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Impulse responses of vibrating plates are classically measured on a fine spatial grid

satisfying the Shannon–Nyquist spatial sampling criterion, and interpolated between

measurement points. For homogeneous and isotropic plates, this study proposed a more

efficient sampling and interpolation process, inspired by the recent paradigm of

and unspecified boundary conditions. Here, impulse responses are first decomposed as

sums of damped sinusoids, using the Simultaneous Orthogonal Matching Pursuit

algorithm. Finally, modes are interpolated using a plane wave decomposition. As a

beneficial side effect, these algorithms can also be used to obtain the dispersion curve of

the plate with a limited number of measurements. Experimental results are given for

three different plates of different shapes and boundary conditions, and compared to

classical Shannon interpolation.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

For a wide variety of engineering applications, plate characterization requires its full set of impulse responses (IRs). In
structural health monitoring (SHM) for example, IRs are needed to obtain the free response of the inspected structure [1].
Furthermore, combining this set of IRs together with cross correlation techniques has been successfully used for SHM
purposes [2], or impact localization [3], leading to the realization of tactile-acoustical interfaces.

For all the above-mentioned applications, existing IR methods rely on a comprehensive knowledge of the object under
study. In order to know the IR at any position on the plate, the following procedure is usually carried out: IRs are measured
on a fine spatial sampling grid, and interpolation schemes are used to estimate the IRs between sampling points. While
both computational power and data storage capabilities continue to increase, the acquisition of the IRs on a very fine grid
can still be a daunting task. When acquisition time is limited, synthesizing large IR data-sets from as few measurements as
possible, can a highly relevant problem.

Classical schemes for determination of plate IRs can be classified in two categories:
�
 experimental methods, with various excitation types (impulses, chirps, harmonic excitations, etc.) where the IRs are
sampled on a grid with a spatial step given by the Shannon–Nyquist sampling criterion and
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�
 numerical methods, aiming at the resolution of the equations governing the movement of the plate, such as classical
Finite Element Methods [4], or methods using particular properties of the solutions of the Helmholtz equation, such as
the Ultra Weak Variational Formulation [5], the Variational Theory of Complex Rays [6] or the Non-dimensional
Dynamic Influence Function Method, using plane waves [7] or Bessel functions [8].
Both types of methods have drawbacks: experimental methods need a high number of measurements, especially at high
frequencies, and numerical methods need a detailed knowledge of the plate: mechanical properties of the materials,
boundary conditions, etc.

Here, we propose a new IR determination scheme for homogeneous, isotropic plates of any star-convex shape and

arbitrary boundary conditions. This new method is an hybrid between experimental and numerical methods and thus can
be interpreted in two different ways:
�
 as an experimental method, this method allows the reduction of the number of measurements below the number
required by the sampling theorem, and where IRs are interpolated using simple physical knowledge (the Kirchoff thin-
plate model under isotropy and homogeneity assumptions)

�
 or, alternatively, as a numerical method, the knowledge of the material and the boundary conditions is no longer

required thanks to a few experimental measurements.
The method is based on the classical Kirchhoff thin-plate model with a simple damping model. In that case, a
approximation of the bending modes is performed using a sparse set of plane waves. Therefore, we can use the recent
paradigm of so-called compressed sensing [9]: if a signal is known to be sparse in a given basis, it can be recovered using
much less samples than the full set of regular samples required by the Shannon sampling theorem. Particularly, sparse
trigonometrical polynomials (i.e. sparse sums of plane waves in two dimensions), can be recovered from randomly placed
local measurements [10,11]. Moreover, in our case, the sparsity is structured, in the sense that the planes waves used in
the sum share the same wave number. An algorithm specially designed for the recovery of such signals is introduced,
yielding accurate reconstructions of the modal shapes with sub-Nyquist sampling, even when the sampling pattern is
regular, at the cost of a small error.

Similar ideas were introduced in [12], where room impulse responses are interpolated and extrapolated with few
measurements. It was, however, limited to parallelepipedic rooms and along a line parallel to a wall, while the method
presented in this paper works with arbitrary shapes and in two dimensions. The proposed interpolation scheme is
confirmed experimentally with IR measurements on plates with various shapes. One significant feature of the method is to
achieve a full characterization of its impulse responses is achieved with significantly less measurements than required by
the Nyquist spatial sampling rate.

This paper explores the different trade-offs and strategies for spatially sampling the IRs, and verifies the relevance of
this approach on experimental data. As a beneficial side effect, the proposed algorithm can also be used to painlessly
characterize the dispersion curve of the media, in the full bandwidth under study (here in the audio range 0–22 kHz), using
a reduced set of IR measurements, independently of the boundary conditions.

The following section introduces the physical model of the plate used in the subsequent developments. The
Simultaneous Orthogonal Matching Pursuit (SOMP) and its use for the mode identification is described in Section 3,
and the interpolation algorithm is introduced in Section 4. Finally, experimental results are discussed in the last section
before the conclusion of the paper.
2. Physical model

Assuming Kirchhoff–Love hypothesis and a simple damping model, the transverse displacement wðx,y,tÞ of a
homogeneous and isotropic thin plate obeys the equation

rh
q2w

qt2
þa qw

qt
þDD2w¼ 0

and appropriate boundary conditions. Here r is the density, h the thickness, D¼ Eh3=12ð1�n2Þ the bending stiffness (E the
Young’s modulus, and m the Poisson ration).

With wn the modes of the bilaplacian D2 and k4
n the related eigenvalues, the displacement can be decomposed as

wðx,y,tÞ ¼
X
n2N

qnðtÞwnðx,yÞ

As the modes are linearly independent, each qn obeys the equation

rh
q2qn

qt2
þa qqn

qt
þDk4

nqn ¼ 0



Fig. 1. Diagram of the interpolation method.
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The solutions of these equations are damped sinusoids, and the displacement writes

wðx,y,tÞ ¼
X
n2N

Ane�antcosðontþfnÞwnðx,yÞ

The modes wn can be decomposed as a sum of two solutions of the Helmholtz equation wþn and w�n [13]:

Dwþn �k2
nwþn ¼ 0, Dw�n þk2

nw�n ¼ 0

If the plate is star-shaped, the w�n can be well approximated [14,15] by a finite sum of M propagative plane waves
u�~kn,m
ð~rÞ ¼ eið~kn,m �~xÞ, with J~kn,mJ¼ kn ¼on=c

w�n ðx,yÞC
XM

m ¼ 1

wnmu�~kn,m
ðx,yÞ

With similar arguments, the wþn can be approximated by sum of M functions uþ~kn,m
ð~rÞ ¼ eð

~kn,m �~xÞ which will be called
exponential plane waves in the remainder of the paper.

Finally, as the bandwidth of the measured impulse responses is finite, only a finite number N of modes are observed,
and the displacement can be approximated by the sum

wðx,y,tÞC
XN

n ¼ 0

Ane�ant cosðontþfnÞ
XM

m ¼ 1

w�nmei~knm �~xþ
XM

m ¼ 1

wþnme
~knm �~x

 !

Using this model, impulse response can be interpolated from a small set of samples with these successive steps,
outlined in Fig. 1:
�
 Modal frequencies and dampings of the modes are extracted, and used to determine the amplitudes and phases of the
modal shapes at the measurement points. This is detailed in Section 3.

�
 The undersampled modal shapes are interpolated by computing the coefficients w�nm and wþnm, as discussed in Section 4.

�
 The interpolated modal shapes and the identified sinusoids are then simply recombined to compute the interpolated

impulse responses.

This model is similar to the model used in the Method of Fundamental Solutions [16–18]: the part of the modal shape
expressed as a sum of second kind Hankel functions H2

0ðkjxjÞ is here approximated by a sum of propagative waves, while
the part expressed as a sum of first kind Hankel functions with imaginary argument H1

0ðikjxjÞ is written as a sum of
exponential waves. An advantage of the plane wave model over the MFS model is that it does not need the choice of source
points, as a set of plane waves with regular angular space works for any star-convex shape.

3. Mode identification

The first step is to identify the frequencies and dampings associated to each mode. For this task the Simultaneous
Orthogonal Matching Pursuit (SOMP) [19] algorithm is used.

SOMP belongs to the class of sparse approximation algorithms, that aim at decomposing signals as combinations of few
elementary functions chosen from a redundant dictionary, here damped sinusoids of the form ca,o,fðtÞ ¼ e�at cosðotþfÞ [20].

For instance, greedy algorithms, such as the widely used Matching Pursuit [21], identify these atoms one by one, as
follows:
1.
 find the atom (here, the damped sinusoid ca,o,fÞ most correlated with the signal,

2.
 subtract its contribution from the signals, and

3.
 repeat until halting conditions are met.
In our case, the SOMP algorithm goes as follows : step (1) is achieved by computing the scalar products between the
signal and all candidate damped sinusoids ca,o with various damping a, and frequencies o (typically on a uniform grid).
For increased robustness, this frequency analysis is performed over all measured IRs simultaneously, and therefore the
criteria for choosing the best matching damped sinusoid is to maximize the sum, over all channels (measured IRs), of the
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scalar products between a candidate damped sinusoids and the signals at the m-th iteration:

Cmða,o,fÞ ¼
X

k

j/ĉa,o,f,uk,mSj
2

where ĉa,o,f are damped sinusoids normalized such that Jĉa,o,fJ¼ 1, and uk,m is the signal of the channel k at the m-th
iteration.

At step (2), we subtract the orthogonal projection of the signals onto the subspace spanned by the set of damped
sinusoids already identified:

uk,mþ1 ¼ uk,m�Pmðuk,mÞ

where Pm is the orthogonal projection on the space spanned by the identified sinusoids, implemented iteratively via QR
factorization for efficiency.

It should be noted that, instead of computing correlations for different phases, this algorithm computes the norm of the
orthogonal projection onto the space spanned by the complex sinusoid of a given frequency and damping and its
conjugate, ~ca,o,fðtÞ ¼ eðio�aÞt and ~c%

a,o,fðtÞ ¼ eð�io�aÞt . With this method, there is no need to test sinusoids with various
phases, avoiding the discretization of the phases and accelerating the computation. The norm of the projection can be
easily computed using the scalar products with the complex damped sinusoids, themselves computed using the Fast
Fourier transform algorithm, thanks to the equality:X

n

snðe
ð�in�aÞnÞ ¼

X
n

ðsne�anÞe�inn

The algorithm is stopped when a predefined number of sinusoids are identified, or when the energy of the residual
drops below a predefined threshold.

Using multiple channels simultaneously has significant advantages. Identifying the modes on a single channel would
fail when the measurement point lies on a nodal line of one of the modes. Furthermore, the fusion of modal parameters
estimates obtained for each channel is not a straightforward task. Finally, a channel-by-channel implementation would be
slower, as QR factorizations have to be computed separately for each channel, whereas only one is needed for the
multichannel implementation.

Other algorithms can be used for this task, such as high resolution algorithms like MUSIC or ESPRIT [22], using the
specific properties of the damped sinusoids. However, they have little interest for the problem at hand. Their main
advantage is their high resolution, but, in our case, two modes too close to be separated with Fourier-based algorithms
have similar wavenumber and the sum of these modes, while not being a mode itself, will still be well approximated by a
sparse sum of plane waves.
4. Mode interpolation

Once the modes are identified, a plane wave approximation of each mode is performed. As only a small number of plane
waves are needed, this decomposition is based on a small number of parameters—it can thus be expected that these can be
estimated using only a low number of measurements (e.g. less than required by the Nyquist spatial sampling criterion).

In this approximation and for a given mode, the key point is that all plane waves that form this linear decomposition
have the same (unknown) modulus, i.e. the wavenumber k. In other words, a mode with wavenumber k0 belongs to the
subspace Ek0

spanned by the set of plane waves with wave vectors k0~uy, where ~uy is the vector of norm 1 of orientation y.
Thus, k0 can be found by searching amongst all candidate subspaces Ek, the one that minimizes the distance between

itself and the mode considered or, equivalently, that maximizes the norm of the orthogonal projection of the mode on Ek.
In practical implementations, two discretizations will be used : the modes will be spatially sampled on a finite number

nm of points pj, and the subspace Ek will be approximated by the subspace Ek spanned by a finite number nw of plane
waves, themselves sampled at the points pj, with vectors um uniformly distributed along the unit circle (Fig. 2). With Wk

the matrix containing the plane waves in Ek:

Wk ¼

eik~u1 �~x1 � � � eik~uM �~x1 ek~u1�~x1 � � � ek~uM �~x1

^ ^ ^ ^

eik~u1�~xj & eik~uM �~xj ek~u1�~xj & ek~uM �~xj

^ ^ ^ ^

eik~u1 �~xJ � � � eik~uM �~xJ ek~u1�~xJ � � � ek~uM �~xJ

0
BBBBBB@

1
CCCCCCA

the projector on Ek writes Pk ¼WkWy

k, y denoting the Moore-Penrose pseudo-inverse. The estimation k̂ of the wave number
is given by

k̂ ¼ argmax
k

JPkmJ2

where the measured samples of the mode are arranged in the column vector m.



Fig. 2. Discretization of the wave vectors for a given wave number k, and a plane wave sampled at the points pj.
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Once the wave number is known, the coefficients wnm are then simply the coefficient of the projection of the mode in
the basis of the plane waves considered.

It should be noted that the estimation of the wavenumber k0 can be used to determine the dispersion curve of a plate,
without need for complex experimental setup, as it is not affected by the boundary conditions of the plate. Reversibly, if
one has some a priori information about the dispersion curve, this part of the algorithm is greatly simplified, as one only
has to project the signal on the (here known) subspace Ek.

5. Experimental results

Fig. 3 shows the experimental setup used to deploy the proposed IR interpolation method. Three plates are used : a
rectangular plate of dimension 170 mm�190 mm, free on three edges and clamped on a short edge, an odd-shaped plate
with free edges, and a circular glass mirror with one segment cut off (radius R¼210 mm, thickness h¼3 mm, radius of
cutting Ri ¼ 150 mmÞ, a shape that is well-known for exhibiting a chaotic-like behaviour, with free edges. The plates are
isotropic and homogeneous. A circular piezoelectric transducer (PZT) is rigidly coupled to the plates. The PZT is driven by
an audio amplifier in the frequency band 500 Hz–22 kHz using a chirp excitation signal. Flexural waves are detected using
a laser vibrometer. To determine the frequency response, every signal from the vibrometer is deconvolved by the
excitation signal.

5.1. Modal decomposition of impulse responses

In practical implementations, the full SOMP algorithm is run only on a subset of 16 impulse responses, randomly
chosen. Then, the dictionary (set of damped sinusoids) found by the algorithm is used to decompose the other responses.
Analyzing only a subset of the signals keeps the computational and memory needs reasonable, while still having good
accuracy. The damped sinusoids are chosen out of a set of sinusoids with more than 3�105 frequencies and 32 damping
coefficients.

Fig. 4 shows the residual energy at each step, compared to the residual energy of the best approximation using a fixed
number of basis vector of the (undamped) Discrete Fourier Transform (DFT), for 16 channels of the rectangular plate. The
sharp decrease of the residual for the damped sinusoids dictionary indicates that this is an efficient representation,
whereas the Fourier transform is less compact: half of the energy is captured by five damped sinusoids, while this requires
608 DFT coefficients.

5.2. Mode interpolation

Rectangular plate: In this section we compare the different methods for the reconstruction of a mode of the rectangular
plate, at frequency 19 229 Hz. The sampling pattern for the Fourier interpolation is a regular sampling pattern, with 117
samples on a 13�9 grid, with a 15 mm sampling step. The sampling pattern for the proposed scheme is 117 randomly
placed sampling points. With this irregular sampling pattern, Fig. 5 shows the squared norm of the mode projection on
different subspaces Ek, normalized by the total energy of the mode. A peak is visible at k¼154 m�1 (peak value very close
to 1): this value of k is the estimate of the wavenumber for this mode.

Reconstructions of the mode using Fourier interpolation and the proposed algorithm are shown on Fig. 6, and compared
to a reference measurement on a full 39�27 grid. To verify if the exponential plane waves are useful, results are also
displayed using propagative plane waves only (Fig. 6d).
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Since the 13�9 sampling grid verifies the Nyquist criterion, Fourier interpolation manages to interpolate correctly the
mode in the interior domain of the plate, but fails at the border. The proposed algorithm, with or without exponential
plane waves, yields correct reconstruction of the mode even at the borders.

Reconstruction of the interpolated impulse responses ~w is achieved using coefficients ~w�nm and ~wþnm found by
interpolating the modes, and the atoms cn identified by SOMP:

~wðx,y,tÞ ¼
XN

n ¼ 0

cnðtÞ
XM

m ¼ 1

~w�nmei~knm �~xþ
XM

m ¼ 1

~wþnme
~knm �~x

 !



Fig. 6. Vibration mode at f¼19 229 Hz reconstructed by different interpolation methods: (a) reference measurement with a full 39�27 sampling,

(b) reconstruction with Fourier interpolation, (c) reconstruction with the proposed method, and (d) reconstruction with the proposed method with

propagative plane waves only.
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Fig. 7 shows the signal to error ratio of the reconstruction on the plate, for Fourier interpolation, proposed algorithm
with and without exponential plane waves. Mean interpolation SNR is, respectively, 19 dB, 30 dB and 29 dB. A measured
impulse response and its interpolation from the 117 random measurements are plotted on Fig. 8.

5.2.1. Odd-shaped plate

The second plate is shown Fig. 9, its dimension are approximately 370 mm�130 mm, with free borders. It is sampled
on a grid of step 5 mm, with 1455 points. A subset of these samples, with step 15 mm (165 points), is used with Fourier
interpolation, and compared to the result of the proposed method, with 165 random points, with and without evanescent
waves. The interpolation error for these three methods is shown Fig. 10. Mean interpolation SNR is, respectively, 19 dB,
24 dB and 24 dB.

Chaotic shaped plate: Further results on the chaotic shaped plate show that the proposed method offers additional
flexibility in the tradeoff between accuracy and number of measurements. Normal modes of the plate being approximated
by few elementary functions (in our case plane waves), they are recoverable with few measurements. In this particular
case, the modes are recovered with good accuracy using only 35 percent of the number of measurement needed to satisfy
the Nyquist criterion. This achievement is an instance of the compressive sampling theory, where sampling efficiency is
increased under sparsity conditions of the signal, at the cost of computational power. Note that in this part, measurements
are made in an interior domain of the plate, and therefore exponential plane waves are discarded.

The impulse response are sampled on a 64�64 grid, with a 4 mm sampling step. Three subsampling are used a regular
grid of 256 samples with a 16 mm step, and of 64 samples with a 16 mm step, and a random pattern of 64 samples, which
does not cover the lower left corner where the plate is excited. Reconstructions of the mode using the algorithm for the



Fig. 9. Odd-shaped plate.
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three samplings are shown on Fig. 11. They are compared to Fourier interpolation for the two regular samplings. The fine
sampling grid, with its sampling frequency above the Shannon–Nyquist rate, gives excellent reconstruction with the
proposed method and Fourier interpolation. The irregular sampling gives similar results with only 64 samples, less than
the half of the 169 required by the Shannon–Nyquist criterion for a uniform sampling. The coarse (Sub-Nyquist) regular
grid gives an acceptable reconstruction of the mode with the proposed algorithm, while standard Fourier interpolation
fails due to spectral aliasing. The success of the proposed algorithm in this case can be explained by the fact that, contrary
to the Fourier interpolation where the reconstruction suffers from spectral aliasing, only the plane waves used for the



Fig. 11. Vibration mode at f¼20 452 Hz reconstructed by different sampling patterns, with sampling points marked as white dots: (a) reference

measurement with a full 64�64 sampling, (b) reconstruction with the fine regular grid (note that the Nyquist condition is still verified),

(c) reconstruction with the coarse (sub-Nyquist) regular grid with Fourier interpolation, (d) reconstruction with the random grid, (e) the fine grid,

and (f) the coarse grid with the proposed method.

Fig. 12. Plot of the real part of the f¼20 452 Hz mode along a line. Ground truth, Fourier interpolation with coarse samples, proposed interpolation with

coarse regular samples and irregular samples. Coarse regular samples are indicated with white circles. Only one sample of the irregular grid lies on the

line. The imaginary part shows similar behavior.
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decomposition and null at the sampling points are lost. The other plane waves can be distinguished from their aliases by
their wave number, which has to be equal to the one found by the optimization step of the algorithm.

The variation of the real part of the mode along the 17th column of the measurements is shown on Fig. 12, with the
results of the Fourier interpolation and the proposed method for the coarse sampling (samples indicated on the plot), and
proposed method for irregular sampling (only one sample, not represented, lies on the column).

Fig. 13 shows, for different number of measurements, the quality of the estimation of the 200 modes extracted by the
SOMP algorithm. The Nyquist criterion, minimum number of measurements to avoid spectral aliasing, is here equal to

NN ¼
Lk

p

� �2
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Fig. 14. Estimated dispersion curves (a) with the coarse regular grid (64 samples) and (b) with the random grid (64 samples).
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where d�e denotes the ceiling function (roundoff to smallest upper-bounding integer), and L is the width of the domain,
while the number of measurements needed by our algorithm to recover correctly the modes is approximately

NpwC5
kL

p

While not the main goal of this study, this method provides an effective estimate of the dispersion curve of the plate.
These estimations are plotted on Fig. 14, for coarse regular sampling and irregular sampling. More than half of the modes
lie in a range where the number of samples is too low to fulfill the Shannon–Nyquist criterion, without consequence on the
reliability of the estimation. In low-frequency, plates have a dispersion relation of the form o¼ ak2. The value of the
parameter for the irregular sampling, obtained via a least-square fitting of the curve, is estimated at a¼5.95 m2 s�1. This
value is very close to the result of a reference method [23], used on the same plate, which gave a¼5.92 m2 s�1.
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Fig. 15 shows the signal to error ratio of the reconstruction on the plate, for Fourier interpolation and proposed
algorithm without exponential plane waves. Mean interpolation SNR is, respectively, 0 dB and 25 dB. Fig. 16 shows the first
200 samples of a measured impulse response (fine line) and its interpolation (dots) using 64 random measurements points
on the plate. Note that the point of interest is located more than one wavelength of the mode of highest frequency away
from the nearest measurement point, while the Nyquist criterion would imply that this distance never exceeds a half-
wavelength.

As 2 s are needed to reliably measure an IR in this experimental setup, the full measurement of the IRs requires more
than 2 h, while undersampled measurements (2 min) and computation (10 min, on a standard computer) need 12 min,
a tenfold improvement.

6. Conclusion

In this paper, an effective and practical method for the interpolation of homogeneous plate impulse responses is
proposed. Based on a simple damping model and applied on plates with arbitrary star-convex shape and boundary
conditions, this method allows the interpolation of IRs using a plane wave decomposition of the bending wave, in the
whole audio range. While the main objective of the method is the identification of the plate modes, it also enables the
determination of the dispersion curve of the plate. Thereby, the method needs no prior knowledge of the plate mechanical
properties: as long as the part of the structure studied satisfies the Kirchhoff–Love model for a bending thin homogeneous
isotropic plate, IR measurements are self-sufficient for interpolation, as demonstrated on a chaotic-shaped glass plate.
Taking into account some prior physical knowledge to improve the efficiency of the acquisition process is an increasingly
popular trend in the signal processing community, following the theory of compressive sampling. This comes at a
significant increase in computational requirements, although these have become, in the last few years, achievable by
standard PCs. However, when computational resources are scarce, when the physical assumptions are uncertain, or when
acquisition time is unlimited, standard methods may be preferred.
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Further extensions of the model and the algorithm will address the case of orthotropic plates, as well as theoretical
bounds on the number of measurements needed for accurate interpolation.
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