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Abstract: Linear and non-linear thermo-optical dynamical regimes were 
investigated in a photonic crystal cavity. First, we have measured the 
thermal relaxation time in an InP-based nano-cavity with quantum dots in 
the presence of optical pumping. The experimental method presented here 
allows one to obtain the dynamics of temperature in a nanocavity. It is based 
on reflectivity measurements of a cw probe beam coupled through an 
adiabatically tapered fiber. Characteristic times of 1.0±0.2 µs and 0.9±0.2 
µs for the heating and the cooling processes were obtained. Finally, thermal 
dynamics were also investigated in a thermo-optical bistable regime. 
Switch-on/off times of 2 µs and 4 µs respectively were measured, which 
could be explained in terms of a simple non-linear dynamical 
representation.     
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1. Introduction  

Active Photonic Crystal nanocavities have recently received much attention due to their 
importance for quantum optics and quantum electrodynamics [1], as well as for dynamical 
and nonlinear control of light in photonic circuits [2]. In particular, in the context of active 
semiconductor devices, silicon and III-V-based nanocavities have been shown to exhibit 
interesting optically induced gain/absorption properties leading to ultrafast switching and 
bistability, among others [3-6].  

Photon emission and/or carrier induced nonlinearities are obtained through the excitation 
of electrons in semiconductor conduction bands. Electron-hole nonradiative recombination 
processes play a fundamental role in the relaxation of excited electronic populations. These 
are mediated by phonons which become source of heat. While heating turns out to be an 
unwanted effect in most photonic devices because of detrimental thermal loading (specially in 
photonic crystal suspended membranes), it can also be used as a mechanism for fast switching 
(up to 10 MHz-bandwidth) as long as the dimensions of optical cavities are small enough [7-
9]. Moreover, in the context of novel non-linear dynamical mechanisms relying on multiple 
time-scale processes, it has been demonstrated that the so-called thermo-optical excitable 
dynamics may lead to repetition rates as high as 1 GHz [10]. 
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It is worth pointing out that, in all the above situations, an insight into dynamics of heat 
dissipation is of central importance since it provides information about the characteristic time 
scales to take into account when pumping the sample in order to avoid heating up the material, 
i.e. by modulating the optical pump faster than the thermal relaxation time. In particular, quasi 
cw light injection for nonlinear operation or laser emission requires the pump pulse to be 
longer than the carrier recombination lifetime, but shorter than the thermal time. For instance, 
we have recently demonstrated optical bistability in a 2D PhC following this approach [3].  

In the case of self-induced heating phenomena in micro and nano optical cavities (i.e., 
when the heat is produced by optical excitation of the resonant mode in the cavity) the 
characteristic heat dissipation times strongly depend on the cavity size. As it has been pointed 
out in [9], these scale with the characteristic cavity length, i.e. small cavities dissipate heat 
faster. The equilibrium temperature, in turn, scales with the inverse cavity length, mainly due 
to the reduced heat capacity of small cavities. Fast thermal processes are thus compatible with 
high thermal loading, showing the importance of thermal measurements in small cavities, 
such as photonic crystal nanocavities.   

Thermal relaxation often involves several time scales. This is especially the case for 
complex geometries such as a air-bridge photonic crystal slabs, where thermal dynamical 
measurements are particularly relevant since: i) the heat sink is a complex process given by 
the actual three-dimensional structure; ii) if air holes are present, full calculations –for 
instance by means of finite element methods– can be rather cumbersome. Recently, the 
thermal response in photonic crystal devices has been simulated using a finite-elements 
method [11]. In this study, the device concept was a thermo-optical switch based on a W1 
photonic crystal waveguide on silicon. Heating was produced by a pair of electrodes close to 
the W1. Such a device reaches a stationary temperature of 420° C after 20 µs. Heating and 
cooling times of 5.6 µs and 3.5 µs at 90% and 10% of the final temperature, respectively, 
were found.   

From the experimental point of view, while thermal loading can be estimated through 
measurements of thermally induced refractive index change, the thermal relaxation times 
cannot be obtained straightforwardly; so far, this has been done through parameter fitting 
from non-linear dynamical models [8,10]. This requires a complex set of equations coupling 
several variables, therefore the fitted relaxation time becomes model-dependent. In this work 
we present a novel method to directly measure the thermal time out of a photonic crystal 
nanocavity, based on time-resolved reflectivity within a tapered fiber-assisted optical coupling 
scheme. 

Available thermal characterization techniques in semiconductor microchips have mainly 
been developed for microelectronics and concern both stationary profiles and dynamics. 
Stationary temperature profile measurement is a standard technique using infrared CCD 
cameras that allows quantification of thermal loading averaged over time [12]. Dynamical 
measurements of thermal diffusion coefficients on the microscale is also an available 
technique based on visualization of thermal waves by photoreflectance microscopy [13]. The 
technique we propose here focuses on thermal dynamics averaged in the optical volume of a 
resonator; in the case of a photonic crystal nanocavity, the spatial resolution is given by the 
cavity dimensions, of the order of one micrometer. In Section 2 we describe the photonic 
crystal sample and we report on the main optical features through photoluminescence 
experiments. Section 3 is devoted to the description of the taper-assisted coupling method for 
probing the PhC nanocavity. In Section 4 the thermal dynamical measurements are shown. In 
Section 5 we illustrate the thermo-optical dynamical phenomena in the context of bistable 
switches. Section 6 gives a discussion of the results as well as a comparison with thermal 
properties of other nano and microphotonic systems reported in the literature. Finally, the 
conclusions are given in Section 7.     

2. Sample description and characterization 

The sample is a 10 µm × 50 µm photonic crystal of air holes (triangular lattice with period 
a=465 nm, holes radius=0.3a) in an InP suspended membrane (air gap size=1.16 µm, Figs. 1a 
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and 1b), with a nanocavity in the center. The cavity is a modified L3 [14], where the two holes 
closing the cavity are shifted away by 0.15a (see. Fig. 1c). The 262 nm-thick (λ/2n) InP 
membrane incorporates a central single layer of self-assembled InAsP/InP quantum dots 
(QDs), whose density is 1.5×1010 cm−2 and whose luminescence at 300 K is centered around 
1.55 µm with a 145-nm inhomogeneous broadening [15]. The whole structure, incorporating a 
GaInAs sacrificial layer under the InP, is grown by metalorganic chemical vapor deposition 
(MOCVD).  

The QD photoemission is used to identify the cavity mode under incoherent pump @ 800 
nm using a 100 fs-pulses, 80 MHz-repetition rate Ti:Sa laser. The resonant mode filters the 
QD luminescence, giving a spectral peak at 1490 nm; no laser effect was observed for these 
cavities. Due to their relatively large emission spectrum, and almost flat emission over the 
cavity tuning range, QDs are well suited as an active material in the framework of our study 
since their absorption/gain curves are less sensitive to temperature induced spectral shifts with 
respect to quantum wells. As a result, it will be a good approximation to neglect the effects of 
thermally induced electronic band shifts on the cavity mode. Thus, only refractive index 
change with temperature will be taken into account.  
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Fig. 1. (a). Sketch of the photonic crystal-membrane sample. (b). SEM cross-section image of a 
5µm-width membrane showing the ~ 1µm-thickness air gap. (c). Tapered fiber optical coupling 
scheme for transmission and reflectivity measurements. A SEM image of the L3 cavity is 
shown. 

  

3. Taper-assisted coupling scheme  

Once the optical mode is identified by looking at the photoluminescence, the cavity mode is 
probed resonantly through a curved tapered fiber (waist=2 µm along 500 µm, radius of 
curvature=500 µm), which can be approached to the cavity by means of a nanopositioning 
stage. The curvature of the taper reduces the optical coupling to the substrate outside the 
photonic crystal membrane, thus decreasing optical losses. The incident polarization angle 
with respect to the sample plane can be changed by means of a fiber polarization controller. 
Reflectivity measurements are well suited to probe the cavity resonance since they naturally 
avoid the uncoupled light background. In order to measure the reflection upon evanescent 
interaction between the taper and the cavity, a fibered 50% coupler is used. The coupling 
scheme, depicted in Fig. 1c, is similar to other approaches already reported for coupling light 
resonantly into W1 waveguides and cavities [16-18]. When the taper is positioned at the 
center of the defect in contact with the cavity, and broadband femtosecond pulses are injected 
into the fiber (120 fs pulses @ 1492 nm, linearly polarized), a reflected signal is detected 
showing a narrow peak (Fig. 2a, black line). This peak disappears when the taper is moved 
away from the cavity. The polarization angle is set to optimize the reflected signal.  
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In order to estimate the coupling efficiency, the transmission spectrum has been measured. 
This also shows a resonant feature at the same wavelength (Fig. 2b). We estimate the coupling 
efficiency using a simple model based on mode coupled theory [19]. Let τc be the taper-cavity 
coupling time and τ0 the cavity photon lifetime (defined for the field amplitude), the latter 
including the intrinsic cavity lifetime and other additional taper-induced cavity losses, such 
that ω/2Qloaded=1/τ0+1/τc. The ratio of the –in resonance– transmitted power to the input power 
reads  
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tf is the transmitted power in the vicinity of the cavity. The power measured at the 

fiber output is Pt=5.7 nW. The transmitted power out of resonance is Pi~11nw. Assuming 
2
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2

if =Pt/Pi (frequency-independent intrinsic taper losses) we obtain 
2

tf /
2

if ≈0.52, 

which gives τ0/τc≈0.39 using Eq. (1). We then define the coupling efficiency (ηc) as the 
probability that a photon inside the cavity couples to the fiber (in either direction, hence 
Pc∝2/τc) with respect to the photon emission probability throughout all the coupling channels 
(Ptot∝2/τc+1/τ0), namely ηc≡Pc/Ptot=2/(2+τc/τ0). We point out that for an ideal coupling τc<<τ0 

which gives ηc→1. In our case we obtain a coupling efficiency of ηc=44%. Let us stress that 
this high coupling efficiency is of great interest in many applications, like efficient single 
photon sources, or light extraction of cavity based nano-lasers.  
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Fig. 2. (a). Reflectivity spectrum of the cavity resonance without pump (black line), and with 
165µW pump (red line). (b). Simultaneous transmission and reflection. The thick arrow 
indicates the out-of-resonance transmitted power used to estimate the coupling efficiency (see 
text). 

 

4. Thermal relaxation dynamics 

First, the probe power injected into the taper was set to a low level (<1 mW) in order to 
prevent any self-induced thermal or electronic effect [20]. In order to produce heat, the cavity 
is optically pumped by the surface using a modulated beam at 800 nm focused down to a 3.2 
µm-diameter spot (@1/e2 of the intensity). This wavelength is mainly absorbed in the InP 
(bandgap wavelength ~ 900nm @ 300 K). Non-radiative carrier relaxation processes are the 
central mechanisms producing heat in the membrane. Thermal effects increase the refractive 
index, shifting the resonance to a longer wavelength. Figure 2a shows the resonance at 165 
µW pumping level on the sample.  
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Thermal dynamics is measured as follows. The wavelength of a tunable laser is set at a 
given detuning ∆λ0 with respect to the resonance of the unpumped cavity (∆λ0≡λc-λp, where 
λc is the wavelength at the center of the resonance and λp the probe wavelength), probing the 
cavity-induced reflection. Heating up the cavity results in a thermally induced wavelength 
shift, producing a change in the reflected intensity of the probe light. A high sensitivity fiber-
coupled avalanche photodiode (APD) with a 1.44 GHz-bandwidth is used to temporally 
resolve the change of the reflected signal. Traces are recorded on a 1 GHz -bandwidth 
oscilloscope. Upon 10 µs width-50 µs period square pump pulse excitation, the reflected 
signal exhibits either a drop-out followed by a recovery for ∆λ0≥0 (i.e. blue detuning), or 
intensity peaks for ∆λ0<0 (red detuning). Both situations are directly related to the thermal 
dynamics of the resonance towards the equilibrium states. For a nearly resonant probe (∆λ0=0, 
Fig. 3a), the signal decreases in the presence of the pump beam due to thermally-induced shift 
of the resonance. For red detuning, instead, the resonance “passes through” the injection 
wavelength leading to a maximum of intensity in the heating process, followed by a maximum 
in the cooling process (Figs. 3b-3d).    
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Fig. 3. Time dependence of the reflected cw probe upon squared pump modulation (red lines 
on top) for different detuning: a) ∆λ0=0; b) ∆λ0=-0.08 nm; c) ∆λ0=-0.21 nm; d) ∆λ0=-0.33 nm. 
(e)-(f) Thermal dynamics obtained from (a)-(d), taking into account the lorentzian shape of the 
resonance. The arrow in (c) indicates a small amplitude short peak corresponding to electronic 
blue-shift dynamics before the slow thermal dynamics takes place.   

 
In order to extract the characteristic thermal time from the time evolution of the reflected 

probe, the spectral shape of the resonance must be taken into account. The resonance can be 
fitted with a Lorentzian function. Considering the time dependence of the center of the 
resonance λc(t) –which contains the refractive index dependence with temperature–, the time-
dependent reflectivity R(t) is thus modelled as R(t)=1/[1+(λc-λp)

2/(γ/2)2], where γ is the 
FWHM of the resonance. The resonance width γ has been measured from the reflectivity 
signals as a function of detuning, and gives γ=0.33 nm, corresponding to a quality factor of 
Qloaded≅4520. The time dependent wavelength shift becomes ∆λ(t) ≡λc(t)-λp=±[R(t)-1-1]1/2 γ/2, 
where the two roots indicate blue or red shift of the probe with respect to the cavity resonance. 
We point out that the kinetics of the center of the resonance also contains an ultrafast process 
related to carrier-induced index variation. By means of an ultrafast pump and probe technique 
we have verified that such processes decrease the refractive index blue-shifting the resonance 
in a time shorter than 1 ns, eventually being followed by a thermally driven red-shift. 
Therefore, they lead to short downward peaks for red detuning, and short upward peaks for 
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blue detuning. We point out that such effects remain small in our measurements (see arrow in 
Fig. 3c).  

Curves of ∆λ(t) are plotted as a function of time in Figs. 3e-3h for the heating and cooling 
processes. Note the slight jumps in the signals at ∆λ~0, which are due to the discontinuity of 
the two roots in the inverse of the lorentzian function. On the basis of such curves, the 
characteristic times have been calculated as the times at which the modulus of the total 
dynamical wavelength shift (|λc(t)-λc(t=0)|=|∆λ(t)-∆λ0|) becomes 1/e of its stationary value. 
As can be seen in Figs. 3e-3h, the heating and cooling times for the different detuning values 
are close to each other, as it is expected. Under the hypothesis that the characteristic times do 
not depend on the initial detuning, we average out the measured values for different detuning 
which yields tC=0.9±0.2 µs and tH=1.0±0.2 µs for the cooling and heating processes, 
respectively. We then conclude that there is no significant difference between cooling and 
heating times in the weak-probe regime. It is worth pointing out that for the zero-detuning 
case (Fig. 3e) the cooling time is about a factor 2 smaller compared to the other cases. For 
zero-detuning, indeed, the reflectivity time trace for the cooling process is mainly affected by 
the spectral tail at the blue side of the resonance, which is slightly different to the tail at the 
red side (see the slight asymmetry of the resonance in Fig. 2a), which may explain the 
substantial deviation for this situation. Therefore, our technique is more accurate for 
thermally-induced wavelength shifts within the FWHM of the resonance, i.e. far from the 
spectral tails (|∆λ(t)|< γ/2).  

5. Thermo-optical bistability 

In this section we study the thermal dynamics in the context of bistable switches. Thermo-
optical bistability [21-22] can be obtained through self-induced red shift of the resonance 
upon (large enough) cw injection from a single beam. Indeed, the thermally-induced refractive 
index increase also takes place for a nearly optically resonant cw injection, in absence of any 
incoherent pump. In such a case, bistable operation can be expected provided that: i) the 
injection wavelength is at the red side of the resonance; ii) the detuning between the injection 

beam and the cold resonance is larger (in modulus) than ~ 2/3γ ; iii) the injection power 
exceeds a given threshold. As long as the nonlinearity comes from a thermo-optical effect, the 
switching times should be related to the characteristic thermal relaxation time obtained before.  

For injection powers greater than ~1 mW, thermo-optical bistability was observed. 
Bistable behaviour can be shown by measurements of output power as a function of input 
power for different detuning, leading to hysteresis cycles. Figure 4a shows the spectral range 
of wavelength detuning used in this experiment. Importantly, the power sweep in such 
measurements must be quasi-stationary, i.e. the duration of the power ramp must be much 
longer than the thermal dissipation time. Injection modulation is thus introduced by a 10 kHz 
triangular amplitude modulation of the input beam. In such conditions, simultaneous input 
modulation and optical transmission through the taper were measured as a function of time, 
the latter using a DC-coupled 1 GHz photodiode (Fig. 4b). For |∆λ0|>0.35 nm, hysteresis 
loops are observed (Fig. 4c). Their size increases for larger detuning-values, up to |∆λ0|~0.72 
nm where the maximum injection power remains below the bistability threshold. Switching 
times have been measured as the time widths between the minimum and the maximum of the 
switch processes. The switch on time is 1.8 µs, whether the switch off time is 4 µs. Both are 
of the order of the 1 µs characteristic time obtained with the pump and probe technique. 
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Fig. 4. Thermo-optical bistability. a) Reflectivity spectrum of the linear cavity resonance, and 
the wavelength range for the cw injection. b) Time traces of input (blue line) and transmitted 
output (green line) powers for a detuning of ∆λ0=-0.56; durations of the switch processes are 
1.8 µs and 4 µs for the on/off switches respectively. c) Hysteresis cycles putting into evidence 
bistable behavior. Detuning-values with respect to the cavity resonance are, from ∆λA to ∆λK: -
0.11, -0.27, -0.36, -0.46, -0.52, -0.56, -0.6, -0.64, -0.66, -0.68 and -0.72 nm. The input power is 
measured at the fiber taper input.  

 

6. Discussion 

6.1 Linear regime: thermal dynamics in a 2D PhC membrane 

The energy absorbed in the pumped region can be essentially dissipated in two ways. The first 
mechanism of heat flow corresponds to heat conduction through the membrane (Fig. 5a). In 
order to obtain an analytical expression for the associated thermal resistance, let us consider a 
2D cylindrical heat conductor of radius R with thermal conductivity κ, and a heat source of 
radius r (Fig. 5b).  The thermal resistance for a length d (membrane thickness) between r and 
R is Rplane=ln(R/r)/2πκd~1.7 104 K/W, where: R is half of the −smallest, i.e. closest to the heat 
sink− lateral size of the membrane (R=5µm), r the pump radius (r=1.6µm) and κ=κeff=0.46 
W/cm K, κeff being an effective thermal conductivity calculated as a geometrical average of 
the material with holes. The second mechanism of heat flow corresponds to thermal 
conduction through the air gap [23]. This can be estimated as Rairgap=δ/κairπr2~6 106 K/W, 
where δ is the air gap thickness (δ=1.16 µm) and κair=2.4 10-4 W/cm K. Since Rairgap>>Rplane, 
we can neglect heat transfer across the air gap and assume that the suspended membrane 
behaves as a quasi 2D system for heat diffusion and conduction. Eventually, heat is dissipated 
out of the membrane through the substrate. Now we derive the order of magnitude of the 
thermal time scale from a 2D heat equation. An analytical expression for the heat dissipation 
time in the quasi-stationary limit can be derived: τth≈ρCpr

2ln(R/r)/2κ, where ρ is the density 
and Cp the specific heat capacity in the pumped region. Using typical thermal constants for 
InP (ρCp=1.5 J/cm3K), we obtain τth~50ns. In order to compare the calculated τth with the 
experimental results, we estimate τth from the red shift of the resonance. We first calculate the 
temperature increase from tabulated values of refractive index change per unit temperature 
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(nT, nT/n≈0.63 10-4 K-1 @ 300 K for InP [24]) in the following way: ∆T=(n/nT)|∆λth/λ|. Using 
the measured red shift |∆λth|=0.3 nm with 165 µW of incident power, we obtain ∆T≈3.2 K. 
Now, the temperature increase of the membrane under continuous pump can be related to τth 

through ∆T=η800Ppumpτth /ρCpVol, where Vol=πr2d (d=membrane thickness) is the volume of 
the pumped region and η800 is the fraction of the incident power absorbed at 800 nm 
(η800≈33% [25]). From the last expression we obtain τth≈186 ns.  

Note that τth is about one order of magnitude below the measured relaxation times. The 
difference between the thermal time scale for energy dissipation in the quasi-stationary limit 
and the relaxation time is related to a generic dynamical feature of heat diffusion in this kind 
of systems rather than just to the particularities of the photonic crystal. Indeed, such a 
difference has already been observed in other geometries without air holes such as microdisks 
[8]. In order to investigate the relaxation time tth, let us look for the time dependent solutions 
of a 2D rectangular membrane of size 2Lx×2Ly with thermal diffusivity α and a heat source 
Q(r), symmetric under reflections x→-x and y→-y (Fig. 5c). Boundary conditions are 
T(x=Lx)=T(y=Ly)=0 and ∂T/∂x|x=0=∂T/∂y|y=0=0 for symmetrical solutions (T is temperature 
increase with respect to the substrate temperature). The general solution is a superposition of a 
particular (stationary) solution Tst(r) and the homogeneous solution, T(r,t)=Tst(r)+Th(r,t). It 
can be easily showed that Th can be expanded in Fourier series, 

 ( )
, 0

, cos( )cos( )nmt
h nm xn ym

n m

T t A e k x k yσ
∞

−

=
= ∑r   (2) 

with kxn=(2n+1)π/2Lx, kyn=(2n+1)π/2Ly and σnm/α=kxn
2+kym

2. The amplitudes Anm can be 
obtained from the initial conditions. In the case of the heating process (Q(r)≠0) the initial 
condition is T(H)(r,t=0)=0, and the coefficients A(H)

nm are calculated as the Fourier transform 
of -T(H)

st(r). Thus, the Fourier modes relax with characteristic times given by 
tth,nm=4Lx

2Ly
2/απ2[(2m+1)2Lx

2+(2n+1)2Ly
2]. Note that higher order modes are dissipated 

faster. Therefore, we can expect the relaxation dynamics to be driven by the lowest order 
mode provided it is efficiently excited. In our case, since Ly>>Lx, tth,00≈4Lx

2/απ2≈300 ns, 
meaning that the smallest length governs the relaxation process. This estimation is about a 
factor 3 below the measured relaxation time. In addition, Eq. 2 also accounts for cooling 
processes, whose dynamics is denoted by T(C)(r,t). In such a case the heat source is turned off 
(Q(r)=0) hence T(C)

st(r)=0 and the initial condition reads T(C)(r,t=0)=T(H)
st(r). Therefore 

A(C)
nm=- A(H)

nm, hence T(C)(r,t)=-[T(H)(r,t)-T(H)
st(r)], which shows that the relaxation dynamics 

of the cooling process is the same as for the heating process.   
The discrepancy between the experimentally obtained time constants τth and tth and their 

theoretical estimations may be due to the strong approximations used in our simple models, in 
particular the cylindrical symmetry to represent a 2D heat diffusion and conduction in the 
membrane, the effective conductivity of the photonic crystal as a simple spatial average of 
thermal conductivities, and the temperature being fixed to the ambient temperature at the end 
of the membrane (perfect heat sink at r=R in the cylindrical model, and at Lx and Ly in the 
rectangular model). Full 3D-finite element numerical simulations, as in Ref. [11], should be 
carried out in order to better account for thermal dynamics in this system.   

The measured relaxation times are comparable to the numerical values obtained for a 
similar geometry in Ref. [11], where a slight asymmetry in turn-on/off processes has been 
observed. From the dynamical point of view, an asymmetry may arise if the system is heated 
during a time shorter compared to the characteristic heating time. In our case, since the pump-
on and pump-off times −10 µs and 40 µs respectively− are much longer compared to the 
relaxation time (~1 µs) we do not expect such an asymmetry. The difference in relaxation 
times with respect to Ref. [11] may be due to differences in size of the heated regions, 
membrane size, differences in thermal constants (the thermal conductivity of Si is about a 
factor 2 greater than the one of InP) and, most importantly, the presence of a 1 µm-thick oxide 
layer underneath the PhC membrane. An oxide cladding is also present in Ref. [10], where the 
thermal relaxation time observed for a 5 µm-size Bloch mode in a 2D InP PhC slab on SiO2/Si 
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was of the order of 1 µs as well. In both cases, the lateral dimension of the heated region 
being quite large, the heat flow can be expected to be essentially driven by the ~1 µm-
thickness SiO2 cladding directly to the substrate [26]. 

The Si-based PhC air-bridge membrane reported in [7] also exhibits characteristic times 
close 1 µs for thermal effects, similar to our InP membrane in terms of lateral size. Finally, 
with respect to other geometries, we find our results comparable to the times found in silicon 
microdisks [8]. In the case of silica microdisks, in contrast, thermal dynamics lies on the 
millisecond timescale [9], mainly due to the low thermal diffusivity of silica; indeed, the 
thermal diffusivity (κ/ρCp) is about two orders of magnitude smaller compared to silicon. 

6.2 Nonlinear regime: thermo-optical bistability 

In the nonlinear regime, the switching times were measured as the time interval between 
minimum and maximum of time traces. The obtained switching times are ~2 µs for the 
switch-on process (from the cold to the hot states), and ~4 µs from the switch-off process 
(from the hot to the cold states). As expected, both are related to the 1 µs characteristic time 
measured in the linear regime.  
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Fig. 5. (a). Sketch of the sample cross section, showing the direction of the heat flow. (b). 
Simplified model for cylindrical 2D heat conduction in a membrane; κeff represents the 
effective thermal conductivity of the photonic crystal membrane (see the definition of the other 
parameters in the text). (c). Rectangular geometry for the calculation of transient dynamics in a 
2D membrane. (d). Phase space for bistability conditions. Blue, green and red lines: stationary 
solutions of the intracavity power (P) as a function of the normalized wavelength shift (θ) for: 
bistable conditions (Pin,input=2 mW, blue), switch on conditions (Pin,input=3.3 mW, green) and 
switch off conditions (Pin,input=1.55 mW, red).  Black line: stationary solutions of θ. The 
intersections of the black line with the curves give the steady states: θst

+(-) is the stable state for 
the switch on (off) process. The direction of the dynamical flow is indicated by the arrows. The 
opposite slopes of dP/dθ at the fixed points mathematically explain the difference in relaxation 
times (see text). Parameters are: P0=2 mW (calculated with Vc=0.08 µm3, τth=186 ns, Γ=0.015, 
Qloaded=4520, η1500=0.00057 and a=100 cm-1), Pin=0.263 Pin,input (Pin,input is injected power into 
the fiber), ξ=16.2 (using vg=c/10, taken from Ref. [29]) and θ0=3.4.  
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The difference between switch-on and switch-off times can be explained from simple 
considerations of dynamical thermo-optical nonlinearities in the following way. The 
temperature variation ∆T(t) imposes a dynamical thermal red shift |∆λth(t)/λ|=(nT/n)∆T(t), 
with ∆T(t)=η1500P(t)τth/ρCpVc, where: P(t) is the intracavity power; η1500 is the fraction of 
intracavity power absorbed at 1500 nm, η1500~2ΓaL, with Γ the optical confinement factor in 
the QDs layer, a the absorption coefficient and L is the cavity length; Vc is the cavity volume 
(Vc~0.76 (λ/n)3 [27]). Defining the normalized wavelength shift as θ(t)=[λin-λc(t)]/(γ/2), where 
λin is the injection (rather than “probe” as in the linear case) wavelength, the dynamical 
equation becomes  

 0
0

( ) 1 ( )
( )

th

d t P t
t

dt t P

θ θ θ
 

= − − + 
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 (3) 

 
where P0 is a characteristic power inside the cavity, P0=ρCpVc/[2(nT/n)Qloadedη1500τth], tth the 
characteristic relaxation time obtained in Section 4, and τth the time scale for heat dissipation 
[28].  

Since the dynamics of P(t) is much faster than the thermal processes, its dynamical 
equation can be adiabatically eliminated. Therefore P(t) becomes  
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which simply describes the Lorentzian shape of the resonance (ξ is the intensification factor 
inside the cavity; this can be estimated from mode coupled theory to be ξ~vgτc/2L(1+τc/τ0)

2, 
where vg is the group velocity, and Pin is the input power in the vicinity of the cavity). The 
steady-state solutions can be graphically found by intersecting solutions of dθ/dt=0 from Eq. 

(3), and Eq. (4). Two stable states θ+
st and θ-

st coexist provided that 30 >θ , and Pin>Pth, 

where Pth is the bistability threshold (Pth~P0θ0/ξ, Fig. 5d). Steady state relaxation dynamics 
can be obtained through the linearization of Eq. 3 in the vicinity of the fixed points, i.e. by 
setting θ≅θst+A exp(-t/τ±) in Eq. (3). The eigenvalues τ± can be readily obtained:  
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Since P(t) has slopes with opposite signs at the two stable steady states (see Fig. 5d) 

corresponding to the switch on/off processes, namely positive (negative) slope for θ+
st (θ-

st), 
therefore τ+<τ-, consistent with the experimental observation of switch-on times shorter than 
switch-off times. With the parameters of Fig. 5d we obtain τ-/τ+≈6.3. Experimentally, the ratio 
of switch-on to switch-off times was ~2.2, which contains the information of the full –i.e. 
nonlinear– relaxation dynamics, whereas the calculated τ-/τ+  only accounts for the linear 
relaxation close to the steady states. We point out that the predicted difference in switching 
times given by Eq. (5) is generic in bistable systems and can be expected to hold even for fast 
nonlinearities. Moreover, even in absence of bistability, a high power input may affect the 
thermal dynamics in the way described by Eq. (5) leading to a dependence of the thermal 
relaxation times to the equilibrium state θst. Unlike linear thermal dissipation regimes, in the 
nonlinear regime heating and cooling processes may have different relaxation times provided 
the intracavity power is close to the characteristic power P0.  
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7. Conclusions 

In conclusion, we have developed a method to directly measure the thermal relaxation time 
out of a photonic nanocavity. This technique relies on reflectivity measurements of a cw probe 
beam coupled to the cavity through a tapered fiber, becoming sensitive to the thermally 
induced increase of the refractive index within the cavity. We applied this method to an InP-
based nanocavity on a suspended membrane. Wavelength shifts up to 0.3 nm for 165 µW 
pumping power @ 800 nm were observed. The obtained values for the characteristic thermal 
times are close to 1 µs, more than a factor 3 compared to a rough estimation of the relaxation 
time of the fundamental mode in a rectangular 2D membrane, showing the relevance of the 
experimental measurements. In addition, the thermal relaxation time has been shown to be 
closely related to switch on/off times within an opto-thermal bistable regime. In a general 
sense, additional engineering of photonic crystal geometries together with the inclusion of 
new materials should improve heat sink properties, which can be experimentally tested with 
the method proposed here. This would allow both increasing the repetition rate of thermal 
switches and reducing thermal loading for cw device operation. The latter is of central 
importance for obtaining fully stationary active and nonlinear functionalities such as efficient 
cw lasers and amplifiers, as well as long memories and logic gates based on cw bistable 
operation in photonic crystal circuits.  
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