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b Institut Langevin (LOA), Université Paris Diderot – Paris 7, UMR 7587, 10, rue Vauquelin, 75231 Paris, France
a r t i c l e i n f o

Article history:

Received 5 January 2010

Received in revised form

15 February 2011

Accepted 2 March 2011
Available online 10 March 2011

Keywords:

Multiscale decomposition

Sparse approximation

Time—frequency dictionary

Audio similarity
84/$ - see front matter & 2011 Elsevier B.V. A

016/j.sigpro.2011.03.002

responding author.

ail addresses: boblsturm@gmail.com (B.L. Stu

daudet@espci.fr (L. Daudet).

URASIP# 7255.

EURASIP # 2298.
a b s t r a c t

We investigate recursive nearest neighbor search in a sparse domain at the scale of

audio signals. Essentially, to approximate the cosine distance between the signals we

make pairwise comparisons between the elements of localized sparse models built from

large and redundant multiscale dictionaries of time–frequency atoms. Theoretically,

error bounds on these approximations provide efficient means for quickly reducing the

search space to the nearest neighborhood of a given data; but we demonstrate here that

the best bound defined thus far involving a probabilistic assumption does not provide a

practical approach for comparing audio signals with respect to this distance measure.

Our experiments show, however, that regardless of these non-discriminative bounds,

we only need to make a few atom pair comparisons to reveal, e.g., the origin of an

excerpted signal, or melodies with similar time–frequency structures.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Sparse approximation is essentially the modeling of
data with few terms from a large and typically over-
complete set of atoms, called a ‘‘dictionary’’ [24]. Consider
an x 2 RK , and a dictionary D composed of N unit-norm
atoms in the same space, expressed in matrix form as
D 2 RK�N , where NbK. A pursuit is an algorithm that
decomposes x in terms of D such that Jx�DsJ2re for
some error eZ0. (In this paper, we work in a Hilbert space
unless otherwise noted.) When D is overcomplete, D has
full row rank and there exists an infinite number of
solutions to choose from, even for e¼ 0. Sparse approx-
imation aims to find a solution s that is mostly zeros for e
small. In that case, we say that x is sparse in D.
ll rights reserved.

rm),
Matching pursuit (MP) is an iterative descent sparse
approximation method based on greedy atom selection
[17,24]. We express the nth-order model of the signal
x¼HðnÞaðnÞþrðnÞ, where aðnÞ is a length-n vector of
weights, HðnÞ are the n corresponding columns of D, and
rðnÞ is the residual. MP augments the nth-order represen-
tation, Xn ¼ fHðnÞ,aðnÞ,rðnÞg, according to

Xnþ1 ¼

Hðnþ1Þ ¼ ½HðnÞjhn�

aðnþ1Þ ¼ ½aT ðnÞ,/rðnÞ,hnS�T

rðnþ1Þ ¼ x�Hðnþ1Þaðnþ1Þ

8><
>:

9>=
>; ð1Þ

using the atom selection criterion

hn ¼ arg min
d2D

JrðnÞ�/rðnÞ,dSdJ2
¼ arg max

d2D
j/rðnÞ,dSj ð2Þ

where JdJ¼ 1 is implicit. The inner product here is defined
/x,yS9yT x. This criterion guarantees Jrðnþ1ÞJ2r JrðnÞJ2

[24]. Other sparse approximation methods include ortho-
gonal MP [28], orthogonal least squares (OLS) [41,33],
molecular methods [9,38,19], cyclic MP and OLS [36],
and minimizing error jointly with a relaxed sparsity
measure [6]. These approaches have higher computational
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Fig. 1. Gray lines show decays of representation weight magnitudes as a

function of approximation order k for several decompositions of unit-

norm signals (4-s recordings of single piano notes described in Section

4.1). Thick black line shows a global compressibility bound with its

parameters.
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complexities than MP, but can produce data models that
are more sparse.

Sparse approximation is data-adaptive and can pro-
duce parametric and multiscale models having features
that function more like mid-level ‘‘objects’’ than low-level
projections onto sets of vectors [9,19,38,8,22,27,32,34,43].
These aspects make sparse approximation a compelling
complement to state-of-the-art approaches for and appli-
cations of comparing audio signals based upon, e.g.,
monoresolution cepstral and redundant time–frequency
representations, such as fingerprinting [42], cover song
identification [26,10,3,35], content segmentation, index-
ing, search and retrieval [16,4], artist or genre classifica-
tion [39].

In the literature we find some existing approaches to
working with audio signals in a sparse domain. Features
built from sparse approximations can provide competi-
tive descriptors for music information retrieval tasks,
such as beat tracking, chord recognition, and genre
classification [40,32]. Sparse representation classifiers
have been applied to music genre recognition [27,5],
and robust speech recognition [12]. Parameters of sparse
models can be compared using histograms to find similar
sounds in acoustic environment recordings [7,8], or
atoms can be learned to compare and group percussion
sounds [34]. Biologically inspired sparse codings of
correlograms of sounds can be used to learn associations
between descriptive high-level keywords and audio
features such that new sounds can be automatically
categorized, and large collections of sounds can be
queried in meaningful ways [22]. Outside the realm of
audio signals, sparse approximation has been applied to
face recognition [44], object recognition [29], and land-
mine detection [25].

In this paper, we discuss the comparison of audio
signals in a sparse domain, but not specifically for finger-
printing or efficient audio indexing and search—two tasks
that have been convincingly solved [42,13,16,18]. We
explore the possibilities and effectiveness of comparing,
atom-by-atom, audio signals modeled using sparse
approximation and large overcomplete time–frequency
dictionaries. Our contributions are threefold: (1) we gen-
eralize recursive nearest-neighbor search algorithm to
comparing subsequences [14,15]; (2) we show that
though sparse models of audio signals can be compared
by considering pairs of atoms, the best bound so far
derived [14,15] does not make a practical procedure;
and (3) we show experimentally that the hierarchic
comparison of audio signals in a sparse domain still
provides intriguing and informative results. Overall, our
work here shows that a sparse domain can facilitate
comparisons of audio signals in ‘‘hierarchical’’ ways
through comparing individual elements of each sparse
data model organized roughly in order of importance.

In the next two sections, we discuss and elaborate
upon a recursive method of nearest neighbor search in a
sparse domain [14,15]. We extend this method to com-
paring subsequences, and examine the practicality of
probabilistic bounds on the distances between neighbors.
In the fourth section, we describe several experiments
in which we compare a variety of audio signals through
their sparse models. We conclude with a discussion about
the results and several future directions.
2. Nearest neighbor search by recursion in a sparse
domain

Consider a set of signals

Y9fyi 2 R
K : JyiJ¼ 1gi2I ð3Þ

where I ¼ f1,2, . . .g indexes this set, and a query signal
xq 2 R

K , JxqJ¼ 1. Assume that we have generated sparse
approximations for all of these signals Ŷ9ffHiðniÞ,
aiðniÞ,riðniÞg : yi ¼HiðniÞaiðniÞþriðniÞgi2I using a dictionary
D that spans the space RK , and giving the nq-order
representation fHqðnqÞ,aqðnqÞ,rqðnqÞg for xq. Since D spans
RK , D is ‘‘complete,’’ and any signal in RK is ‘‘compressible’’
inD, meaning that we can order the representation weights
in aiðniÞ or aqðnqÞ in terms of decreasing magnitude, i.e.,

0o j½aiðniÞ�mþ1jr j½aiðniÞ�mjrCm�g, m¼ 1,2, . . . ,ni�1

ð4Þ

for ni arbitrarily large, with C40, and where ½a�m is the mth
element of the column vector a. This can be seen in the
magnitude representation weights in Fig. 1, which are
weights of sparse representations of piano notes, described
in Section 4.1. With MP and a complete dictionary, we are
guaranteed g40 because Jrðnþ1ÞJ2o JrðnÞJ2 for all n [24].

Consider the Euclidean distance between two signals
of the same dimension, which is the cosine distance for
unit-norm signals. Thus, with respect to this distance, the
yi 2 Y nearest to xq is given by solving

min
i2I

Jyi�xqJ¼max
i2I

/xq,yiS ð5Þ

We can express this inner product in terms of sparse
representations

/xq,yiS¼/HqðnqÞaqðnqÞþrqðnqÞ,HiðniÞaiðniÞþriðniÞS

¼ aT
i ðniÞH

T
i ðniÞHqðnqÞaqðnqÞþO½rq,ri� ð6Þ

With a complete dictionary we can make O½rq,ri�

negligible by choosing e arbitrarily small, so we can
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express (5) as

max
i2I

/xq,yiS�max
i2I

aT
i ðniÞGiqaqðnqÞ ¼max

i2I

Xni

m ¼ 1

Xnq

l ¼ 1

½Aiq�Giq�ml

ð7Þ

where ½B�C�ml ¼ ½B�ml½C�ml is the Hadamard, or entry wise,
product, ½B�ml is the element of B in the mth row of the lth
column, Giq9HT

i ðniÞHqðnqÞ is a ni � nq matrix with ele-
ments from the Gramian of the dictionary, i.e., G9DT D,
and finally we define the outer product of the weights

Aiq9aiðniÞa
T
q ðnqÞ: ð8Þ

2.1. Recursive search limited by bounds

Since we expect the decay of the magnitude of ele-
ments in Aiq�Giq to be fastest in diagonal directions by (4),
we define a recursive sum along the M anti-diagonals
starting at the top left:

SiqðMÞ9SiqðM�1Þþ
XM

m ¼ 1

½Aiq�Giq�mðM�mþ1Þ ð9Þ

for M¼ 2,3, . . . ,minðni,nqÞ, and setting Siqð1Þ ¼ ½Aiq�Giq�11.
With this we can express the argument of (7) as

/xq,yiS�
Xni

m ¼ 1

Xnq

l ¼ 1

½Aiq�Giq�ml ¼ SiqðMÞþRðMÞ ð10Þ

where at step M, we are comparing M additional pairs of
atoms to those considered in the previous steps. R(M) is a
remainder that we will bound. The total number of atom
pairs contributing to Siq(M) (9) is

PðMÞ9
XM

m ¼ 1

m¼MðMþ1Þ=2: ð11Þ

The approach taken by Jost et al. [14,15] to find the
nearest neighbors of xq in Y bounds the remainder R(M)
by compressibility (4). Assuming we have a positive upper
bound on the remainder, i.e., RðMÞr ~RðMÞ, we know lower
and upper bounds on the cosine distance LiqðMÞr
/xq,yiSrUiqðMÞ, where

LiqðMÞ9SiqðMÞ� ~RðMÞ ð12Þ

UiqðMÞ9SiqðMÞþ ~RðMÞ ð13Þ

Finding elements of Y close to xq with respect to (5) can
be done recursively over the approximation order M. For a
given M, we find fSiqðMÞgi2I , compute the remainder ~RðMÞ,
and eliminate signals that are not sufficiently close to xq

with respect to their cosine distance by comparing the
bounds. This approach is similar to hierarchical ones, e.g.,
[21], where the features become more discriminable as
the search process runs. (Also note that compressibility is
similar to the argument made in justifying the truncation
of Fourier series in early work on similarity search
[1,11,30], i.e., that power spectral densities of many
time-series decay like Oðjf j�bÞ with b41.)

Starting with M¼1, we compute the sets fLiqð1Þgi2I and
fUiqð1Þgi2I , that is, the first-order upper and lower bounds
of the set of distances of xq from all signals in Y. Then we
find the index of the largest lower bound imax ¼

arg maxi2ILiqð1Þ, and reduce the search space to
I19fi 2 I : Uiqð1ÞZLimaxqð1Þg, since all other data have a
least upper bound on their inner product with xq than the
greatest lower bound in the set. For the next step, we
compute the sets fLiqð2Þgi2I1

and fUiqð2Þgi2I1
, find the index

of the maximum imax ¼ arg maxi2I1
Liqð2Þ, and construct

the reduced set I29fi 2 I1 : Uiqð2ÞZLimaxqð2Þg. Continuing
in this way, we find the elements of Y closest to xq at each
M with respect to the cosine distance by recursing into
the sparse approximations of the signals.

2.2. Bounding the remainder

To reduce the search space quickly we desire that (12)
and (13) converge quickly to the neighborhood of
/xq,yiS, or in other words, that the bounds on the
remainder quickly become discriminative. Jost et al.
[14,15] derive three different bounds on R(M). From the
weakest to the strongest, these are:
1.
 ½Giq�ml ¼ 1 (worst case scenario, but impossible for
n41)

RðMÞrC2ðJcgMJ1þJdg
J1Þ ð14Þ
2.
 ½Giq�ml � iid Bernoulli(0.5), O¼ f�1,1g (impossible for
n41)

RðMÞrC2
ffiffiffiffiffiffiffiffi
ln4
p

ðJcgMJ2
2þJdg

J2
2Þ

1=2
ð15Þ
3.
 ½Giq�ml � iid Uniform, O¼ ½�1,1�,

RðMÞrC2
ffiffiffiffiffiffiffiffiffi
2=3

p
Erf�1

ðpÞðJcgMJ2
2þJdg

J2
2Þ

1=2
ð16Þ

with probability 0rpr1

where we define the following vectors for n9minðni,nqÞ

and M ¼ 2,y, n:

cgM9f½lðm�lþ1Þ��g : m¼Mþ1, . . . ,n; l¼ 1, . . . ,mg ð17Þ

dg9f½lðn�mþ1Þ��g : m¼ 1, . . . ,n�1; l¼mþ1, . . . ,ng:

ð18Þ

Appendix A gives derivations of these bounds, as well as
the efficient computation of (16) for the special case of
g¼ 0:5. The parameters ðC,gÞ describe the compressibility
of the signals in the dictionary (4). The bounds of (15) and
(16) are much more discriminative than (14) because they
involve an ‘2-norm at the price of uncertainty in the
bound. The bound in (16) is attractive because we can
tune it with the parameter p, which is the probability that
the remainder will not exceed the bound. Fig. 2 shows
bounds based on (16) for several pairs of compressibility
parameters for the dataset used to produce Fig. 1.

2.3. Estimating the compressibility parameters

The bounds (14)–(16), and consequently the number
of atom pairs we must consider before the bounds
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become discriminable, depend on the compressibility
parameters, ðC,gÞFwhich themselves depend in a com-
plex way on the signal, the dictionary, and the method of
sparse approximation. Fig. 3 shows the error surface,
feasible set, and the optimal parameters for the dataset
used to produce Fig. 1. We describe our parameter
estimation procedure in Appendix B. The resulting bound
is shown in black in Fig. 1. These compressibility para-
meters also agree with those seen in Fig. 2.
3. Subsequence nearest neighbor search in a localized
sparse domain

The recursive nearest neighbor search so far described
has the obvious limitation that it cannot be applied to
comparing subsequences of large data vectors, as is
natural for comparing audio signals. Thus, we must adapt
its structure to work for comparing subsequences in a set
of data

Y9fyi 2 R
Ni : NiZKgi2I ð19Þ

(note that now we do not restrict the norms of these
signals). We can create from the elements of Y a new set
of all subsequences having the same length as a
K-dimensional query xq (KoNiÞ:

YK9fPtyi=JPtyiJ : t 2 T i ¼ f1,2, . . .Ni�Kþ1g,yi 2 Yg ð20Þ

where Pt extracts a K-length subsequence in yi starting a
time-index t (it is an identity matrix of size K starting a
column t in a K � Ni matrix of zeros). The set T i are times
at which we create length-K subsequences from yi. If we
decompose each of these by sparse approximation, then
we can use the framework in the previous section.
However, sparse approximation is an expensive operation
that we want to do only once for the entire signal, and
independent of the length of xq.

To address this problem, we instead approximate each
element in YK by building local sparse representations
from the global sparse approximations of each yi, and
then calculating their distance to xq using the framework
in the previous section. From here on we consider only
the K-length subsequences of a single element yi 2 Y
without loss of generality (i.e., all other elements of Y
can be included as subsequences). Toward this end,
consider that we have decomposed the Ni-length signal
yi using a complete dictionary to produce the representa-
tion fHiðniÞ,aiðniÞ,riðniÞg. From this we construct the local
sparse representations of yi:

ŶK9ffPtHiðniÞ,xtaiðniÞ,PtriðniÞg : t 2 T ig ð21Þ

where the time partition T i is the set of all times at which
we extract a K-length subsequence from yi, and xt is
set such that JxtPtyiJ¼ 1, i.e., each length-K subsequence
is unit-norm. For each K-dimensional subsequence,
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(7) now becomes

max
t2T i

/xq,PtyiS¼max
t2T i

½/HqðnqÞaqðnqÞ,xtPtHiðniÞaiðniÞSþO½rq,ri��

�max
t2T i

xta
T
i ðniÞH

T
i ðniÞP

T
t HqðnqÞaqðnqÞ

¼max
t2T i

xt

Xni

m ¼ 1

Xnq

l ¼ 1

½Aiq�GiqðtÞ�ml ð22Þ

where Aiq is defined in (8), we define the time-localized
Gramian

GiqðtÞ9HT
i ðniÞP

T
t HqðnqÞ ð23Þ

and we have excluded the terms involving the residuals
because we can make them arbitrarily small.

3.1. Estimating the localized energy

The only thing left to do is to find an expression for xt

so that each subsequence is comparable with the others
with respect to the cosine distance. We assume that the
localized energy can be approximated from the local
sparse representation in the following way assuming
JPtyiJ40

xt ¼ JPtyiJ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aT

i ðniÞH
T
i ðniÞP

T
t PtHiðniÞaiðniÞ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnt

j ¼ 1

wja
2
j

vuut
ð24Þ

where the nt weights aj 2 f½aiðniÞ�m : ½HT
i ðniÞP

T
t PtHi ðniÞ�mla

0,1rm,lrnig are those associated with atoms having
support in [t,tþK), and wj we define to weigh the
contribution of aj

2
to the localized energy estimate. We

set xt ¼ 0 if
Pnt

j ¼ 1 a2
j ¼ 0.

If all atoms contributing to the subsequence have their
entire support in [t,tþK), and are orthonormal, then we
can set each wj ¼ 1. This does not hold for subsequences
of a signal decomposed using an overcomplete dictionary,
Fig. 4. Short-term energy ratios, log10ð
Pnt

j ¼ 1 wja
2
j =JPtyiJ

2
Þ, over 1 s windows (

residual energy 30 dB below the initial signal energy. Arrow points to line (top

Data in (a) are described in Section 4.2; data in (b) are described in Section 4.3. (

(24-27 s) and (b) Music Orchestra.
as shown by Fig. 4. For much of the time we seePnt

j ¼ 1 a2
j ZJPtyiJ

2, which means our localized estimate
of the segment energy is greater than its real value. This
will make xt and consequently (22) smaller.

Instead, we make a more reasonable estimate of JPtyiJ

by accounting for the fact that atoms can have support
outside [t,tþK). For instance, if an atom has some fraction
of support in the subsequence we multiply its weight by
that fraction. We thus weigh the contribution of the jth
atom to the subsequence norm using

wj ¼

1, ujZt,ujþsjrtþK

ðK=sjÞ
2, ujot,ujþsjZtþK

ðujþsj�tÞ2=s2
j , ujot,toujþsjrtþK

ðtþK�ujÞ
2=s2

j , trujotþK ,ujþsj4tþK

8>>>>><
>>>>>:

ð25Þ

where uj and sj are the position and scale, respectively, of
the atom associated with the weight aj. In other words, if
an atom is completely in [t,tþK), it contributes all of its
energy to the approximation; otherwise, it contributes
only a fraction based on how its support intersects
[t,tþK). With this we are now slightly underestimating
the localized energies, as seen in Fig. 4. In both of these
cases for {wj}, however, we can assume by the energy
conservation of MP [24] that as the subsequence length
becomes larger our error in estimating the subsequence
energy goes to zero, i.e.,

lim
K-Ni

JPtyiJ
2
�
Xnt

j ¼ 1

wja
2
j ¼ JPtriðniÞJ

2
ð26Þ

With a complete dictionary, we can make the right hand
side zero. Significant departures from the energy estimate
of subsequences can be due to the interactions between
atoms [37].
hopped 125 ms) for MP decompositions using 8xMDCT [31] to a global

, gray) using weighting wj¼1. The other line (bottom, black) uses (25).

a) Six speech signals (0-20 s), Music except (21-23 s), Realization of GWN
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3.2. Recursive subsequence search limited by bounds

Now, similar to (9) and (10), we can say,

/xq,PtyiS� xt

Xnt

m ¼ 1

Xnq

l ¼ 1

½AiqðtÞ�GiqðtÞ�ml ¼ Siqðt,MÞþRðt,MÞ

ð27Þ

where for M¼ 2,3, . . . ,minðni,nqÞ, and with
Siqðt,1Þ ¼ xt½AiqðtÞ�GiqðtÞ�11,

Siqðt,MÞ9Siqðt,M�1Þþxt

XM
m ¼ 1

½AiqðtÞ�GiqðtÞ�mðM�mþ1Þ ð28Þ

The problem of finding the subsequence closest to xq with
respect to the cosine distance can now be done iteratively
over M by bounding each remainder R(t,M) using (14),
(15), or (16), and the method presented in Section 2.1.
Furthermore, we can compare only a subset of all possible
subsequences using a coarse time partition T i.

3.3. Practicality of the bounds for audio signals

The experiments by Jost et al. [14,15] use small images
(128 square) and orthogonal wavelet decompositions,
Table 1
Time–frequency dictionary parameters (44.1 kHz sampling rate): atom

scale s, time resolution Du , and frequency resolution Df . Finer frequency

resolution for small-scale atoms is achieved with interpolation by zero-

padding.

s (samples/ms) Du (samples/ms) Df (Hz)

128/3 32/0.7 43.1

256/6 64/2 43.1

512/12 128/3 43.1

1024/23 256/6 43.1

2048/46 512/12 21.5

4096/93 1024/23 10.8

8192/186 2048/46 5.4

16,384/372 4096/93 2.7

32,768/743 8192/186 1.3

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

1.2

0.10

0.20

0.30

0.40

0.50

0.60

Atom Pa

E
st

im
at

ed
 R

em
ai

nd
er

 R
(M

)

Fig. 5. Estimated remainder (assuming unit-norm signals) as a function of th

Fig. 1. Gray: bound in (15). Black, numbered: bound in (16) for several labele

(number of elements in each sparse model), and ðC,gÞ ¼ ð0:4785,0:5Þ.
which do not translate to audio signals decomposed over
redundant time–frequency dictionaries. Jost et al. [14,15]
do not state the compressibility parameters they use, but
for the high-dimensional audio signals with which we
work in this paper it is not unusual to have g� 0:5 when
using MP and highly overcomplete dictionaries. We find
that decomposing 4 s segments of music signals (single
channel, 44.1 kHz sample rate, representation weights
shown in Fig. 1) using the dictionary in Table 1 requires
on average 2375 atoms to reduce the residual energy
20 dB below the initial signal energy. Thus, for the bound
(16) using n¼2375 atoms, and with the parameters
ðC,gÞ ¼ ð0:4785,0:5Þ (in the feasible set), Fig. 5 clearly
shows that in order to have any discriminable bound
(say 70:2 for unit-norm signals) we must either select a
low value for p—in which case we are assuming the first
atom comparison is approximately the cosine distance
—or we must make over a million pairwise comparisons.

This is not practical for signals of large dimension, and
dictionaries containing billions of time–frequency atoms.
There is no possibility of tabulating the dictionary Gra-
mian for quick lookup of atom pair correlations; and the
cost of looking up atoms in million-atom decompositions
is expensive as well. It is clear then that the tightest
bound given in (16) is not practical for efficiently dis-
criminating distances between audio signals with respect
to their cosine distance (5) decomposed by MP and time–
frequency dictionaries.
4. Experiments in comparing audio signals
in a sparse domain

Though approximate nearest neighbor subsequence
search of sparsely approximated audio signals with the
bound (16) is impractical, we have found that approx-
imating the cosine distance in a sparse domain has
some intriguing behaviors. We now present several
experiments where we compare different types of audio
data in a sparse domain under a variety of conditions.
10
4

10
5

10
6

0.70

0.80

irs P(M)

e number of atom pairs already considered for dataset used to produce

d p (probability that remainder does not exceed bound) with n¼2375
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All signals are single channel, and have a sampling rate of
44.1 kHz. We decompose each by MP [17] using either the
dictionary in Table 1, or the 8xMDCT dictionary [31].

4.1. Experiment 1: comparing piano notes

In this experiment, we look at how well low-order
sparse approximations of sampled piano notes embody
their harmonic characteristics by comparing them using
the methods presented in Section 2. The data in set ‘‘A’’ are
68 notes (chromatically spanning A0 to G#6) on a real and
somewhat in-tune piano; and in set the data ‘‘B’’
are 39 notes (roughly a C major scale C0 to D6) on a real
Fig. 6. jSiqð10Þj (9) for two sets of recorded piano notes. (a) and (b): Set ‘‘A’’ com

(rows) compared with set ‘‘A’’ (columns) in time and sparse domains (M¼10).

contrast of other elements. (a) ‘A’ Time-domain magnitude correlations, (b)‘A’ S

domain magnitude correlations and (d) ‘B’-‘A’ Sparse-domain approximations o
and very out-of-tune piano with very poor recording
conditions. We truncate all signals to have a dimension of
176,400 (4 s), and decompose each by MP [17] over a
redundant dictionary of time–frequency Gabor atoms, the
parameters of which are summarized in Table 1. We stop
each decomposition once its residual energy drops 40 dB
below the initial energy. We normalize the weights of each
model by the square root energy of the respective signal.
We do not align the time-domain signals such that the note
onsets occur at the same time. Fig. 1 shows the ordered
decays of the weights in the sparse models of data set ‘‘A’’.

Fig. 6(a) shows the magnitude correlations between all
pairs of signals in set ‘‘A’’ evaluated in the time-domain.
pared with itself in time and sparse domains (M¼10). (c) and (d): Set ‘‘B’’

Elements on main diagonals in (a) and (b) are scaled by 0.25 to increase

parse-domain approximations of magnitude correlations, (c) ‘B’-‘A’ Time-

f magnitude correlations.
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The overtone series is clear as diagonal lines offset at 12,
19, 24, and 28, semitones from the main diagonal.
Fig. 6(b) shows the approximated magnitude correlations
(9) using only M¼10 atoms from each signal approxima-
tion (thus P(10)¼55 atom pairs). Even though the mean
number of atoms in this set of models is about 7000 we
still see portions of the overtone series. The diagonal in
Fig. 6(b) does not have a uniform color because low notes
have longer sustain times than high notes, and the sparse
models thus have more time–frequency atoms with
greater energies spread over the support of the signal.
Fig. 6(c) show the magnitude correlations between sets
‘‘B’’ and ‘‘A’’ evaluated in the time-domain; and Fig. 6(d)
shows the magnitude correlations (9) using only M¼10
atoms from each model. In a sparse domain, we can more
clearly see the relationships between the two sets
because the first 10 terms of each model are most likely
related to the stable harmonics of the notes, and not to
the noise. We can see a diatonic scale starting around
MIDI number 36, as well as the fact that the pitch scale in
Fig. 7. Black: jSiqðMÞj (9) as a function of the number of atom pairs considered fo

or (b) ‘‘B’’ (note D5 approximately). Gray: for each Siq(M), magnitudes of Liq(M

remainder does not exceed bound), and n¼100 (number of elements in each sp

in axes. Signal A3 from ‘A’ with (c,g)¼(0.78, 0.60) and (b) Signal D5 from ‘B’ w
data set ‘‘B’’ lies somewhere in-between the semitones in
data set ‘‘A’’.

Fig. 7(a) shows the approximate magnitude correla-
tions jSiqðMÞj (9), as well as the upper and lower bounds
on the remainder using the tightest bound (16) with
p¼0.2, and n¼100, for the signal A3 from set ‘‘A’’ and
the rest of the set. Here we can see that the lower bound
for the largest magnitude correlation exceeds the upper
bound of all the rest after comparing only M¼19 atoms
from each decomposition. All but five of the signals can be
excluded from the search after M¼6. The four other
signals having the largest approximate magnitude corre-
lation are labeled, and are harmonically related to the
signal through its overtone series. With a signal selected
from set ‘‘B’’ and compared to set ‘‘A’’, Fig. 7(b) shows that
we must compare many more atoms between the models
until the bounds have any discriminability. After
P(M)¼1500 atom comparisons we can see that the largest
magnitudes jSiqðMÞj (9) are roughly harmonically related
to the detuned D5 from set ‘‘B’’.
r the set of piano notes in ‘‘A’’ with a signal from either (a) ‘‘A’’ (note A3)

) (12) and Uiq(M) (13) using bound in (16) with p¼0.2 (probability that

arse model). Largest magnitude correlations are labeled. Note differences

ith (c, g)¼(1.17,0.70).
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As a final part of this experiment, we look at the effects
of comparing atoms with parameters within some subset.
As done in Fig. 6(d), we compare the sparse approxima-
tions of two different sets of piano notes, but here we only
consider those atoms that have scales greater than
186 ms. This in effect means that we look for signals that
share the same ‘‘long-term’’ time–frequency behaviors.
The resulting jSiqð10Þj (9) is shown in Fig. 8. We see
Fig. 8. jSiqð10Þj (9) for two sets of recorded piano notes in a sparse

domain using only the atoms with duration at least 186 ms. Compare

with Fig. 6(d).
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Fig. 9. Log spectrograms of the query signals with which we search. Top: que

Gaussian noise (AWGN) with SNR ¼ �10 dB. Bottom: query distorted with in
correlations between the notes much more clearly com-
pared with Fig. 6(d). Removing the short-term phenom-
ena improves ‘‘tonal’’-level comparisons between the
signals because non-overlapping yet energetic short
atoms are replaced by atoms representative of the note
harmonics.
4.2. Experiment 2: comparing speech signals

In this experiment, we test how efficiently using (28)
we can find in a speech signal the time from which we
extract some xq. We also test how distortion in the query
affects these results. We make a signal by combining six
segments of speech, a short music segment, and white
noise, shown in Fig. 4(a). The six speech segments are the
same phrase spoken by three females and three males:
‘‘Cottage cheese with chives is delicious.’’ We extract from
one of these speech signals the word ‘‘cheese,’’ to create
xq with duration of 603 ms, shown at top in Fig. 9. We
decompose this signal using MP and the 8xMDCT dic-
tionary [31].

We distort the query in two ways: with additive WGN
(AWGN), and with an interfering sound having a high
correlation with the dictionary. In the first case, shown in
the middle in Fig. 9, the signal xq

0 ¼ ðaxqþnÞ=JaxqþnJ is
the original xq distorted by a unit-norm AWGN signal n.
We set a¼ 0:3162 such that 10log10ðJaxqJ

2=JnJ2
Þ ¼

20log10ðjajÞ ¼�10 dB. For this signal, we find the follow-
ing statistics from 10,000 realizations of the AWGN
signal: E½j/xq,nSj� � 1� 10�5, Var½j/xq,nSj� � 4� 10�6.
We also find the following statistics for the 8xMDCT
 (s)

.3 0.4 0.5

ry of male saying ‘‘cheese.’’ Middle: query distorted with additive white

terfering crow sound with SNR ¼ �5 dB.
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dictionary: E½maxd2Dj/n,dSj� � 5� 10�4, Var½maxd2D
j/n,dSj� � 2� 10�5. Thus, the noise signal is not well
correlated either with the original signal or the 8xMDCT
dictionary. In the second case, shown at the bottom of
Fig. 9, we distort the signal by adding the sound of a crow
c so that xq

0 ¼ ðaxqþcÞ=JaxqþcJ2 with JcJ¼ 1. Here, we
set a¼ 0:5623 given by 20log10ðjajÞ ¼�5 dB. For this
interfering signal, we find that j/xq,cSj � 2� 10�3, but
maxd2Dj/c,dSj � 0:21, which is higher than maxd2D
j/xq,dSj � 0:17. In this case, unlike for the AWGN inter-
ference, it is likely that the sparse approximation of the
signal with the crow interference will have atoms in its
low-order model due to the crow and not the speech. We
do not expect the AWGN interference to be a part of the
signal model created by MP until much later iterations.

Fig. 10 shows jSiqðt,MÞj (28) aligned with the original
signal for four values of M using the sparse approxima-
tions of the clean and distorted signals. We plot at the rear
of these figures the localized magnitude time-domain
correlation of the windowed and normalized signal with
the query xq. In Fig. 10(a), using the clean xq, we clearly
Fig. 10. jSiqðM,tÞj (28) as a function of time and the number of atoms M (labele

approximation. Localized magnitude correlation of each signal with query is sho

(a) clean signal, (b) Signal with AWGN at 10 dB energy and (c) Signal with cro
see its position even when using a single atom pair for
each 100 ms partition of the time-domain. We see the
same behavior in Fig. 10(b), (c) for the two distorted
signals, but in the case where the crow sound interferes
we find the query for MZ2, or with at least three atom
pair comparisons. The first atom of the decomposed query
with the crow is modeling the crow and not the content of
interest, and so we must increase the order of the model
to find the location of xq. As we increase the number of
pairs considered we also find other segments that point in
the same direction as xq. Table 2 gives the times and
content of the ten largest values in jSiqðt,10Þj. For the clean
and AWGN distorted xq, ‘‘cheese’’ appears five of the six
times it exists in the original signal. Curiously, these same
five instances are the five largest magnitude correlations
when xq has the crow interference.

We perform the same test as above but using a much
longer speech signal (about 21 minutes in length)
excerpted from a book-on-CD, ‘‘The Old Man and the
Sea’’ by Ernest Hemingway, read aloud by a single person.
From this signal we create several queries xq, from words
d at right) considered from each representation for each localized sparse

wn by the thin black line in front of the gray time-domain signal at rear.

w signal at 5 dB energy.



Table 2
Times, values and signal content for first 10 peaks in jSiqðt,10Þj (P(10)¼55) in Figs. 10(a)–(c). Highest-rated distances in each (bold) points to the origin of

signal.

# Clean signal SignalþWGN SignalþCrow

t (s) jSiqj Content t (s) jSiqj Content t (s) jSiqj Content

1 10.0 0.798 ‘‘cheese’’ 10.0 0.236 ‘‘cheese’’ 10.0 0.409 ‘‘cheese’’

2 13.6 0.199 ‘‘cheese’’ 13.6 0.080 ‘‘cheese’’ 13.6 0.060 ‘‘cheese’’

3 11.3 0.153 ‘‘-ives is-’’ 15.1 0.051 ‘‘delicious’’ 16.9 0.030 ‘‘cheese’’

4 16.9 0.149 ‘‘cheese’’ 11.3 0.045 ‘‘-ives is-’’ 6.9 0.012 ‘‘cheese’’

5 15.1 0.141 ‘‘delicious’’ 16.9 0.042 ‘‘cheese’’ 1.3 0.011 ‘‘cheese’’

6 18.3 0.076 ‘‘delicious’’ 18.3 0.028 ‘‘delicious’’ 18.3 0.010 ‘‘delicious’’

7 1.3 0.057 ‘‘cheese’’ 8.1 0.014 ‘‘delicious’’ 13.2 0.010 ‘‘cottage’’

8 8.1 0.035 ‘‘delicious’’ 12.0 0.012 ‘‘-licious’’ 15.1 0.009 ‘‘delicious’’

9 2.4 0.026 ‘‘delicious’’ 5.2 0.011 ‘‘delicious’’ 16.0 0.004 ‘‘cott-’’

10 6.9 0.024 ‘‘cheese’’ 6.8 0.010 ‘‘cheese’’ 22.8 0.003 WGN
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to sentences to an entire paragraph of duration 35 s. We
decompose each signal over the dictionary in Table 1 until
the global residual energy is 20 dB below the initial
energy. The approximation of the entire 21 m signal has
1,004,001 atoms selected from a dictionary containing
2,194,730,297 atoms.

One xq we extract from the signal is the spoken phrase,
‘‘the old man said’’ (861 ms in length). This phrase
appears 26 times in the long excerpt. We evaluate
jSiqðt,MÞj (28) every 116 ms, and find the time at which
xq originally appears using only M¼1 atom pair compar-
isons for each time partition. The next highest ranked
positions have values of 75% and 67% that of the largest
jSiqðt,1Þj. When M¼50, the values of the second and third
largest values jSiqðt,50Þj drop to 62% and 61% that of the
largest value. In the top 30 ranked subsequences for M¼5
we find only one of the other 25 appearances of ‘‘the old
man said’’ (rank 26); but we also find ‘‘the old man
agreed’’ (rank 11), and ‘‘the old man carried’’ (rank 16).
All other results have minimal content similarity to the
signal, but have time–frequency overlap in parts of the
atoms of each model.

We perform the same test with a sentence extracted
from the signal, ‘‘They were as old as erosions in a fishless
desert’’ (2.87 s), which only appears once. No matter the
M¼[1, 50] we use, the origin of the excerpt remains at a
rank of 6 with a value jSiqðt,50Þj at 67.5% that of the
highest rank subsequence. We find that if we shift the
time partition forward by 11.6 ms its ranking jumps to
first, with the second ranked subsequence at 73%. We
observe a similar effect for a query consisting of an entire
paragraph (35 s). We find its origin by comparing M¼2 or
more atoms from each model using a time partition of
116 ms. This result, however, disappears when we evalu-
ate jSiqðt,MÞj using a coarser time partition of 250 ms.

4.3. Experiment 3: comparing music signals

While the previous experiment deals with single-
channel speech signals, in this experiment we make
comparisons between polyphonic musical signals
excerpted from a commercial recording of the fourth
movement of Symphonie Fantastique by H. Berlioz. For the
query, we use a 10.31 s segment of the third appearance
of the ‘‘A’’ theme of the movement (bars 33–39, located
around 13–22 s in Fig. 4(b)). Fig. 11 shows the sonogram
and time–frequency tiles of the model of xq using the 50
atoms with the largest magnitude weights selected from
the 8xMDCT dictionary [31]. We add no interfering
signals as we do in the previous experiment.

Fig. 12(a) shows jSiqðt,MÞj (28) over the first minute of
the original signal, for three values of M, including M¼50,
the time–frequency representation of which is shown at
bottom of Fig. 11. For jSiqðt,50Þj we can see a strong spike
located around 13 s corresponding with the query, but we
also see spikes at about 2 s and around 43 s. The former
set of spikes correspond with the second appearance of
the ‘‘A’’ theme, when only low bowed strings are playing
the theme in G-minor. This is quite similar to the
instrumentation of the query: low bowed strings and a
legato bassoon in counterpoint in E[-major. The latter set
of spikes is around the end of the fifth appearance of the
theme, which is played in G-minor on low pizzicato
strings with a staccato bassoon. For M¼10, we see a
conspicuous spike at the time of the fifth appearance
around 34 s, as well as of the fourth appearance around
24 s, where the theme is played in E[-major like the
query. Finally, we test how the sparse approximation
of this query compares with subsequences from a differ-
ent recording of this movement, which is also in a
different tempo. Fig. 12(b) shows jSiqðt,MÞj (28) for three
different values of M. We see high similarity with the first
and second appearances of the main theme, but not the
third, which is what the query contains.

4.4. Discussion

There is no reason to believe that a robust and accurate
speech or melody recognition system can be created by
comparing only the first few elements of greedy decom-
positions in time–frequency dictionaries. What appears to
be occurring for the short signals, both the ‘‘cheese’’ and
‘‘the old man said,’’ is that the first few elements of their
sparse and atomic decomposition create a prosodic
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Fig. 11. Polyphonic orchestral query: sonogram (top) and time–frequency tiles (bottom) of 50-order sparse approximation.

Fig. 12. jSiqðt,MÞj (28) for three values of M for the query and two different signals. Arrows mark the appearances of the ‘‘A’’ theme, and their appearance

number. Magnitude correlation of query with localized and normalized signal is shown by the solid gray area in front of the black time-domain signal at

rear. (a) Query compared with original signal and (b) Query compared different interpretation.
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representation that is comparable to others at the atomic
level. For the longer signals, such as sentences, para-
graphs, and an orchestral theme, a few atoms cannot
adequately embody the prosody, but we still see that by
only making a few comparisons we are able to locate the
excerpted signal—as long as the time partition is fine
enough. This is due to the atoms of the models acting in
some sense as a time–frequency fingerprint, an example
of which we see in Fig. 11. Through the cosine distance,
the relative time and frequency locations of the atoms in
the query and subsequence are being compared, weighted
by their energies. Subsequences that share atoms in
similar configurations will be gauged closer to xq than
those that do not.

By using the cosine distance it is not unexpected that (28)
will be extremely sensitive to a partitioning of the time-
domain. This comes directly from the definition of the time-
localized Gramian (23), as well as the use of a dictionary that
is not translation invariant. There is no need to partition the
time axis when using a parameterized dictionary if we
assume that some of the atoms in the model of xq will have
parameters that are nearly the same as some of those in the
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relevant localized sparse representations. In such a scenario,
we can search a sparse representation for the times at which
atoms exist that are similar in scale and modulation fre-
quency to those modeling xq. Then we can limit our search to
those particular times without considering any uniform and
arbitrary partition of the time-domain. With non-linear
greedy decomposition methods such as MP and time-variant
dictionaries, however, such an assumption cannot be guar-
anteed; but its limits are not yet well-known.

5. Conclusion

In this paper, we have extended and investigated the
applicability of a method of recursive nearest neighbor search
[14,15] for comparing audio signals using pairwise compar-
isons of model elements in a sparse domain. The multiscale
descriptions offered by sparse approximation over time–
frequency dictionaries are especially attractive for such tasks
because they provide flexibility in making comparisons
between data, not to mention a capacity to deal with noise.
After extending this method to the task of comparing
subsequences of audio signals, we find that the strongest
bound known for the remainder is too weak to quickly and
efficiently reduce the search space. Our experiments show,
however, that by comparing elements of sparse models we
can judge with relatively few comparisons whether signals
share the same time–frequency structures, and to what
degrees, although this can be quite sensitive to the time-
domain partitioning. We also see that we can approach such
comparisons hierarchically, starting from the most energetic
content to the least, or starting from the longest scale
phenomenon to the shortest.

We are continuing this research in multiple directions.
First, since we know that the inner product matrix GiqðtÞ (23)
will be very sparse for all t in time–frequency dictionaries,
this motivates designing a tighter bound based on a Laplacian
distribution of elements in GiqðtÞ with a large probability
mass exactly at zero. This bound would be much more
realistic than that provided by assuming the elements of
the Gramian are distributed uniform (16). Another part of the
problem is of course that the sums in (9) and (28) are not
such that at step M the P(M) largest magnitude values of
Aiq�Giq are actually being summed. By our assumption in (4),
we know that the decay of the magnitudes of the elements in
Aiq will be quickest in diagonal directions, but dependent
upon the element position in the matrix. These diagonal
directions are simply given by

@=@gi

@=@gq

" #
m�gi l�gq ¼�m�gi l�gq

gi=m

gq=l

" #
ð29Þ

where we now recognize that the weights of two different
representations can decay at different rates. With this, we can
make an ordered set of index pairs by

L¼ fðm,lÞl : j½Aiq�ljZ j½Aiq�lþ1jgl ¼ 1,2,...,ninq
ð30Þ

and define a recursive sum for 1omrninq

SiqðmÞ9Siqðm�1Þþ½Aiq�Giq�Lm
ð31Þ

setting Siqð1Þ ¼ ½Aiq�Giq�11. We do not yet know the extent to
which this approach can ameliorate the problems with the
non-discriminating bound (16), as we have yet to design an
efficient way to generate a satisfactory L, and estimate the
bounds of the corresponding remainder—whether it is like
that in (16), or another that uses the fact that GiqðtÞ will be
very sparse, even when xq ¼ yi. We think that using a
stronger bound and this indexing order will significantly
reduce the number of pairwise comparisons that must be
made before determining a subsequence is not close enough
with respect to the cosine distance. Furthermore, we can
make the elements of Aiq decay faster, and thus increase g, by
using other sparse approximation approaches, such as OMP
[28,23] or CMP [36]. And we cannot forget the implications of
choosing a particular dictionary. In this work, we have used
two different parametric dictionaries, one of which is
designed for audio signal coding [31]. Another interesting
research direction is to use dictionaries better suited for
content description than coding, such as content-adapted
dictionaries [20,2,19].

Finally, and specifically with regards to the specific
problem of similarity search in audio signals, the cosine
distance between time-domain samples makes little sense
because it is too sensitive to signal waveforms whereas
human perception is not. Instead, many other possibilities
exist for comparing sparse approximation, such as comparing
low-level histograms of atom parameters [7,34]; comparing
mid-level structures such as harmonics [9,38,8]; and compar-
ing high-level patterns of short atoms representing rhythm
[32]. There also exists the matching pursuit dissimilarity
measure [25], where the atoms of one sparse model are used
to decompose another signal, and vice versa to see how well
they model each other. We are exploring these various
possibilities with regards to gauging more generally similar-
ity in audio signals at multiple levels of specificity within a
sparse domain.
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Appendix A. Proof of remainder bounds

To show (14), we can bound R(M) loosely by assuming
the worst case scenario of ½Giq�ml ¼ 1 for all its elements.
Knowing that R(M) is the sum of the elements of the
matrix Aiq�Giq except for the first P(M) values, and
assuming (4), we can say

C�2RðMÞr
Xn

m ¼ Mþ1

Xm

l ¼ 1

½lðm�lþ1Þ��gþ
Xn�1

m ¼ 1

Xn

l ¼ mþ1

½lðn�mþ1Þ��g

¼ JcgMJ1þJdg
J1 ðA:1Þ
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where cgM and dg are defined in (17) and (18). This worst
case scenario is not possible using MP because of its
update rule (1).

We can find the tighter bound in (15) by assuming the
distribution of signs of the elements of Giq is Bernoulli
equiprobable, i.e., Pf½Giq�ml ¼ 1g ¼ Pf½Giq�ml ¼�1g ¼ 0:5.
Thus, defining a random variable bi : R/f�1,1g, and its
probability mass function fBðbiÞ ¼ 0:5dðbiþ1Þþ0:5dðbi�1Þ
using the Dirac function, dðxÞ, we create a random vector b
with n2

�P(M) elements independently drawn from this
distribution. Placing this into the double sums of (A.1)
provides the bound

C�2RðMÞr bT cgM
dg

" #�����
�����rJcgMJ1þJdg

J1 ðA:2Þ

This weighted Rademacher sequence has the property
that [14]

PfjbT sj4Rgr2expð�R2=2JsJ2
2Þ, R40 ðA:3Þ

which becomes PfjbT sjrRgZmaxf0,1�2expð�R2=2JsJ2
2Þg

by the axioms of probability. With this we can find an R

such that PfjbT sjrRg will be greater than or equal to
some probability 0rpr1, i.e.,

RðpÞ ¼ ðJcgMJ2
2þJdg

J2
2Þ

1=2 2ln
2

1�p

� �1=2

ðA:4Þ

This value can be minimized by choosing p¼0, for which
we arrive at the residual upper bound in (15). Note that
even though we have set p¼0, we still have an unrealis-
tically loose bound by the impossibility of MP of choosing
two sets of atoms for which all entries of their Gramian
Giq are in {�1,1}.

Finally, to show (16), we can model the elements of the
Gramian as random variables, ui : R/½�1,1�, indepen-
dently and identically distributed uniformly

fUðuiÞ ¼
0:5, �1ruir1

0 else

�
ðA:5Þ

Substituting this into (14) gives a weighted sum of
random variables satisfying

C�2RðMÞr uT cgM
dg

" #�����
�����rJcgMJ1þJdg

J1 ðA:6Þ

where u is the random vector. For large M, this sum has
the asymptotic property [14,15]:

PfjuT sjoRg ¼ Erf

ffiffiffiffiffiffiffiffiffiffiffiffi
3R2

2JsJ2
2

s
ðA:7Þ

Setting this equal to 0rpr1 and solving for R produces
the upper bound (16). We can reach the upper bound (15)
if we set p¼0.9586, but note that (16) can be made zero.
This bound can still be extremely loose because the
Gramian of two models in time–frequency dictionaries
will be highly sparse.

Computing the ‘2-norm in these expressions, however,
leads to evaluating the double sums

JcgMJ2
¼

Xn

m ¼ Mþ1

Xm

l ¼ 1

1

½lðm�lþ1Þ�2g
ðA:8Þ
Jdg
J2
¼
Xn�1

m ¼ 1

Xn

l ¼ mþ1

1

½lðn�mþ1Þ�2g
ðA:9Þ

which can be prohibitive for large n. The dimensionality of
cgM is n(nþ1)/2�P(M), and of dg is n(n�1)/2. We approx-
imate these values in the following way for g¼ 0:5, using
the partial sum of the harmonic seriesXn

m ¼ 1

1

m
¼ lnnþgEþ

1

2n
�

1

12n2
þ

1

120n4
þOðn�6Þ ðA:10Þ

where gE � 0:5772 is the Euler–Mascheroni constant. To

find Jd0:5
J2

Jd0:5
J2
¼
Xn�1

m ¼ 1

Xn

l ¼ mþ1

1

lðn�mþ1Þ

¼
Xn�1

m ¼ 1

1

n�mþ1

Xn

l ¼ 1

1

l
�
Xm
l ¼ 1

1

l

" #

�
Xn�1

m ¼ 1

1

n�mþ1
lnn=m�

n�m

2nm
þ

n2�m2

12n2m2

� �
: ðA:11Þ

To find Jc0:5
M J2 we first use partial fractions and then the

partial sum of the harmonic series:

Jc0:5
M J2
¼

Xn

m ¼ Mþ1

Xm

l ¼ 1

1

lðm�lþ1Þ

¼
Xn

m ¼ Mþ1

1

mþ1

Xm

l ¼ 1

1

l
þ

1

m�lþ1

�
Xn

m ¼ Mþ1

1

mþ1
lnmþgEþ

1

2m
�

1

12m2
þ
Xm

l ¼ 1

1

l

" #

� 2
Xn

m ¼ Mþ1

1

mþ1
lnmþgEþ

1

2m
�

1

12m2

� �
: ðA:12Þ

With these expressions we can avoid double sums in
calculating the bounds.
Appendix B. Estimating the compressibility parameters

We estimate the compressibility parameters ðC,gÞ for
all signals from the entire set of representation weights.
Since by (4) the parameters ðC,gÞ bound from above the
decay of all the ordered weights, only the largest magni-
tude weights matter for their estimation. Thus, we define
a vector, a, of the largest n magnitude weights from each
row in the set ffaiðniÞgi2I ,aqðnqÞg, which is equivalent to
taking the largest weights at each approximation order.
Good compressibility parameters can be given by

min
C,g

JCzg�aJ2
þlC subject to Czgka ðB:1Þ

where we define zg9½1,1=2g, . . . ,1=ng�T , and add a multi-
ple of C in order to keep it from getting too large since the
bounds (14)–(16) are all proportional to it. The constraint
is added to ensure all elements of the difference Czg�ai

are positive such that (4) is true.
To remove the g component from the exponent, and

since all of the elements of z and a are positive and non-
zero, we can instead solve the problem

min
C,g

JlnC1þglnz�lnaJ2
þllnC
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¼min
C,g
½ðlnCÞ2nþg2JlnzJ2

þJlnaJ2
þllnC

þ2gðlnzÞT ðlnC1�lnaÞ�2lnCðlnaÞT 1� ðB:2Þ

subject to the constraint Czgka. Taking the partial deri-
vative of this with respect to g and C, we find

go ¼
ðlnzÞT ðlna�lnC1Þ

JlnzJ2
ðB:3Þ

Co ¼ exp lþ
1

n

Xn

i ¼ 1

½lna�glnz�i

" #
ðB:4Þ

Starting with some initial value of C then, we use the
following iterative method:
1.
 solve for g given a C in (B.3);

2.
 find the new C in (B.4) using this g;

3.
 set C0 ¼ exp½maxðlna�golnzÞ� and evaluate the error

JC0zg�aJ2;

4.
 repeat until the error begins to increase.
The factor l in effect controls the step size for conver-
gence. A typical value we use is l¼ 70:03 based on
experiments (the sign of which depends on if the objec-
tive function decreases with decreasing C).
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