9)

with erf the error function, and φ = {κ,m0, α} the set
of parameters. Note that ρφ is indexed by the note m,
and not by the note m+ 12 (cf. equation (6)). It is then
defined for m ∈ [21, 96]. κ is related to the value of the
asymptote in the low bass range. m0 is a parameter of
translation along m and α rules the slope of the decrease.

This model expresses the fact that the amount of
stretching inherent in the octave type choice is decreas-
ing from the low bass to the high treble range and that
it is limited by horizontal asymptotes at each extremity.
It may be justified by the fact that the perception of the
pitch of complex tones is not only based on the first par-
tial of the notes, but on a set of partials contained in the
“dominant region” of the human hearing23–25. For bass
tones (with fundamental frequencies around 100 to 400
Hz, i.e. in the range G2-G4, m ∈ [43, 67]), this dominant
region covers the third to fifth partials24. While going up
to the treble part of the compass, the dominant region
tends to be localized on the partials with a lower rank.
For tones having a first partial frequency above 1400 Hz
(i.e. for a higher note than F6, m = 89) the perception
of the pitch is mainly linked to the first partial25. Then,
in the model high treble asymptote is set to 1. It corre-
sponds to the minimal octave type (2:1), and means that
the tuner focuses on the first partial of the highest note.
In the low bass range, the asymptote is set by the value
of κ+ 1.

The model is represented in figure 1(b) for three dif-
ferent values of the set of parameters: φ1, φ2 and φ3,
respectively corresponding to a low, mid and high octave
type choice in the low bass range.

4. Interpolation on the whole compass

From the estimation of the sets of parameters, ξ related
to the design of the strings, and φ related to the choices
of the tuner, it is possible to tune all the octaves of a ref-
erence note. If A4 is tuned such as f1(m = 69) = 440 Hz,
all the A notes of the keyboard can be iteratively tuned
by using equation (6). To complete the tuning on the
whole compass, a Lagrange polynomial interpolation is
performed on the deviation from ET of the tuned notes
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FIG. 1. Model for (a) inharmonicity coefficient Bξ(m) and (b)
octave type parameter ρφ(m) along the compass for different
values of the sets of parameters.

of the model (computed by using equation (4)). The in-
terest of this method is that the interpolated curve is con-
strained to coincide with the initial data. The interpo-
lated model of deviation from ET is denoted by dξ,φ(m).

5. Global deviation

Finally, in order to take into account the fact that the
reference note is not necessarily a A4 at 440 Hz (other
tuning forks exist, for instance A4 at 442 Hz or C5 at
523.3 Hz) we add in the model the possibility of a global
“detuning”. In the representation of the deviation from
ET in cents, it corresponds to a vertical translation of
the curve. Then, the deviation from ET of the model is
set to dξ,φ(m) + dg, where dg is an extra parameter of
the model, corresponding to the global deviation.

The whole compass tuning model is depicted on figure
2 for different values of the sets of parameters ξ and φ
(corresponding to those used in figure 1), and for dg =
0. The tuning of the A notes from a A4 at 440 Hz is
indicated with black dots on the middle curves. Sub-
figure (a) corresponds to the influence on the tuning of
Bξ (for ξ1, ξ2 and ξ3), for φ2 fixed. Since the string
design is standardized in the range C4-C8, the tuning
changes significantly only in the bass range. Sub-figure
(b) represents the influence on the tuning of ρφ (for φ1,
φ2 and φ3), for ξ2 fixed. Its influence is visible on the
whole compass but it is mainly important in the bass
range, where it can produce a deviation up to -20 cents.
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FIG. 2. Model for the deviation of tuning from ET along the
compass. (a) Influence of ξ in the tuning for φ fixed. (b)
Influence of φ in the tuning for ξ fixed. The different values
for ξ and φ correspond to those used to generate the curves
of figure 1.

III. ESTIMATION OF THE PARAMETERS FROM
ISOLATED NOTE AND CHORD RECORDINGS

A. Automatic estimation of (B,F0)

The parameter estimation of the proposed tuning
model requires a prior precise estimation of (B,F0) of
several notes along the compass. This task has been
dealt with by several authors, and often achieved from
isolated note recordings. For instance, Galembo et al.26,
carry it out by means of an inharmonic comb filtering of
the magnitude spectrum. The output of the comb filter
is computed on a grid of (B,F0) and the maximal value
is selected (after a local interpolation) as the best esti-
mate. Rauhala et al.27,28 propose the Partial Frequencies
Deviation (PFD) algorithm that minimizes, with respect
to (B,F0), the deviation between the theoretical partial
frequencies of the model and the frequencies of high am-
plitude peaks previously selected in the magnitude spec-
tra. Godsill et al.11, introduce a Bayesian framework to
model piano sounds in time domain. (B,F0) are param-
eters of the model and are estimated by maximizing the
a posteriori probability density function. Besides, in the
case of polyphonic harpsichord music - where the inhar-
monicity effect (B < 10−4) is less important - an iterative
method has been recently proposed by Dixon et al.29 to
estimate inharmonicity and temperament, together with
a transcription task.

Here, a robust new algorithm based on the Non-

negative Matrix Factorization (NMF) frameworks is pro-
posed in order to finely estimate (B,F0) from isolated
notes, but also chord recordings.

1. Non-negative Matrix Factorization framework

Given a non-negative matrix V of dimension K×T , the
NMF consists in finding an approximate factorization30:

V ≈WH ⇔ Vkt ≈ V̂kt =

R∑
r=1

WkrHrt, (10)

where W and H are non-negative matrices of dimensions
(K × R) and (R × T ), respectively. In the case of mu-
sic transcription31, V corresponds to the magnitude (or
power) spectrogram of an audio excerpt, k to the fre-
quency bin index and t to the frame index. Thus, W
represents a dictionary containing the spectra (or atoms)
of the R sources, and H their time-frame activations.
Recently, harmonic structure32,33, temporal evolution of
spectral envelopes34, vibrato32, beat structure35, etc.,
have been introduced as a parametrization of the matri-
ces W and/or H, in order to take explicitly into account
specific properties of different musical sounds.

The purpose of this section is to introduce the infor-
mation of the inharmonicity of piano tones explicitly into
the dictionary of spectra W . The idea is to take into ac-
count the parameters (B,F0) as constraints on the partial
frequencies of each note, so as to perform a joint estima-
tion. In order to limit the number of parameters that
we need to retrieve, besides the amplitude and frequency
of each partial, we make the assumption that for every
recording we know which notes are being played, and the
corresponding time activations. Then, short-time spec-
tra are extracted from the recordings and concatenated
to build the observation matrix V (it is therefore not
strictly speaking a spectrogram). Because for each col-
umn of V the played notes are known, the elements of H
are fixed to one whenever a note is played, and zero when
it is not. Thereby, only the dictionary W is optimized
on the data. In that case, we should notice that the pro-
posed model is not a factorization. However, the model
has been developed in the NMF framework for further in-
clusion in transcription or source separation algorithms,
where NMF is a very competitive approach.

In order to quantify the quality of the approximation
of (10), a distance (or divergence) is introduced. For a
separable metric, it can be expressed as:

D(V |WH) =

K∑
k=1

T∑
t=1

d
(
Vkt | V̂kt

)
. (11)

In audio applications, the family of β-divergences is
widely used36, because it encompasses 3 common met-
rics: β = 2 for the Euclidian distance, β = 1 for the
Kullback-Leibler divergence and β = 0 for the Itakura-
Saito divergence. These divergences are used to define a
cost function which is minimized with respect to W and
H, respectively. The mathematical expressions which are
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given in this paper are derived within the general frame-
work of β-divergences. The results presented in the ap-
plication section are obtained for the Kullback-Leibler
divergence:

dβ=1(x | y) = x(log x− log y) + (y − x). (12)

2. Modelling piano sounds in W

The model for the spectra/atoms of the dictionary W
is based on an additive model: the spectrum of a note is
composed as a sum of partials, in which the frequencies
are constrained to follow an inharmonicity relation.

a. General additive model for the spectrum of a note: The
general parametric atom used in this work is based on
the additive model proposed by Hennequin et al.32 Each
spectrum of a note, indexed by r ∈ [1, R], is composed of
the sum of Nr partials. The partial rank is denoted by
n ∈ [1, Nr]. Each partial is parametrized by its amplitude
anr and its frequency fnr. Thus, the set of parameters for
a single atom is denoted by θr = {anr, fnr | n ∈ [1, Nr]}
and the set of parameters for the dictionary is denoted
by θ = {θr | r ∈ [1, R]}. Finally, the expression of a
parametric atom is given by:

W θr
kr =

Nr∑
n=1

anr · gτ (fk − fnr), (13)

where fk is the frequency of the bin with index k and
gτ (fk) the magnitude of the Fourier transform of the
analysis window of size τ . Here, we limit the spectral
support of gτ (fk) to its main lobe, to obtain a simple
expression of the update rules32 and a faster optimiza-
tion. The results presented in this paper are obtained for
a Hanning window. Its main lobe magnitude spectrum
(normalized to a maximal magnitude of 1) is given by

gτ (fk) = 1
πτ .

sin(πfkτ)
fk−τ2f3

k
, for fk ∈ [−2/τ, 2/τ ].

Finally, the cost function is defined by using the β-
divergence:

C0(θ,H) =

K∑
k=1

T∑
t=1

dβ

(
Vkt |

R∑
r=1

W θr
kr ·Hrt

)
. (14)

b. Inclusion of the inharmonicity constraint: A previous
study on parametric NMF12 has already tested an in-
harmonicity relation, as given in equation (1), for pi-
ano music transcription. This study, that constrained
the partials frequencies to exactly follow this ideal rela-
tion was not conclusive : adding inharmonicity in their
model did not increase the transcription performance,
compared to a simpler harmonic constraint. Similarly,
in our model, given equation (13), this constraint would
be equivalent to a reduction of the Nr parameters fnr
of every note to only 2 parameters {Br, F0r} by setting
fnr = nF0r

√
1 +Brn2. This constraint turns out to be

too stringent, and numerically it leads to ill-convergence
of the B parameter update.

In contrast with these studies, inharmonicity can be
included as a relaxed constraint2, allowing for a local
adaptation of the frequency of every partial, while con-
straining the entire set of partials to globally follow an
inharmonic relation. At the same time, for each partial it
allows a slight frequency deviation from the inharmonic-
ity relation, as for instance due to the bridge coupling
with the soundboard. The set of parameters related to
the constraint is denoted by γ = {F0r, Br | r ∈ [1, R]}.
Finally, a new cost function is built by adding a regular-
ization term:

C(θ, γ,H) = C0(θ,H) + λ · C1(fnr, γ), (15)

where C1(fnr, γ) is defined as a sum on each note of the
mean square error between the estimated partial frequen-
cies fnr and these given by the inharmonicity relation:

C1(fnr, γ) =

R∑
r=1

Nr∑
n=1

(
fnr − nF0r

√
1 +Brn2

)2

. (16)

λ is a scalar parameter, empirically tuned, which sets the
weight of the inharmonicity constraint in the global cost
function.

3. Optimization algorithm

a. Update of the parameters: As commonly proposed in
NMF modelling, the optimization is performed itera-
tively, using multiplicative update rules for anr, fnr and
Br parameters. These update rules are obtained from
the decomposition of the partial derivatives of the cost
function given in equation (15), in a similar way to Hen-
nequin et al.32 (for the interested reader, the derivation is
detailed in the associated supplementary material). For
F0r, an exact analytic solution is obtained when can-
celling the partial derivative of the cost function C1.
Then, at each iteration the following update rules are
applied:

anr ← anr ·
Q0(anr)

P0(anr)
, (17)

fnr ← fnr ·
Q0(fnr) + λ ·Q1(fnr)

P0(fnr) + λ · P1(fnr)
, (18)

Br ← Br ·
Q1(Br)

P1(Br)
, (19)

F0r =

Nr∑
n=1

fnrn
√

1 +Brn2

Nr∑
n=1

n2(1 +Brn2)

, (20)

where

P0(anr) =

K∑
k=1

T∑
t=1

[
(gτ (fk − fnr).Hrt) .V̂

β−1
kt

]
, (21)
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Q0(anr) =

K∑
k=1

T∑
t=1

[
(gτ (fk − fnr).Hrt) .V̂

β−2
kt .Vkt

]
,

(22)

P0(fnr) =
∑
k,t

[(
anr
−fk.g′τ (fk − fnr)

fk − fnr
.Hrt

)
.V̂ β−1
kt

+

(
anr
−fnr.g′τ (fk − fnr)

fk − fnr
.Hrt

)
.V̂ β−2
kt .Vkt

]
,

(23)

Q0(fnr) =
∑
k,t

[(
anr
−fk.g′τ (fk − fnr)

fk − fnr
.Hrt

)
.V̂ β−2
kt .Vkt

+

(
anr
−fnr.g′τ (f − fnr)

fk − fnr
.Hrt

)
.V̂ β−1
kt

]
, (24)

P1(fnr) = 2fnr, (25)

Q1(fnr) = 2nF0r

√
1 +Brn2, (26)

P1(Br) = F0r

Nr∑
n=1

n4, (27)

Q1(Br) =

Nr∑
n=1

n3fnr√
1 +Brn2

, (28)

are all positive quantities. g′τ (fk) represents the deriva-
tive of gτ (fk) with respect to fk on the spectral support

of the main lobe. We remind that V̂ = W θH. Note
that for a transcription task, H could be updated with
standard NMF multiplicative rules36.

b. Initialization: The initialization of (Br, F0r) is done
using the inharmonicity and tuning model along the
whole compass (cf. section II), with typical values of the
parameters. For the applications presented in section IV,
we set for the model of B: sB = 8.9 · 10−2, yB = −7; for
the model of octave type: κ = 3.5, α = 25, m0 = 60 and
for the global deviation dg = 5. Then, the fnr are initial-
ized according to the inharmonic relation given equation
(1). The anr are initialized to 1.

c. Dealing with noise and partials related to longitudinal vi-

brations: In practice, if too many partials are initialized
in noisy frequency bands, they can get stuck and there-
fore lead to bad estimates of the inharmonicity relation
parameters. For each iteration of the optimization algo-
rithm, we cancel their influence in the estimation of γ
by removing them from the regularization term given in
equation (16). For the proposed application, we compute,
during a preprocessing step, the noise level1 NL(fk) on
each magnitude spectrum composing the matrix V , and
at each iteration we look for the estimated partials that
have a magnitude greater than the noise. Thus, we define
the set of reliable partials of each note, being above the
noise level, by ∆r = {n | anr > NL(fnr), n ∈ [1, Nr]}.
This information is taken into account in the update rules
of Br (equations (27) and (28)) and F0r (equation (20))

by replacing the sums over the entire set of partials
Nr∑
n=1

by sums over the reliable set of partials
∑
n∈∆r

.

Moreover, in order to avoid the partials of the model
to match with wrong partials of the observed spectra (as
for instance corresponding to longitudinal vibrations of
the strings) the parameter λ is set to 1.25 · 10−1. This
value corresponds to a large weight for the inharmonicity
constraint in the global cost function. In the last itera-
tions the weight of the constraint is relaxed to a smaller
value (λ = 5 ·10−3), so that the partials of the model can
exactly match the measured partials, which are expected
to correspond to transverse vibrations of the strings, and
can slightly deviate from the theoretical inharmonicity
relation. Note that these values of the parameter λ, given
for the analysis of spectra normalized to a maximal mag-
nitude of 1, do not have to be finely tuned on each piano (
the same values have been used throughout our analysis).

Finally, the steps of the algorithm are summarized in
the table Algorithm 1.

Algorithm 1 NMF with inharmo. constraint

Input:
V set of magnitude (normalized to a max. of 1) spectra
H filled with 0 and 1

Preprocessing:
for each column of V compute NL(fk) the noise level
see Appendix of Rigaud et al.1

Initialization: ∀ r ∈ [1, R], n ∈ [1, Nr],
(Br, F0r) according to the model of section II
fnr = nF0r

√
1 +Brn2, anr = 1

W θ computation (cf. eq (13))
β = 1 / λ = 0.125

Optimization:
for it = 1 to 150 do
• anr update ∀ r ∈ [1, R], n ∈ [1, Nr] (eq. (17))
W θ update (eq. (13))
deduce ∆r by comparing anr with NL(fnr)
• fnr update ∀ r ∈ [1, R], n ∈ [1, Nr] (eq (18))
W θ update (eq. (13))

for u = 1 to 30 do
∀r, n ∈ ∆r

F0r update (cf. eq (20))
Br update (20 times) (cf. eq (19))

end for
if it ≥ 100 then
λ = 5 · 10−3

end if
end for

Output: anr, fnr, Br, F0r

B. Estimation of the whole compass tuning model

1. Bξ estimation

We first estimate the fixed parameters {sT , yT }, corre-
sponding to the string set design on the treble bridge and
being almost equals for all the models of pianos, by using
B(m) estimates of 6 different pianos (the databases are
presented in section IV) in the range C4-C8. These are
obtained by a L1 regression (in order to reduce the influ-
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ence of potential outliers), i.e. by minimizing the least
absolute deviation, between the model and the average
of the estimated inharmonicity curves over the 6 different
pianos. We find sT ' 9.26·10−2 , yT ' −13.64. These re-
sults are in accordance with estimates based on physical
considerations5: sT [Yo52] ' 9.44·10−2, yT [Yo52] ' −13.68.

Each piano is then studied independently to estimate
the particular parameters ξ = {sB , yB} on a set of notes
M . ξ is estimated minimizing the least absolute deviation
between logB(m) and logBξ(m):

ξ̂ = arg min
ξ

∑
m∈M

| logB(m)− logBξ(m)|. (29)

2. ρφ estimation

For each piano, the data ρ(m) is estimated for m ∈
[21, 96] from (B(m), F0(m)) values by inverting equation
(6):

ρ(m) =

√
4F0(m)2 − F0(m+ 12)2

F0(m+ 12)2B(m+ 12)− 16F0(m)2B(m)
.

(30)
Then, the set of parameters φ is estimated by minimizing
the least absolute deviation distance between ρφ(m) and
ρ(m) on a set M of notes:

φ̂ = arg min
φ

∑
m∈M

|ρ(m)− ρφ(m)|. (31)

3. dg estimation

Once the ξ and φ sets of parameter have been esti-
mated, the octaves of the reference note are tuned ac-
cording to equation (6). Then, the deviation from ET of
the model dξ,φ is obtained on the whole compass after the
Lagrange interpolation stage. Finally, dg is estimated by
minimizing the least absolute deviation, on the reference
octave F3-F4 (m ∈ [53, 65]) between d(m), the devia-
tion from ET estimated on the data (see eq. (4)), and
dξ,φ(m) + dg:

d̂g = arg min
dg

65∑
m=53

∣∣d(m)− (dξ,φ(m) + dg)
∣∣. (32)

IV. EXPERIMENTAL RESULTS

A. Experimental data

The results presented in this section are obtained from
3 separate databases, covering a total of 6 pianos: Iowa37

(1 grand piano), RWC38 (3 grand pianos) and MAPS39

(1 upright piano and 1 grand piano synthesizer using high
quality samples). In the paper, only selected examples
are shown. For a more extensive set of results, one can
refer to the associated supplementary material.
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FIG. 3. (a) Initialization and (b) result of the algorithm for
the analysis of F]1 note from RWC grand piano #1 database.
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FIG. 4. Result of the algorithm for the analysis of G[6 note
from RWC grand piano #1 database.

B. (B,F0) estimation results

1. Isolated note analysis

The proposed algorithm has been applied to the es-
timation of (B,F0) from isolated note recordings played
with mezzo-forte dynamics and re-sampled to Fs = 22050
Hz. In order to obtain a sufficient spectral resolution,
the observation spectra have been extracted from 500
ms Hanning windows, applied to the decay part of the
sounds. Then, the matrix V has been built by concate-
nating the 88 spectra (each column corresponding to the
magnitude spectrum of a note, from A0 to C8) and here
H is fixed to the identity matrix. For each note, Nr
has been set to arg minNr

(30, fNr,r < Fs/2). Figure
3 shows (a) the initialization and (b) the result of the
optimization for the analysis of F]1 note of RWC grand
piano #1 database. At the initialization 14 partials of
the model are overlapping the partials of the data cor-
responding to transverse vibrations of the strings. After
the optimization procedure, the amplitudes and frequen-
cies of the first 30 partials have been correctly estimated
and it can be seen that the selection of longitudinal vi-
bration partials (visible from approximatively 700 Hz to
1500 Hz) has been avoided, although the initialization
was close to some of the corresponding peaks. The result
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FIG. 5. Isolated note vs. chord analysis for the grand piano
synthesizer of MAPS database. (a) Inharmonicity coefficient
and (b) deviation from ET along the compass.

is also displayed for G[6 note on figure 4. In this case,
the validity of the estimation cannot be assessed so easily
for some partials (as for instance around 5000, 6500 and
8000 Hz), mainly because these partials aggregates mul-
tiple peaks when the model only assumes a single com-
ponent. This issue typically happens in the treble range,
where the notes are associated with triplets of slightly de-
tuned strings. Then, the algorithm selects one peak per
group, that has the best balance between peak strength
and model fitting, and might return slightly biased esti-
mates for (B,F0).

The results for the estimation of the inharmonicity co-
efficient have been compared to the PFD algorithm27,28,
on both synthetic and real piano tones (corresponding
to these used by Rauhala et al.27). As suggested27, the
evaluation is performed on A0-G3 range (m ∈ [21, 55]).
NMF achieves an average relative deviation from ground
truth of 0.33 % on synthetic samples and 0.76 % on real
samples, whereas PFD returns 0.78 % and 3.3 %, respec-
tively. The interested reader can find a more in depth
description of the evaluation and results in the supple-
mentary material. A benefit of using NMF algorithm is
that it still performs well in the high pitch range, while
PFD (not optimized there) has some robustness issues.

2. Chord analysis

The same protocol has been applied to the analysis
of 4 chords (from MAPS grand piano synthesizer), re-

spectively taken in the extreme bass, bass, middle and
treble range of the compass. Each chord is composed of
5 notes. In order to have a sufficient spectral resolution,
the analysis window length was set to 1 second for the
chords played in the extreme bass/bass ranges and 500
ms in the medium/treble ranges. On figure 5, the re-
sults of (B,F0) estimates obtained from isolated notes
(in thin grey lines) are compared with the ones obtained
from chords (one type of marker for each chord). The ini-
tialization is drawn as a dashed line. It can be observed
that both types of estimations lead to remarkably simi-
lar results. The slight deviations in the estimation from
chord recordings could be explained by the overlapping
of the partials belonging to different notes, that could
corrupt the estimation of the frequencies. Moreover, it
has been shown in the previous section on isolated note
analysis that, in the treble range, the precise estimation
of (B,F0) cannot be always guaranteed since the model
of inharmonicity with one frequency peak per partial,
as given by equation (1), is not sufficient to explain the
spectrum of the notes. The estimated spectrum corre-
sponding to the chord #1 is given on figure 6, where one
can see that, despite a considerable spectral overlap be-
tween the notes, the partials are well identified for every
note up to a high order around 30.

C. Whole compass tuning model results

1. Modelling the tuning of well-tuned pianos

The results of the estimation of the whole compass
tuning model for two different pianos are presented on
figures 7 and 8. Sub-figures (a), (b) and (c), correspond
to the inharmonicity coefficient B, the octave type pa-
rameter ρ and the deviation from ET curves along the
whole compass, respectively. The data corresponding to
the estimation of (B,F0) from isolated note recordings is
depicted as ’+’ markers, and the model as black lines.
• B along the compass (sub-figures (a)): The estima-

tion of the parameters has been performed from a lim-
ited set of 4 notes (black dots markers), taken in the bass
range and equally spaced by fifth intervals. As the string
set design on each bridge is quite regular, a few notes
can be used to correctly estimate the model. In the case
where an important discontinuity is present in the vari-
ations of B(m) (for instance between C2, m = 37, and
D2, m = 38, notes on figure 8(a)) the 2-bridges additive
model produces a smoothed curve. It is worth noting
from RWC grand piano #2 design characteristics that
the slight jump between m = 27 (D]1) and m = 28 (E1)
might be explained by the single to doublet of strings
transition, and the important jump between m = 37 (C2)
and m = 38 (D2) by the bridge change joint to the dou-
blet to triplet of strings transition.
• ρ along the compass (sub-figures (b)): The curves

of ρ(m) can present an important dispersion around the
mean model ρφ(m), but the global variations are well re-
produced. In the medium range, the estimated octave
types are a trade-off between 6:3 and 4:2, which is com-
mon in piano tuning7. The variations, more important
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FIG. 6. Result of the algorithm for the analysis of the chord #1 (G1-A1-C2-E2-G2) of MAPS grand piano synthesizer.
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FIG. 7. RWC grand piano #3. (a) Inharmonicity coefficient
B, (b) octave type parameter ρ, (c) deviation from ET along
the whole compass. The data are depicted as grey ’+’ markers
and the model as black lines.

in the bass range, could be explained by the fact that
the model of the partial frequencies (cf. equation (1))
does not take into account the frequency shifts caused
by the bridge coupling, mainly appearing in the low fre-
quency domain. Moreover, the proposed tuning model
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FIG. 8. RWC grand piano #2. (a) Inharmonicity coefficient
B, (b) octave type parameter ρ, (c) deviation from ET along
the whole compass. The data are depicted as grey ’+’ markers
and the model as black lines.

is a simplification of a real tuning procedure, it is based
on octave interval tuning, while an expert tuner would
jointly control different intervals along the keyboard and
can do local readjustments after a global tuning. Note
that some values of ρ(m) can be missing when the quan-
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tity under the square root of equation (30) is negative.
This happens if the corresponding octave interval is com-
pressed instead of being stretched.
• Deviation from ET along the compass (sub-figures

(c)): The curves demonstrate that the model reproduces
the main variations of the tuning in a satisfactory man-
ner. This confirms that, besides the well-known influence
of the inharmonicity on the tuning, perceptual effects
(taken into account through the octave type considera-
tion) can take part in the stretching, mainly in the bass
range. Note that the tuning of A notes is marked with
black dot markers.

2. Tuning pianos

Because the model of octave type choice ρφ(m) is de-
fined for well-tuned pianos (the stretching of the octaves
is implicitly assumed to be higher than 2), it cannot be
used to study the tuning of strongly out-of-tune pianos.
In this case, we propose to generate tuning curves de-
duced from a mean model of octave type choice. The
model is obtained by averaging the curves ρ(m) over
three pianos (RWC #2, #3 and Iowa grand pianos), that
were assumed to be well-tuned, by looking at the shape
of their deviation from ET curves. From this averaged
data, a mean model ρ̄φ(m) is estimated. In order to
give a range of fundamental frequencies in which the pi-
anos could be reasonably re-tuned, we arbitrarily define a
high (respectively low) octave type choice as ρ̄φ,H(m) =
ρ̄φ(m) + 1 (resp. ρ̄φ,L(m) = min(ρ̄φ(m) − 1, 1)) . These
curves are shown on figure 9.

Tuning curves are then computed from the estimation
of ξ and ρ̄φ(m). The global deviation parameter dg is
set to 0. The results are presented on figure 10 for RWC
grand piano #1. The current tuning is depicted as ’+’
grey markers and clearly shows that the piano is not
well-tuned, mainly in the bass range where the tuning
is “compressed”. The space between the tuning curves
obtained from ρ̄φ,H(m) and ρ̄φ,L(m) corresponds to a
range in which we assume the piano could be well-tuned.
For a quantitative interpretation, it will be interesting to
compare our curves with those obtained after a re-tuning
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FIG. 10. RWC grand piano #1. (a) Inharmonicity curves
along the compass. (b) Actual tuning and proposed tuning.
Plus grey markers correspond to the data. The model cor-
responding to the octave type choice ρ̄φ(m) (resp. ρ̄φ,L(m),
ρ̄φ,H(m)) is depicted as black line (resp. black dashed line,
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done by a professional tuner.

V. CONCLUSION

A parametric model of piano tuning has been proposed
in this paper. It takes into account a model on the whole
compass for the inharmonicity coefficient, and the octave
type choices of the tuner. The complete algorithm takes
as input either isolated notes, or chords recordings. From
this, (B,F0) are finely estimated and used as data to
estimate the parameters of the tuning model. It has been
successfully applied to model the main variations of the
tuning along the compass of different types of pianos, and
it provides re-tuning curves for out-of-tune pianos.

The current algorithm assumes a prior knowledge of
which notes are being played, and when, in the input
recordings. A long-term goal of this study is to be able
to parametrize the piano inharmonicity and tuning, from
any arbitrary piano recording, in a musical context. To-
wards this achievement, future work will focus on the
interplay between a transcription algorithm, and the es-
timation of the physical parameters - the topic of this
article - , possibly in an iterative way.
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