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Abstract—This paper introduces a new dictionary design
method for sparse coding of a class of signals. It has been
shown that one can sparsely approximate some natural signals
using an overcomplete set of parametric functions, e.g. [1], [2]. A
problem in using these parametric dictionaries is how to choose
the parameters. In practice these parameters have been chosen
by an expert or through a set of experiments. In the sparse
approximation context, it has been shown that an incoherent
dictionary is appropriate for the sparse approximation methods.
In this paper we first characterize the dictionary design problem,
subject to a constraint on the dictionary. Then we briefly explain
that equiangular tight frames have minimum coherence. The
complexity of the problem does not allow it to be solved exactly.
We introduce a practical method to approximately solve it.
Some experiments show the advantages one gets by using these
dictionaries.

Index Terms—Sparse Approximation, Dictionary Design, In-
coherent Dictionary, Parametric Dictionary, Gammatone Filter
Banks, Exact Sparse Recovery.

I. INTRODUCTION

SPARSE modeling of signals has recently received much
attention as it has shown promising results in different

applications. It has been used for coding, source separation,
feature extraction and compressive sampling. A basic assump-
tion to apply this model is that the given class of signals can be
sparsely represented or approximated in an underdetermined
generative model. Often, a linear model has been used as the
generative model. In this framework, one can use a matrix
Dd×N ∈ Rd×N : d < N , called dictionary, to represent the
signal approximately using y ≈ Dx.

Sparse approximation and sparse representation methods
have been studied theoretically and practically [3]. Let y ∈ Rd

and x ∈ RN be the given signal and the coefficient vector
respectively. A sparse approximation would be,

x̂ = arg min
x

‖x‖0 s. t. ‖y − Dx‖2 ≤ ξ,

where ‖.‖0 is the sparsity measure that counts the number
of the non-zero coefficients and ξ is a small positive constant.
This problem in general, like the sparse representation problem
(ξ = 0), is an NP-hard problem [4] and can not be solved in a
reasonable time. Numerous algorithms have been proposed to
find an approximate solution. These algorithms are classified
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as greedy methods, like Matching Pursuit (MP) [5] and its
derivations [6], and relaxation methods, like Basis Pursuit
Denoising (BPDN) [7] and IRLS-type algorithms [8], [9].
The sparsity of the representation can be increased using
an appropriate dictionary for the given class of signals. The
common methods for dictionary selection are to concatenate
orthogonal bases, see for example [10] and [11] for the
possible advantages of using such a dictionary in theory and
practice, or to use a tight frame [12]. These dictionaries can be
improved using dictionary learning methods [13]–[16]. These
methods adapt an initial dictionary to a set of training samples.
Therefore the aim is to learn a dictionary for which an input
signal, taken from a given class of signals, has a sparse
approximation.
There is another dictionary selection method, which is called

dictionary design. Different methods exist to design a suitable
D for a set of natural signals. One method is based on
a generative model of the signals. If these signals are to
be received by the human sensory system, a more effective
method to design D is to use a human perception model
[1], [2]. In fact, the stimuli responses generate elementary
functions which are more related to the analysis dictionary
[17]. These elementary functions have also been used for
generating the synthesis dictionary D. Here, we assume that
the set of elementary functions can be described by using a set
of parameters and a parametric function. For example, in the
multiscale Gabor functions [5], the parameters are scale, time
and frequency shifts and the parametric function is Gaussian.
In general the parameters are in the continuous domain. To
generate a dictionary based on these generative functions,
we can sample these continuous parameters. The question is
then how best to sample the parameters. Several researchers
have introduced different methods to optimize the sampling
process. In [18], a sampling scheme was introduced which
finds an approximately tight frame, using 2D Gabor functions.
Gammatone and Gammachirp filter banks have been shown
to approximate the human auditory system. [19] presented
two types of filters, which approximate the Gammatone filter
banks, and allow a possible fast VLSI implementations. Alter-
natively, some researchers optimized the parameters based on
the closeness to what is observed in the perceptual systems
[20], [21], [22]. In practice, [23] showed that the optimal
parameters, found by fitting to the human auditory system,
do not match the parameters estimated from English speech
signals.
When we use an approximate or a relaxed method to find

a sparse approximation, having an exact generative model
does not guarantee that we find the best sparse approximation.
An important parameter of a dictionary, for successful sparse
recovery, is its coherence µ [24]. The coherence is defined
as the absolute value of the largest inner-product of two
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distinct atoms and it has been shown that when µ is smaller
than a certain value MP and BPDN can recover the sparse
representation of the input signal [10], [25], [26]. It has also
been shown that the coherence upper-bounds the residual error
decay in MP [27] and OMP [25]. Therefore a dictionary with
small µ is desirable for sparse coding. Let G := DT D be
the Gram matrix of the dictionary. The coherence of D is the
maximum absolute value of the off-diagonal elements of G,
whenever the columns of the dictionary are normalized. For
such D if the magnitude of all off-diagonal elements of G

are equal, D has minimum coherence [28]. This normalized
dictionary is called an Equiangular Tight Frame (ETF) [29].
Although this type of frame has various nice properties, we
here consider its advantages in exact atom recovery [25]
and the residual error decay rate [27]. Unfortunately ETF’s
do not exist for any arbitrary selection of d and N [29].
Therefore a dictionary design aim can be to find the nearest
admissible solution. On the other hand, natural signals do not
generally have sparse approximations using an ETF. Therefore,
the dictionary design problem can be to find a parametric
dictionary whose Gram matrix is close to the Gram matrix
of an ETF. This way, domain knowledge is incorporated into
the parametric functions used, while the optimization aims at
improving the ability of algorithms to find sparse approxima-
tions. The given class of signals has a sparse approximation
using the proposed dictionary. That is because it is generated
by sampling the parameters of generative functions fitted to
the signal, whilst the dictionary has nice properties that allow
exact atom recovery, because it is close to being an ETF. In
practice we show that the designed dictionary indeed gives
advantages over the standard dictionary, in terms of efficient
sparse approximation. Another advantage of the parametric
dictionary is that sparse approximation methods only need
to store the parameters, instead of the full dictionary, which
offers a huge reduction in memory requirement (the size of
the parameter matrix is much smaller than the size of the
corresponding dictionary). Sometimes this type of parametric
dictionary can furthermore be multiplied to the coefficient
vectors faster than direct matrix-vector multiplication. It then
also speeds up most of the currently available sparse coding
methods.

The parametric dictionary design, like other dictionary de-
sign methods, has some disadvantages. The main disadvantage
is that it does not explicitly depend on a given class of
signals, but instead on a class of parametric dictionaries. As
an example, if the actual data often lies in a subspace of the
signal space, the optimal dictionary1 would have more atoms
in that subspace. This might contradict with the minimum
coherence constraint. It is hoped that this can be prevented
by appropriate choice of the parametric family of functions
and the initialization of the algorithm. Another difficulty in the
given problem is that the current algorithm stores the Gram
matrix explicitly. The current method is thus not tractable for
very large dictionaries.

It deserves to be mentioned that there is another way to

1The optimal dictionary is that by which the given class of signals has the
sparsest approximation.

use parametric dictionaries. In [30], [31] some methods are
proposed to sparsely approximate signals using continuous
parameter parametric dictionaries. The convergence rate of MP
algorithm with this setting is also studied in [31]. In contrast
the designed dictionary, using parametric dictionary design, is
discretized and can be used by the conventional sparse coding
methods.

A. Contributions of the paper

In this paper we introduce a new framework for dictionary
design. To the authors knowledge, this formulation has not
been considered previously. This formulation can be used to
design a dictionary when dictionary learning is not possible,
or is computationally intractable. We show how we can find an
approximate solution using an alternating minimization type
method.

The parametric dictionary is represented using a small
number of parameters (often less than 5). Therefore we do not
need to store the dictionary explicitly. This can save a consid-
erable amount of memory when using sparse approximation
algorithms.

Finally we show experimentally that there are sparse ap-
proximation benefits in using such a parametric dictionary for
audio coding.

B. Organization of the paper

In the next section we formulate the parametric dictionary
design problem. We then present a practical algorithm to
find an approximate solution. For a case study we present
the parametric dictionary formulation and the update formula
derivation. Experiments, in the simulation subsection, show the
advantages of the proposed dictionary design. The stability of
the algorithm is analyzed after its introduction in Section III,
while the convergence of the proposed algorithm is shown in
Appendix A.

C. Notation

In this paper we use small and capital bold face characters to
indicate vectors and matrices respectively. All the parameters
have real values, even though we do not state this explicitly
each time. The matrix and vector norm spaces that we use in
this paper are defined over the real fields with "2 and ‖.‖F ,
which is the Frobenius norm, as the corresponding norms
respectively.

The tensor product used in this paper is for the multiplica-
tion of two three-dimensional arrays. This multiplication uses
the first two indices to make a simple matrix-matrix product
and the third parameter as the indices of these products.
In other words, the third parameter specifies two matices
from the three dimensional tensors and simplifies the tensor
product to matrix-matrix multiplications. The number of these
multiplications is the size of third index.

The terms “ETF” and “Grassmannian Frame” have been
used interchangingly for the same concept [32], [28], [29]. In
this paper we prefer to use ETF, which is more comprehensive.
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Fig. 1. Different alternating optimization methods: (a) Alternating Projection, (b) Alternating Minimization and (c) Proposed Method.

II. PARAMETRIC DICTIONARY DESIGN: FORMULATION

In this section we formulate the problem of optimizing D
to be close to an ETF. Let DΓ ∈ D be a parametric dictionary.
Γ is the parameter matrix, with γi as its ith column and D

is the set of admissible parametric dictionaries. Each column
of DΓ, di (with the associated parameters γi), is called an
atom. In this paper, by letting DΓ be a matrix, we implicitly
assume that the generative model is discrete. This model can
be extended to a continuous model, which is out of our scope.
To select a Γ ∈ Υ, where Υ is an admissible parameter set, we
need to introduce an objective. In section I we explained that
for a better performance in sparse coding, we are interested
to design a dictionary which is close to being an ETF. For a
given normalized D, the coherence of D, µD, is defined by,

µD = max
i,j:j "=i

{|〈di,dj〉|}.

A column normalized dictionary DG is called ETF, or Grass-
mannian frame [32], when there is a γ : 0 < γ < π/2, such
that,

|〈di,dj〉| = cos(γ) : ∀i, j i )= j.

The authors in [32] showed that if there exists an ETF in D ,
the set of d by N uniform frames2, it is the solution of,

arg inf
D∈D

{µD}.

The infimum has been used to guarantee that the problem has
at least a solution, when D is not closed, which is in the
closure of D . To study the lower bound of µD, the existence
of an ETF and its Gram matrix, [32] introduced the following
Theorem.
Theorem 1: [32, Theorem 2.3] Let D be a uniform frame

in Rd×N . Then,

µD ≥ µG :=

√
N − d

d(N − 1)
. (1)

Equality holds in (1) if and only if D is an ETF. Furthermore,

equality in (1) can only hold if N ≤ d(d+1)
2 .

Let ΘN
d be the set of Gram matrices of all d × N ETFs.

If GG ∈ ΘN
d then the diagonal elements and the absolute

values of the off-diagonal elements of GG are one and µG

2A frame with unit column norms.

respectively. A nearness measure of D ∈ Rd×N to the set
of ETFs can be defined as the minimum distance between
the Gram matrix of D and GG ∈ ΘN

d [28]. To optimize the
distance of a dictionary to an ETF, we can solve,

inf
Γ∈Υ,GG∈ΘN

d

‖DT
Γ DΓ − GG‖∞,

where the matrix operator ‖.‖∞ is defined as the maximum
absolute value of the elements of the matrix. Instead, we
would like to use a different norm space which simplifies
the problem3. An advantage of using "2 measure in the given
problem is that it considers the errors of all elements (and not
just the maximum absolute error). In this framework, when
there is no ETF in D , we find a dictionary that is close to
be quasi-incoherent [25] [27]. Therefore we use the following
formulation,

inf
Γ∈Υ,GG∈ΘN

d

‖DT
Γ DΓ − GG‖

2
F , (2)

where ‖.‖F is the Frobenius norm. This is a non-convex
optimization problem in general. It might have a set of
solutions or it may not have any solution (e.g. ΘN

d is empty
as there do not always exist ETF’s for the arbitrary N and
d). One can extend ΘN

d to a convex set ΛN [28], which is
non-empty for any N , by

ΛN = {G ∈ R
N×N : G = GT , diagG = 1, max

i"=j
|gi,j | ≤ µG}.

Relaxing (2), by replacing ΘN
d with ΛN , gives the following

optimization problem.

inf
Γ∈Υ,G∈ΛN

‖DT
Γ DΓ − G‖2

F (3)

An important difference between (2) and (3) is that the relaxed
problem, by using non-empty admissible sets, is guaranteed to
have at least one solution. In this work, it is assumed that Υ
is closed, which allows us to use the “min” operator instead
of “inf” in (3). We therefore use the relaxed formulation
from now on. We show experimentally that the approximate
solutions of (3), even though the Gram matrix of the dictionary
might only be close to ΛN , show good performances in sparse
approximation.

3Although the matrix space with !∞ is a well defined Banach space, here,
we use !2 norm Hilbert space to use easy formulation of the optimization
process.
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Algorithm 1 Parametric Dictionary Design

1: initialization: k = 1, DΓ1
∈ D , {αi}1≤i≤K : 0 < αi ≤ 1

2: while k ≤ K do
3: GΓk

= DT
Γk

DΓk

4: GPk+1
= minG∈ΛN ‖GΓk

− G‖F

5: GRk+1
= αkGPk+1

+ (1 − αk)GΓk

6: DΓk+1
∈ DΓk

∪ {∀D ∈ D : ‖DT D − GRk+1
‖F <

‖GΓk
− GRk+1

‖F}
7: k = k + 1
8: end while

In the next section we introduce a practical method to find
an approximate solution to (3). Our approach has similarities
with alternating minimization. This method is guaranteed not
to increase the objective function in each step. Because the
objective is non-negative, the algorithm is stable4 due to
Lyapunov’s second theorem [33]. Also, one can show that
the objective value converges. The stability of the algorithm
and the convergence of the objective value do not prove the
convergence of the algorithm. In Appendix A, it has been show
that the algorithm converges to a set of accumulation points
under mild conditions.

III. PARAMETRIC DICTIONARY DESIGN: A PRACTICAL

ALGORITHM

A standard method to solve (3) is alternating projection,
see for example [34], [28] and references therein. In this
method we alternatingly project the current solution onto the
admissible sets, see Fig.1.a. When the admissible sets are
convex, the algorithm converges5 to a solution in D ∩ ΛN

or a pair of solutions in D and ΛN , when D ∩ ΛN = ∅,
respectively. In the following, we derive a formulation for
the projection onto ΛN , but there is no easy formulation
for the projection onto the set of admissible dictionaries, in
general. Therefore we choose a different method which has
similarities with alternating minimization [36] (or generalized
alternating projection [37]), see Fig.1.b. In the alternating
minimization framework, we choose the new solutions in D

and ΛN alternatingly such that the objective does not increase
in each update and is thus stable. If the algorithm converges,
the fixed point is either in D ∩ ΛN , or is a pair of points in
D and ΛN respectively.

Although the proposed algorithm has similarities with al-
ternating minimization, it does not follow its steps exactly.
The difference is that in the stage in which we update the
current solution with respect to ΛN , we choose a point which
is somewhere between the current solution and the projection
onto ΛN . Fig.1.c shows a schematic representation of the
proposed method. The reason for this modification is that by
projection onto ΛN , the structure of the Gram matrix changes
significantly so that the selection of a new point in D in the
following step is very difficult. We can gradually select a closer
point to the projected point on ΛN , when the current DΓ is

4Here stability means boundedness of the algorithm output.
5At least in finite dimensional spaces. There are counter-examples for the

lack of convergences in the infinite dimension setting [35].

Algorithm 2 Parameters Update

1: initialization: l = 1, 1 ≤ L, Γ[0]
k = Γk, ε ∈ R+, φ(Γ) =

‖DT
Γ DΓ − G‖2

F

2: for all l ≤ L do

3: Γ[l+1]
k+1 = Γ[l]

k − ε∇Γφ|Γ[l]
k

4: l = l + 1
5: end for

6: Γk+1 = Γ[L]
k+1

close to ΛN . In the other step, we update D such that it does
not increase the objective in (3).
The parametric dictionary design is summarized in Algo-

rithm 1. In line 4, the algorithm finds the projection onto ΛN .
In line 6, a point in D is selected which is closer to GRk+1

. In
the following we show how we calculate the updates in lines
4 and 6.

A. Projection onto ΛN :

In the objective function (3), G is a Hermitian matrix. By
sign change of any related off-diagonal pair of elements , i.e.
gi,j and gj,i, we get a new G̃ ∈ ΛN . The closest G to DT

ΓDΓ,
in a Frobenius norm space, is the G with a similar sign pattern.
We know that in a normed space, finding the nearest elements
of a set to a point is a projection of that point onto the set.
Because ΛN is convex, the projection is unique. For a given
GD = DT D : D ∈ Rd×N , the projection of GD onto ΛN can
be found by the following operator [28].

gP i,j =

{
sign(gDi,j)µG i )= j

1 otherwise ,
(4)

where µG is as defined in (1). This operator can be used to
find GPk+1

in line 4 of Algorithm 1, by applying to GΓk
.

B. Parameter update:

Let us assume DΓ is a differentiable function on Υ and
therefore (3) is a differentiable function on Υ. An easy way
to find Γk+1, such that it satisfies line 6 of the Algorithm 1,
is to use the gradient descent method. We rewrite (3) as a
minimization problem based on Γ when GRk+1

is fixed.

min
Γ∈Υ

φ(Γ) , φ(Γ) := ‖DT
Γ DΓ − GRk+1

‖2
F (5)

The gradient of the objective function in (5) can be found by
chain rule for the matrix functions [38, D.1.3].

∇Γφ = ∇ΓDΓ ∇DΓ
φ

= 4∇ΓDΓ (DΓD
T
ΓDΓ − DΓGRk+1

)
(6)

In this formulation, one still needs to calculate ∇ΓDΓ. In Ap-
pendix B, we derive this formulation for a special parametric
dictionary. We iteratively use the gradient descent method to

find a local minimum of the problem (5). Let Γ[0]
k = Γk, the

updating formula is as follows,

Γ[l+1]
k+1 = Γ[l]

k − ε∇Γφ|Γ[l]
k

, (7)

where ε is a small positive value. The parameter ε should be
chosen such that the update reduces the objective function in
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Fig. 2. The chain rule (6) in the tensor form.

(5) [39]. In this framework, Γk+1 = liml→∞ Γ[l]
k+1. In practice

we stop after a given number of iterations or when ∇Γφ|Γ[l]
k

becomes very small. Algorithm 2 summarizes this parameter
update algorithm.

Because φ(Γ) is a continuous function, its epigraph [40],
for an initial Γ0

6, is closed. By choosing a bounded set of
admissible parameters Υ, the epigraph is a compact set in
Euclidean space. To show that the algorithm gets as close as
possible to the set of limit points, we need to use the Bolzano-
Weierstrass theorem.

Theorem 2: [41, 3.24] Every bounded infinite subset of RN

has at least one limit point in RN .

Therefore, when the set of admissible parameters is bounded
and ε is selected such that moving in the gradient direction
with this step size reduces the objective, this gradient descent
algorithm has at least one limit point in the admissible set.

Remark 1: The function φ(Γ) is a lower bounded function.
Hence, if we reduce φ in each iteration, due to Lyapunov’s
second theorem [33], the algorithm is stable.

Remark 2: Algorithm 1 is an iterative algorithm in which
we also used another iterative method for the dictionary update
in line 6. The stability and the convergence of the updates
mentioned above were related to the inner loop in Algorithm
1. We deal with the convergence of Algorithm 1 in Appendix
A.

Remark 3: We draw the readers attention to the formulation
(6). The parameters∇ΓDΓ,∇DΓ

φ and∇Γφ are tensors of rank
3, 2 and 2 respectively. If Γ ∈ Rp×N and D ∈ Rd×N then
∇ΓDΓ ∈ Rp×d×N , ∇DΓ

φ ∈ Rd×1×N and ∇Γφ ∈ Rp×1×N .
A graphical presentation of this formulation is presented in
Fig. 2 . Furthermore, to use this directional update in (7), we
need to map ∇Γφ ∈ Rp×1×N into the appropriate matrix in
Rp×N . It is easily done by changing the order of indices (1,2,3
to 1,3,2), following by cancelling the third dimension. Because
the rank of ∇Γφ is 2, this mapping is injective.

6Epigraph of φ(Γ) : Υ → R for an initial Γ0 is defined [40, 3.1.7] by:
epi φ = {Γ : Γ ∈ Υ, φ(Γ) ≤ φ(Γ0)}

IV. CASE STUDY

The problem we formulated in this paper is developed in
a general form. To show the advantages of using parametric
dictionary design, we choose a case study. In sparse audio
processing, an important question is how to choose the dic-
tionary [42], [43]. Different methods have been introduced
to adapt the dictionary to better fit a set of training samples
[44], [45], [46]. For example, some researchers used a class
of parametric dictionaries based on Gammatone filter banks,
which have been shown to have similarities with the human
auditory system [23], [47]. We now show that the parametric
dictionary design improves the performance of audio sparse
approximation and exact recovery based around a Gammatone
representation.

A. Gammatone parametric dictionary

The generative function for a Gammatone dictionary is as
follows,

g(t) = atn−1e−2πbBt cos(2πfct), (8)

where B = fc/Q+bmin, fc is the center frequency and n ∈ N,
a, b, Q, bmin are some constants. The optimal parameter
selection is not easy. One can select the parameters such that
the generated atoms match the auditory impulse response.
The auditory system has been optimized through evolution
and may not be optimized for a practical application. Our
goal is to optimally select these parameters so that sparse
approximation methods can be used. Another difficulty in
using the Gammatone filter banks as a dictionary is its large
size. A moderate size dictionary can be designed by the
proposed method.

The dictionary is generated by sampling the parameters
of g(t − tc), where tc is the time-shift. In this paper, γ =
[tc fc n b]T are the optimization parameters. The parameters
tc and fc change the center of the atoms in the time-frequency
plane. n and b control the rise time and the width of the
atoms in the time domain, respectively. The parameter a is
chosen to normalize the atom to unit length. Let {γi}1≤i≤N

be a set of the parameters and gγi(t) be the atom generated
using γi. The parameter matrix Γ and the parametric dictionary
DΓ are generated using γi and gγi(0tfsamp1) as the columns
respectively, where fsamp is the sampling frequency.

The differentiability of DΓ with respect to Γ makes the
parameter update easier. In this paper we assume the para-
metric dictionary satisfies this constraint. Letting n ∈ R,
(8) becomes a generative function over a continuous domain
Υ. This function is differentiable with respect to Γ. We can
choose an upper bound for the magnitude of each parameter to
generate a bounded admissible set. By including the boundary
values, Υ is a compact set thus guaranteeing that the algorithm
converges to a set of fixed points. A necessary modification
in Algorithm 1 is to use a mapping to Υ, when at least
one parameter goes out of Υ, and comparing to the previous
solution (to make sure that we do not increase the objective
by the parameter update). A simple mapping operator is the
thresholding operator, where it chooses the closest admissible
parameter.



6 IEEE TRANSACTION ON SIGNAL PROCESSING, VOL. X, NO. X, JANUARY 20XX

Fig. 3. The objective functions for different {αk}∀k,αk=α, for a constant
α.

Although the computation of the gradient of a parametric
dictionary generated using g(t) is straightforward, we derive
it in the Appendix B for completeness.

B. Simulations results

We study the proposed dictionary design method using the
Gammatone dictionary discussed in IV. We first investigate
the characteristics of the dictionaries throughout the design
iterations. The stability of the algorithm is demonstrated
by showing the reduction of the objective function. In the
second part of this subsection, we compare the performance
of the initial and the optimized dictionaries in terms of sparse
approximation and exact sparse recovery. Gammatone type
dictionaries have been proposed for sparse approximation of
audio and we choose our examples accordingly. In all the
simulations we choose two times overcomplete dictionaries
and window size 1024.

1) Algorithm Evaluation: In this part, we evaluate the given
algorithm in three different areas. In the first step we show that
the algorithm reduces, (or at least keep the same) the objective
(3) in each iteration. The parameter B, defined after (8), is
the bandwidth of the audio filterbank at the center frequency
fc. We use the fixed values n = 4, Q = 9.26449, bmin =
24.7, as they have been suggested in [48] and [49], and b =
0.65. To generate the initial dictionary, we sample fc and tc.
We use the method introduced in [50] to generate the filter
bank. In this method an extra parameter δ, called step factor,
is introduced to indicate the amount of frequency overlap. In
this framework the kth frequency center is calculate using the
following formula,

fk
c = −Qbmin + (fs/2 + Qbmin)e−kδ/Q. (9)

fs is the maximum allowed frequency, which is half of the
Nyquist frequency. In our simulations, we choose δ = 0.45.
We have chosen a similar method to sample tc. This time

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2 Initial Dictionary

Tight Frame

After 100 Iterations

Fig. 4. Eigen values plot of the dictionary.

Fig. 5. The column !2 plots of the Gram matrix of the original (left) and
designed (right) dictionaries.

sampling is linear, in contrast with the logarithmic sampling
in (9). Let the peak of the envelope of the impulse response of
the filter be at tp and σ indicate the amount of time overlap.
The lth time center is found using,

tlc = tp + σ(l − 1) tp .

σ is set to 0.75 in our simulations. We draw the readers
attention to the point that tlc is implicitly a function of fk

c . We
therefore generate a set of {fk

c }k∈K and for each generated
atom using fk

c and tc = 0, we make a set of time-shifted
versions using {tlc}l∈L .
To generate a dictionary of gγi(t), we window it to a size

equal to the signal length d and make it periodic such that one
period is selected as an atom using the following formula,

dγi,j =

{
gγi(j+d) 1 ≤ j < jci

gγi(j) jci ≤ j ≤ d,
(10)

where jci = 0tcifsamp1. As the proposed algorithm is a
relaxed version of the alternating minimization, the relaxation
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Fig. 6. Wigner-Ville contour plots of the original Gammatone atoms. The
WV contour of each atom is calculated at 0.7 times it peak.

parameters {αk} should be selected. We choose a simple
sequence of {αk} using αk = α for all k and a fixed α in
all simulations. A more complicated sequence might improve
the performance of Algorithm 1. However we have not present
this here. Here, we intend to show that the designed dictionary
is superior to the initial dictionary in practice, even with a
simple {αk}. In the first experiment we want to investigate
the effect of α. We have plotted the objective function (3)
using selected α’s, in Fig. 3. As we expect, simulations show
reduction of the proposed objectives in each iteration. It is
also demonstrated that if α is small, the algorithm converges
very slowly. Although using a large α is desireable for a fast
convergence, the solution is not as good as the solution found
by using a medium range α. For other simulations we use
α = 0.5 to find a good solution after an acceptable number of
iterations.

The proposed algorithm searches for an equiangular tight
frame. Therefore one way to show the performance of the
proposed algorithm is to compare the singular values (SV) of
the designed dictionary and the tight frame. A tight frame in
Rd×N has d non-zero SV equal to

√
N/d. We have plotted

the sorted SV’s of the dictionaries at selected iterations in Fig.
4. It can be seen that the SV’s of the designed dictionary get
closer to the SV’s of the tight frame at each iteration.
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Fig. 7. Wigner-Ville contour plots of the learned Gammatone atoms. The
contours are calculated similar to Fig. 6

Given that the algorithm is based on distances in the Gram
matrix domain, another way to evaluate the algorithm is to
show the Gram matrix of the dictionary. We have plotted the
"2 norm of each row of the Gram matrix, for the window size
1024, in Fig. 5. The Gram matrix of the original dictionary
and the designed dictionary, after 100 iterations, are shown in
the left and right windows respectively. We have shown the
"2 norm of a possible ETF with a dashed line as reference. It
can be seen that the Gram matrix of the designed dictionary is
closer to the desired Gram matrix. Another observation in Fig.
5 is that the atoms with high total cross-correlations, indicated
by the peaks, are adapted.

This parametric dictionary is attempting to tile the time-
frequency plane. An ETF is a frame having the minimum total
correlation between atoms but it may not be localized in the
time-frequency plane. A dictionary which is simultaneously
ETF, or close to being an ETF, and localized in time and
frequency, tiles time-frequency plane more uniformly. To
demonstrate this, we choose the Wigner-Ville (WV) time-
frequency representation of the atoms. We show the contour
plot of the atoms in the time-frequency plane using a similar
method used in [51]. Fig. 6 and 7 show the time-frequency
planes found for the original and designed atoms, respectively.
Although the algorithm attempts to minimize µ by changing
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Fig. 8. Parameters of the Gammatone dictionary: the scatter-plots of the
parameters tc and fc are shown in the top windows (a) and (b) respectively.
The initial and final values of n and b are shown in the bottom windows (c)
and (d) respectively.

the structure of the dictionary, the locations which are not
covered by the high energy part of any atom demonstrate its
local minimum convergence. It also shows a potential for a
more efficient update operator than the gradient descent in
Algorithm 2. There exists a shift-invariance structure, with
different step size for each frequency band, in the initial para-
metric dictionary, which disappears in the designed dictionary.
If the time-shift is one of the parameters in the parametric
dictionary, such a structure can then be preserved. Such a
parametric dictionary is not column separable. Designing a
structured parametric dictionary, e.g. shift-invariant dictionary,
is left for a future work.
The parameter set γ is selected intuitively in this exper-

iment. To show the contribution of each parameter in the
dictionary design, we show the initial and the final values of
the parameters in Fig.8. The scatter-plots of tc and fc are
shown in part (a) and (b). Note fc has not have changed
significantly by the dictionary design, so it could be kept
fixed to reduce the computational cost. This simulation is also
initialized with some fixed values for n and b. The final values
of these two parameters are shown in Fig.8.c and Fig.8.d
respectively. These plots show significant changes in the values
of n and b, which demonstrates the importance of correct
selection of n and b in each Gammatone atom.
2) Exact sparse recovery and sparse approximation: In

this part we demonstrate the advantages of the parametric
dictionary design in terms of exact sparse recovery [25] and
sparse approximation. The exact recovery condition (ERC)
[25] is studied in a worst-case setting. In this setting when
a dictionary satisfies ERC, any k-sparse representation can
exactly be recovered using (O)MP or BP. In practical applica-
tions, an average case analysis is more relevant [52], especially
when the probability of the failure is very low. Here, by an
experiment, it has been shown that the proposed algorithm

Fig. 9. Exact support recovery of the sparse signals.

improves the average exact recovery.We synthetically generate
the sparse coefficient vectors, with different sparsity, and
plot the percentages of the exact recovery for those sparse
vectors. The location of the non-zero coefficients are selected
uniformly at random and the PDF of the magnitudes are
selected to be Gaussian with zero mean. The matching pursuit
algorithm is used to find the sparse approximation. The rate
of exact support recovery is calculated by the ratio of the
number of correctly found non-zero coefficient index sets to
the number of cases in which at least one location of the
zero coefficient is set to non-zero. We run the simulations
1000 times. We have shown this ratio as the percentage of
exact recovery in Fig. 9. It is clear that the design method has
improved the exact recovery ratio.
For sparse approximation applications, we are more inter-

ested to have a dictionary that, if it fails to satisfy exact recov-
ery [25], still gives a sparse approximation for a given class of
signals. Therefore as the second experiment, we compare the
decay rates of the residual error when the MP is used for sparse
approximation [27]. We use an audio signal taken from more
than 8 hours recorded from BBC Radio 3, which mostly plays
classical music. We first down-sample by a factor of 4 and sum
the stereo channels to make a mono signal with 12K samples
per second. We use the original Gammatone and the parametric
designed dictionaries to approximate 100 randomly selected
blocks, each with the length of 1024 samples. The average
decay rate of the residual errors, in logarithmic scales, are
shown in Fig. 10. This rate directly influences the performance
of sparse approximation methods. That is, we can better
approximate the signal with fewer coefficients using a high
residual error decay rate dictionary. In Fig. 10, although the
curves start with the same slope, after a few iterations, here
10, the designed dictionary shows a clear advantage.

V. CONCLUSION

The sparse approximation methods successfully approxi-
mate a class of signals with a set of sparse coefficient vectors,
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Fig. 10. The residual error using matching pursuit for sparse approximation
of the audio signal.

when an appropriate generative model is given. In this paper
we have introduced a method to design such a model, which is
independent of the signal. A criterion based on an important
feature for the success of sparse approximation methods is
proposed. A priori knowledge about the signal was included by
using parametric functions. In this framework we have shown
that the dictionary design problem is to find an optimal set
of parameters. This problem can in general not be solved
exactly. Fortunately an approximate solution can be found
using the proposed method. In some simulations we showed
that A) the given method can find an appropriate set of
parameters for the given case study and B) the designed
dictionary showed promising performance advantages in terms
of exact recovery and sparse approximation of audio signals.
What we have shown in this paper is a first step in the
design of parametric dictionaries. Extra constraints, such as
shift-invariance, quasi-incoherence, data dependence, to have
tree structures or structures for fast implementation, could be
imposed. However, this has been left for future work.

APPENDIX A
CONVERGENCE STUDY OF THE ALGORITHM

To study the convergence of the algorithm, we first show
that Algorithm 1, for any parameter update algorithm (line 6),
reduces or keeps the same the objective function. The objective
is lower bounded by zero and the algorithm prevents the
existence of a continuum of fixed points, which guarantee the
stability of Algorithm 1. In the next step we show that when
DΓ is a differentiable function on a compact Υ, the sequence
generated by the algorithm becomes as close as possible to a
set of fixed points.

A. Definition of a surrogate optimization problem

The objective function in (3) depends on two variables,
which makes the convergence analysis more difficult, if we

want to use the continuity of the objective in the analysis.
Here we define a surrogate objective for (3), which has a
single variable, to show the convergence of Algorithm 1 to
a set of fixed points. Let Γ∗ ∈ Υ and G∗ ∈ ΛN be a solution
pair of (3) and G∗

Γ = DT
Γ∗DΓ∗ . Then G∗ = PΛN G∗

Γ, which
suggests the optimization problem (3) can be replaced by the
following problem based on Γ, as the only parameter,

min
Γ∈Υ

ΦS(Γ),

ΦS(Γ) = ‖GΓ − PΛN GΓ‖F

= (
∑

i"=j

(|{gΓ}i,j | − µG)2 +
∑

i=j

({gΓ}i,j − 1)2 )1/2,

(11)

where |{gΓ}i,j | is the absolute value of the (i, j) element of
GΓ = DT

ΓDΓ. The problems (3) and (11) share common solu-
tions. Therefore one can optimize (11) to find the solution(s) of
(3). Although the surrogate objective is a continuous function
of Γ (ΦS ∈ classC0), a difficulty with the optimization of
the surrogate objective directly is that it is non-differentiable.
We only use the surrogate optimization problem to show the
convergence of the proposed algorithm.

B. Convergence analysis of Algorithm 1 using the surrogate

optimization problem

We now show that the proposed algorithm reduces the sur-
rogate objective at each parameter update, using the following
proposition.
Proposition 1: Let GΓk

= DT
Γk

DΓk
be the Gram matrix

of the dictionary at kth iteration. The Algorithm 1 reduces,
or keeps the same, ‖GΓk

− PΛN GΓk
‖F in each update of

the parameters (Γk → Γk+1), where PΛN is the operator of
orthogonal projection onto ΛN .

Proof: Let GPk+1
be an abbreviation for PΛN GΓk

, which
is found by using (4). Using the parameter update step (line
6) and the fact that GRk+1

= αkGPk+1
+ (1 − αk)GΓk

,

αk‖GΓk
− GPk+1

‖F

= ‖GΓk
− GRk+1

‖F

≥ ‖GΓk+1
− GRk+1

‖F

= ‖GΓk+1
− αkGPk+1

− (1 − αk)GΓk
‖F

= ‖(GΓk+1
− GPk+1

) − (1 − αk)(GΓk
− GPk+1

)‖F

≥ ‖GΓk+1
− GPk+1

‖F − (1 − αk)‖GΓk
− GPk+1

‖F ,

where we used the triangular inequality to derive the last
inequality. This provides us the following inequalities,

‖GΓk
− PΛN GΓk

‖F ≥ ‖GΓk+1
− PΛN GΓk

‖F

≥ ‖GΓk+1
− PΛN GΓk+1

‖F ,
(12)

where the last inequality is easily derived by using the defini-
tion of the projection in Hilbert space.
Prop. 1, with the facts that the objective is lower bounded by
zero and there exists no continuum of fixed points, guarantees
stability of Algorithm 1, due to Lyapunov’s second theorem.
Let classC1 consist of all continuously differentiable func-

tions. The following two Lemmata are needed to show the
convergence of Algorithm 1 to a set of fixed points.
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Lemma 1: Let DΓ : Υ → Rd×N ∈ classC1 and Υ be
compact. The epigraph of the objective (11) at an admissible
Γ0 is compact.

Proof: When the parametric dictionary DΓ is differen-
tiable on Υ, the objective function in (11) is continuous.
The continuity of the surrogate objective function and the
compactness of Υ prove the compactness of epi ΦS at an
admissible point Γ0 [40].

Due to the Bolzano-Weierstrass theorem, Algorithm 1 has
a non-empty set of accumulation points. We now reformulate
Lemma 1 in [46] for a more general (including asymptotically
non-regular7) sequence. Although the proof is the same, the
set of accumulation points can be dis-connected, when the
sequence is not asymptotically regular.

Lemma 2: Let {Γn}n∈N be an infinite sequence in a com-
pact set Σ and T be the set of its accumulation points
then, ∀ε > 0, ∃N ∈ N such that for all n > N, ∃Γ‡ ∈
T, ‖Γn − Γ‡‖F < ε

Proof: Let S be an ε-neighborhood of T and Sc be its
complement in Σ. Σ is compact, thus Sc is also compact. Be-
cause S is a neighborhood of T , there is no accumulation point
Γ in Sc. If {Γn} has infinite many points in Sc, then it has a
converging subsequence and at least one accumulation point
in Sc. This contradicts the fact that there is no accumulation
point in Sc. Therefore ∃N : Γn ∈ S, ∀n > N . On the other
hand the fact that S being an ε-neighborhood implies that for
all n > N , ∃Γ‡ ∈ T : ‖Γn − Γ‡‖F < ε.
Theorem 3: Let DΓ : Υ → Rd×N ∈ classC1. The

Algorithm 1 converges to a set of fixed points by starting
from Γ0 ∈ Υ, where Υ is a compact set.

Proof: Due to Lemma 1 the epigraph of the surrogate
objective at Γ0 (epi ΦS(Γ0)) is compact. The Proposition 1
shows that the sequence {Γn}n∈N is in epi ΦS(Γ0). The con-
vergence of the algorithm to a non-empty set of accumulation
points is guaranteed using Lemma 2. Line 6 of Algorithm 1
prevents the existence of a continuum of accumulation points.
Therefore the accumulation points are fixed points.

APPENDIX B
GRADIENT OF THE GAMMATONE DICTIONARY

We calculate the gradient of the parametric Gammatone
dictionary with the generative function (8) in this appendix.
Let DΓ ∈ Rd×N and Γ ∈ R4×N . The ith column of DΓ is
a function of the ith column of Γ, dγi

. The rank of ∇ΓDΓ

is 4 and we represent it by a tensor in R4×d×N . Each sub-
matrix of this tensor (fixing the third index) is the gradient
of the corresponding atom in DΓ. Therefore we only need
to calculate the gradient of dγi

based on γi. Because dγ is
calculated using (10), we only need to derive a formulaton for
the gradients of gγ(t) based on tc, fc, n and b, followed by
sampling t.

∂gγ

∂tc
= −a((n − 1)tn−2

s cos 2πfcts + 2πbBtn−1
s cos 2πfcts

+ 2πfct
n−1
s sin(2πfcts))e

−2πbBts

7A sequence {ak}k∈N in a normed space is called asymptotically regular
when limk→∞ ‖ak − ak−1‖ = 0

∂gγ

∂fc
= atn−1

s (−2πts
dB

dfc
cos(2πfcts)

− 2πts sin(2πfcts))e
−2πbBts

∂gγ

∂n
= a ln(ts) tn−1

s e−2πbBts cos(2πfcts)

∂gγ

∂b
= −2πaBtns e2πbBts cos(2πfcts)

where ts = t − tc and dB

dfc
= 1/Q. Some researchers have

proposed more complex formulations for B. In this case, one
can substitute B and dB

dfc
in the above formulas to find the

gradient.
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