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A B S T R A C T

The term “Silent Speech Interface” was introduced almost a decade ago to describe speech communication
systems using only non-acoustic sensors, such as electromyography, ultrasound tongue imaging, or electro-
magnetic articulography. Although the use of specialized sensors in speech processing is challenging, silent
speech research remains an active field that can often profit from new developments in traditional acoustic
speech processing – for example recent advances in Deep Learning. After an overview of Silent Speech Interfaces
and their special challenges, the article presents new results in which a 2010 benchmark study, called the Silent
Speech Challenge, is updated with a Deep Learning strategy, using the same input features and decoding strategy
as in the original Challenge article. A Word Error Rate of 6.4% is obtained with the new method, compared to the
published benchmark value of 17.4%. Additional results comparing new auto-encoder-based features with the
original features at reduced dimensionality, as well as decoding scenarios on two different language models, are
also presented. The Silent Speech Challenge archive has furthermore been updated to contain both the original
and the new auto-encoder features, in addition to the original raw data.

1. Introduction

1.1. Silent Speech Interfaces and challenges

A Silent Speech Interface (Denby et al., 2010), or SSI, is defined as a
device enabling speech processing in the absence of an exploitable
audio signal – for example, speech recognition obtained exclusively
from video images of the mouth, or from electromagnetic articulo-
graphy sensors (EMA) glued to the tongue. Classic applications targeted
by SSIs include:

(1) Voice-replacement for persons who have lost the ability to vocalize
through illness or an accident, yet who retain the ability to ar-
ticulate (see, for example, Fagan et al., 2008 and Denby et al.,
2011a);

(2) Speech communication in environments where silence is either
necessary or desired: responding to cellphone in meetings or public
places without disturbing others; avoiding interference in call
centers, conferences and classrooms; private communications by
police, military, or business personnel (see, for example,
Yuksel et al., 2011).

The SSI concept was first identified as an outgrowth of speech
production research, in tandem with the proliferation of the use of

cellular telephones, in 2010 in a special issue of Speech Communication
(Denby et al., 2010), where SSIs based on seven different non-acoustic
sensor types were presented:

(1) MHz range medical ultrasound (US)+ video imaging of tongue and
lips (Hueber et al., 2010).

(2) Surface electromyography, sEMG, sensors applied to the face and
neck (Schultz and Wand, 2010).

(3) Electromagnetic articulography EMA sensors attached to tongue,
lips, jaw (Fagan et al., 2008).

(4) Vibration sensors placed on the head and neck (Patil and
Hansen, 2010).

(5) Non-audible murmur microphones, NAM, placed on the neck
(Tran et al., 2010).

(6) Electro-encephalography, EEG, electrodes (DaSalla et al., 2009).
(7) Cortical implants for a “thought-driven” SSI (Brumberg et al.,

2010).

An overview of the SSI concept appears in Fig. 1.
As a non-acoustic technology, SSIs initially stood somewhat apart

from the main body of speech processing, where the standard techni-
ques are intrinsically associated with an audio signal. Nevertheless, the
novelty of the SSI concept and their exciting range of applications –
perhaps aided by an accrued interest in multi-modal speech processing
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– are gradually allowing SSI technology to join the speech processing
main stream. Activity in SSI research has remained strong since the
publication of Denby et al. (2010), which received the ISCA/Eurasip
Best Paper Award in 2015. A recent survey of the literature reveals
dozens of publications on SSI systems, using not only on the original
seven non-acoustic technologies mentioned above, but also two addi-
tional ones, namely, low frequency air-borne ultrasound; and micro-
power radar (Denby et al., 2010; Fagan et al., 2008; Denby et al.,
2011a,b; Yuksel et al., 2011; Hueber et al., 2010, 2007, 2008a,b, 2009,
2011, 2012; Schultz and Wand, 2010; Patil and Hansen, 2010; Tran
et al., 2010; DaSalla et al., 2009; Brumberg et al., 2010; Hueber, 2009;
Hirahara et al., 2010; Toth et al., 2009; Florescu et al., 2010; Lopez-
Larraz et al., 2010; Wand and Schultz, 2011; Freitas et al., 2011, 2013,
2014a,b; Jorgensen et al., 2012; Wang et al., 2012; García et al., 2012;
Barbulescu et al., 2013; Hofe et al., 2013; Wand et al., 2013, Gonzalez
et al., 2014; Bocquelet et al., 2014; Wang et al., 2014; Salama et al.,
2014; Sahni et al., 2014; Balwani et al., 2014; Matsumoto, 2014; Freitas
et al., 2015; Al Safi and Alhafadhi, 2015; Bocquelet et al., 2015; Wang
et al., 2015; Hahm and Wang, 2015; Jaumard-Hakoun et al., 2015; Xu
et al., 2015; Yamaguchi et al., 2015; Hueber and Bailly, 2016; Li, 2016;
Cheah et al., 2016; Patil et al., 2016; Yamazaki, 2016).

Despite this activity, SSIs today remain for the most part specialized
laboratory instruments. The performance of any automatic speech re-
cognition (ASR) system is most often characterized by a Word Error
Rate, or WER, expressed as a percentage of the total number of words
appearing in a corpus. To date, no SSI ASR system has been able to
achieve WER parity with state-of-the-art acoustic ASR. While the ul-
trasound SSI system described below in Section 1.2 achieved a 17%
WER on a single speaker task, for instance, a state-of-the art commercial
recognition system would be expected to obtain a WER of a few percent
on such a task. Indeed, a number of practical issues make SSI ASR
systems considerably more involved to implement than their acoustic
counterparts:

1. Sensor handling. While in acoustic ASR this may amount to no
more than routine microphone protocol, SSIs’ non-acoustic sen-
sors are often rather specialized (and expensive), and require
physical contact with, or at a minimum careful placement with
respect to, the speech biosignal-producing organs. This in-
troduces problems of invasiveness; non-portability; and non-re-
peatability of sensor placement, bringing added complexity to SSI
experiments.

2 Interference. An SSI should in principle be silent, but certain SSI
modalities – vibration sensors, radar, and low frequency air-
borne ultrasound, for example – are actually associated with
signals that can propagate beyond the area of utilization of the

SSI. The possibility of interference or interception may limit the
adoption of these modalities outside the laboratory.

3 Feature extraction. While easily calculated Mel Frequency
Cepstral Coefficients, MFCC, have been the acoustic ASR features
of choice for decades, feature selection for the specialized sensors
of SSIs remains an open question, particularly since many SSI
modalities – ultrasound imaging, or EEG, for example – are of
much higher intrinsic dimensionality than a simple acoustic
signal. Furthermore, while the identification of stable phonetic
signatures in acoustic data is today a mature field, the existence
of salient landmarks in speech biosignals – arising from imaging
modalities or electromyography, for example – is less evident.

The medical US modality, operating in the MHz frequency range,
nonetheless fares rather well with respect to the concerns raised above,
for a number of reasons. It does not, for example, propagate outside the
body. It is also a well established (Stone et al., 1983) and documented
(Stone, 2005) technique in speech production and speech pathology
research, whose first use in the context of SSIs was discussed in
Denby and Stone (2004). US is a also relatively non-invasive modality,
requiring only a transducer placed under the speaker's chin, coupled
with a small video camera in front of the mouth to capture lip move-
ment. These sensors can be easily accommodated in a lightweight ac-
quisition helmet, thus minimizing sensor placement issues. US tongue
imaging, with added lip video, is thus in many ways an attractive
modality for building a practical SSI, and it will serve as the basis of the
present article.

1.2. The Silent Speech Challenge benchmark

In 2010, an US+ lip video SSI trained on the well-known TIMIT
corpus achieved, with the aid of a language model (LM), a single
speaker WER of 17.4% (84.2% “correct” word rate) on an independent
test corpus (Cai et al., 2011), representing a promising early SSI result
on a benchmark continuous speech recognition task. Subsequently, the
raw image data of Cai et al. (2011), that is, the original tongue ultra-
sound and lip videos, were made available online as the so-called Silent
Speech Challenge, or SSC archive (Denby et al., 2013). The purpose of
the archive is to provide a stable data set to which newly developed
feature extraction and speech recognition techniques can be applied.
The SSC data will serve as the basis of all the experiments reported in
this article.

Although a 17.4% WER for an SSI trained on a mono-speaker TIMIT
corpus is “promising”, it must be remembered that standard acoustic
ASR can obtain similar or superior scores after training on the full
multi-speaker acoustic TIMIT corpus, a much more challenging task.
Further advances are thus still necessary in order to truly put Silent

Fig. 1. Overview of an SSI, showing non-acoustic sensors and non-acoustic automatic speech recognition, ASR, which can be followed by speech synthesis, or retained as a phonetic, text,
or other digital representation, depending on the application.
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Speech Recognition, SSR, on a par with acoustic ASR.

1.3. Deep learning for Silent Speech Interfaces

In the past several years, improvements in acoustic speech re-
cognition using Deep Neural Network–Hidden Markov Model
(DNN–HMM) systems, rather than the traditional Gaussian Mixture
Model–HMM (GMM–HMM), have become common. In this approach, a
deep learning strategy is used to improve estimation of the emission
probabilities of the HMM used for speech decoding. It is natural to ask
to what extent a DNN–HMM approach can improve SSR performance as
well. Despite the SSI implementation challenges outlined earlier, ap-
plications of deep learning techniques to SSR have indeed begun to
appear. In Wand and Schultz (2014), for example, tests are reported of
phonetic feature discrimination for an EMG-based SSI, without a LM, on
a small, experiment-specific speech corpus. In Hahm et al. (2015), deep
learning on an EMA based SSI is explored, giving SSR phone error rates,
PER, of 36%, when the Mocha-TIMIT corpus is used for training,
testing, and the development of a specific bigram LM. In
Liu et al. (2016), a DNN–HMM is applied to the SSC benchmark data,
albeit with a 38% WER, in a study comparing the efficacy of different
feature extraction methods.

“Feature-free” approaches to pattern recognition in speech, signal
and image processing, based on convolutional neural networks, CNN,
have also proven very effective in recent years (Bottou et al., 1989; Le
Cun et al., 1998; Krizhevsky et al., 2012; Abdel-Hamid et al., 2014).
The CNN is a multilayer neural network consisting of multiple sub-
networks with shared weights and overlapping receptive fields, alter-
nated with “pooling” layers that reduce dimensionality by retaining
only a subset of the afferent inputs. The use of shared weights across
different instances of the identical sub-networks greatly reduces the
number of weights to be learned, thus allowing the training of a CNN to
remain relatively tractable. CNNs are thought to be able to learn a
hierarchy of features, of progressively higher order as information pass
from the input to the output of the network.

CNN have, naturally, also begun to make their entry into the field of
SSI. In Ephrat and Peleg (2017), which is actually a lip-reading appli-
cation, a CNN is trained to transform video frames from a large video
database directly into synthesized un-vocalized speech, using the video
sound track to create source-filter type training labels. In Tatulli and
Hueber (2017), a CNN is trained to recognize phonetic targets in US
tongue and video lip images in a 488-sentence single speaker database,
using a phonetically labeled sound track as ground truth, for a speech
recognition task with an HMM-GMM. In Xu et al. (2017), CNN are used
to recognize tongue gestural targets in US tongue images for an isolated
phoneme+nonsense word recognition task. In the latter reference,
extensive use is made of data augmentation (Krizhevsky et al., 2012) to
increase the size of the training set, often a concern in using CNN,
which require very large training sets to be effective, due to the large
number of weights that must be learned. Conceivably, the CNN tech-
nique could be tested on the raw images of the SSC archive, As the
archive contains no sound track, however, pre-training of the CNN, as
in Ephrat and Peleg (2017) and Tatulli and Hueber (2017), will not be
feasible: for the Challenge data, the CNN training will have to take
place conjointly with that of the HMM probabilities. A study of this
possibility will appear in an upcoming article.

The present article reports on the first application of the DNN–HMM
approach to the SSC recognition benchmark using the same input fea-
tures and decoding strategy as those reported in Cai et al. (2011), thus
allowing a direct comparison of performances. The SSR results obtained
here are significantly improved compared to the archive, giving, in the
best scenario, a 6.4% WER (94.1% “correct” word recognition rate), or
a nearly threefold improvement over the benchmark value. In contrast
to Wand and Schultz (2014) and Hahm et al. (2015), furthermore, the
LM used in Cai et al. (2011), also employed here, was developed on a
completely independent speech corpus. In addition, results with a

second, less task-specific LM are included in the present article. Finally,
tests of reduced dimensionality feature vectors, as well as completely
new input features created from raw SSC archive data, are also reported
here. All new features have been added to the SSC archive for future use
by other researchers.

In the remainder of the article, the details of the SSC data acquisi-
tion system and a description of the available archive data are first
summarized, in Section 2. Section 3 then describes the feature extrac-
tion strategy developed for the present study; while full details of the
DNN–HMM based speech recognition procedure appear in Section 4.
The results are summarized in Section 5, and some conclusions and
perspectives for future work outlined in the final section.

2. SSC data acquisition and archive resources

The SSC data acquisition system consisted of an acquisition helmet
holding a 128 element, 4–8MHz US probe for tongue imaging, and a
black and white, infrared-illuminated video camera to capture the lips.
The 320× 240 pixel tongue images and 640×480 pixel lip images
created by the system were acquired in a synchronized manner at 60
frames per second (fps) using the Ultraspeech multisensory acquisition
system (Hueber et al., 2008c).

The SSC training corpus consists of US and lip video data from a
single native English speaker pronouncing the 2342 utterances (47 lists
of 50 sentences) of the TIMIT corpus, in the non-verbalized punctuation
manner. The speech was recorded silently, i.e., without any vocaliza-
tion; there is therefore no audio track. The test set is comprised of one
hundred short sentences selected from the WSJ0 5000-word corpus
(Garofalo et al., 1993) read by the same speaker. The data are available
at the web address indicated in Denby et al. (2013). The archive in-
itially contained only the raw ultrasound and lip images of the training
and test sets; the original features used, as well as the reduced-length
feature vectors and new features created for the present article (see
Section 3), have now been appended to it. Speech recognition for the
Challenge data was carried out in a standard GMM–HMM scheme and
made use of a LM, which is also included in the archive. Further details
appear in Section 4.

3. Feature extraction

3.1. Introduction

As mentioned earlier, speech recognition from non-acoustic sensor
data faces the problem of discovering an effective feature recognition
strategy, and US+ lip video SSIs, although attractive in many ways,
share this drawback. Being based on images, their intrinsic input di-
mensionality may be of the order of 1 million pixels. Some means of
dimension-reducing feature extraction is thus critical. (The following
discussion is centered on tongue features. Lip features, which are much
easier to handle, will for overall coherence be extracted in the same
way as tongue features.)

3.2. Difficulty of using a contour extraction approach

Tongue contour extraction is a tempting choice for reducing di-
mensionality that retains visual interpretability of the features. In ul-
trasound imaging of the tongue, the air-tissue boundary at the upper
surface of the tongue produces a bright, continuous contour, referred to
in a side-looking scan as the sagittal contour. Image processing tools for
automatically extracting and characterizing this contour make ultra-
sound imaging a powerful tool for the study of speech production
(Stone et al., 1983; Stone, 2005). Unfortunately, despite extensive lit-
erature on techniques for extracting tongue contours from ultrasound
data (see Li et al., 2005; Tang and Hamarneh, 2010; Xu et al., 2016, and
references therein), tongue contour tracking remains an extremely
challenging task. The high level of speckle noise in ultrasound images
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(multiplicative noise arising from the coherent nature of the ultrasound
wave), coupled with variations in acoustic contact between the trans-
ducer and the speaker's skin; blocking of the ultrasound wave by the
hyoid bone and jaw; poor reflectivity of muscle fibers in certain or-
ientations of the tongue; and the lack of a complete echogenic tissue
path to all parts of the tongue surface, in particular the tongue tip, often
result in sagittal contours that are incomplete, contain significant arti-
facts, or are even totally absent. While even imperfect automatically-
extracted contours remove the tedium of hand-scanning and are valu-
able for qualitative studies, it is difficult to integrate such information
in a coherent way into labeled training datasets intended for machine
learning tasks such as speech recognition. As a consequence, US-based
SSIs have tended to use projective feature extraction techniques rather
than contour finding. In work performed thus far, Principal Component
Analysis, PCA, and the Discrete Cosine Transform, DCT, have been the
methods of choice.

3.3. PCA and DCT approaches

In Hueber et al. (2007, 2008a), PCA was used on ultrasound-based
SSIs in an “Eigentongues” approach, wherein each ultrasound image is
represented as a linear combination of a set of orthogonal Eigen-images
determined on a training set of representative images. The first 30 or so
Eigentongues were found sufficient to represent the discriminative
power contained in the ultrasound images (Hueber, 2009).

The DCT, widely used for lossy image compression, is based on the
notion that most of the information in an image is concentrated in the
lower spatial frequencies (Rao and Yip, 1990). We note that the DCT, as
a direct multiplicative transform related to the Fourier transform, does
not make use of a training set. The technique for calculating the DCT
coefficients will be presented in the next section. In Cai et al. (2011),
the article on which the SSC archive is based, it was found that DCT
features provided substantially better recognition scores, as well as
faster execution times, than the Eigentongue approach. This result
leads to the important consequence that the SSC benchmark refers
to recognition scores obtained using DCT features (we note in

addition that the original Eigentongue features of (Cai et al., 2011) are
no longer available). Consequently, a quantitative comparison of a
DNN–HMM approach to the GMM–HMM analysis used in the original
benchmark – which is the major impetus of this article – must make use
of the identical DCT features in its baseline result.

The SSC archive DCT features were constructed in the following
way. First, fixed Regions of Interest (ROI) of tongue and lip images were
resized to 64 by 64 pixels. This resizing is necessary in order to keep the
number of DCT coefficients tractable. For an image matrix A of size
N*N, the two-dimension DCT is then computed as:
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Dimensionality reduction is achieved by retaining only the K lowest
frequency DCT components. In Cai et al. (2011), a feature size of
K=30 was selected, based on performance comparisons. In acoustic
speech recognition, it is usual to concatenate the first derivative, or Δ,
of the MFCC feature vector to the vector itself. This procedure was also
carried out for the DCT features of the archive, thus creating a 120-
component feature vector for each tongue+ lip frame.

3.4. New features created with Deep Auto Encoder

Although DCT features have provided promising recognition results
for US+ lip video SSIs, it has been necessary to make certain com-
promises in extracting them, notably: 1) resizing the original images
before calculating them; and 2) retaining only a small, fixed number of
DCT coefficients. While computational tractability issues prevent us, at

Fig. 2. Original lip (top row) and tongue (third row) images compared to their reconstructions (second and fourth rows, respectively) using 30 DCT coefficients.
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present, from removing the first restriction, the presence of the raw
tongue and lip data in the SSC archive allows us to consider taking a
closer look at the second one.

It is first of all interesting to examine the appearance of tongue and
lip images reconstructed using 30 DCT coefficients. An example result
on 4 frames is given in Fig. 2.

Although the lip reconstructions are sufficiently clear to distinguish
an overall degree of mouth opening, an acoustically pertinent quantity,
the visual fidelity of the tongue images is rather poor. The information
in the tongue images necessary for distinguishing different acoustic
configurations is, evidently, coded by the DCT in a way that does not
retain a high level of visual fidelity. It is tantalizing to ask, however,
whether one might do better by creating, from the original images
present in archive, a new feature representation that reduces di-
mensionality while explicitly preserving visual fidelity, rather than re-
lying on a somewhat arbitrarily placed cut in spatial frequency space, as
was done for the DCT. A Deep Auto Encoder, or DAE, was used to ex-
plore this possibility.

A Deep Auto-Encoder is a neural network used for reducing the
dimensionality and learning a representation of input data
(Hinton, 2010). It contains an “encoder” and a “decoder” symmetrically
arranged about a “code” layer, as shown in Fig. 3. The action of the
encoder can be defined as:

= +z f Wx b( ) (2)

where f is an activation function, such as sigmoid function, W a weight
matrix, and b a bias. The decoder output is defined as:

′ = ′ + ′x f W z b( ) (3)

where x′ is of the same dimension as x. The weight matrix W′ is equal to
WT. An autoencoder is trained by minimizing the image reconstruction
error, computed as:

∑′ = − +
=

′ ′L x x f x x f x x( , ) [ ( , ) ( , )]
k

d

k k k k
1

1 2
(4)

where

′ = ′f x x x x( , ) log1

′ = − − ′f x x x x( , ) (1 )log(1 ).2

When training is complete, the code layer may be regarded as a
compressed representation of the input, and is suitable for use as a
feature vector. Details of the DAE training procedure can be found in
Hinton and Salakhutdinov (2006).

To obtain the new features, ROIs were selected and resized, once
again for computational tractability purposes, via bi-cubic interpola-
tion, to 50× 70 (lip) and 50×60 (tongue) pixel arrays, which form the
inputs to the DAE. We note that the original ROIs from the Challenge
article were not available. The choice made for the DAE gives nearly the
same resolution as the ROIs of the Challenge article while slightly re-
ducing dimensionality by preserving the aspect ratio of the ROI during
resize. A direct comparison with DCT remains meaningful, since 1)

neither set of ROIs lost any significant data; and 2) the retained low
frequency DCTs are quite insensitive to the original image resolution.
After tests with various architectures, a J-1000-500-250-K network was
chosen, with J the number of inputs (3500 for lips and 3000 for the
tongue); K the desired dimensionality of the created feature vector; and
the intermediate figures the number of neurons in each layer. Features
were calculated for K=30, 20, 10, and 5. The encoder and symmetric
decoder networks were trained on 12 lists of images (12 x 50=600
images) selected at random from the SSC TIMIT training corpus.

Reconstructed images (bottom row of each panel) for tongue and
lips are compared with the original images (top row of each panel) in
Fig. 4, where (a) and (b) show the results using 30 and 5 DAE features
respectively. The figure shows that remarkable visual fidelity can be
obtained using only 5 DAE features. This is in contrast to images re-
constructed using DCT features shown previously, which are barely
recognizable even for the 30 dimensional features. Although one may
ask to what extent the DAE solution is similar to PCA, the K=5 case,
with, as will be seen later, the SSR results it allows to obtain, is none-
theless intriguing.

4. DNN–HMM speech recognition

4.1. System overview

The Kaldi open-source Deep Learning toolkit (Povey et al., 2011;
The Kaldi Toolkit) was used to build the SSR system, whose overall
architecture is illustrated in Fig. 5 and described in more detail in the
following paragraphs. Features were normalized to have zero mean and
unit variance before use.

We note that in the SSC benchmark, HTK was used to perform the
speech recognition, using a standard GMM–HMM architecture. In order
to ensure as meaningful a comparison as possible with the benchmark
result, without actually re-doing it with HTK, the recognition with Kaldi
was performed first using a GMM–HMM, and then a DNN–HMM. The
procedures used for the non-acoustic ASR, were adapted from standard
recipes in acoustic speech recognition and Deep Learning (Dahl et al.,
2015, 2011; Hinton et al., 2012; Popović et al., 2015; Rath et al., 2013),
in particular “Karel's Implementation” (Rath et al., 2013), modified to
accept non-acoustic input features. They are described below.

In the Kaldi GMM–HMM “acoustic” model training stage (the name
“acoustic model” is retained even though the input feature data used
here are non-acoustic), a monophone model was first trained using
combined tongue and lip feature vectors, of type DCT or DAE, of di-
mension K=30, 20, 10, and 5. The monophone pass used flat start and
40 iterations, and had a total of 1700 Gaussians. Subsequently, two
triphone passes were performed, each of 35 iterations. In the first tri-
phone model, called triphone1, the Δ (i.e., time derivative) features
(DCT or DAE, for lips plus tongue) were appended to the original fea-
tures (Fig. 5), with the alignment from the monophone providing the
training labels. This pass comprises 1800 regression tree leaves and
9000 Gaussians. Next, the triphone2b model was created, comprising
3000 regression tree leaves and 25,000 Gaussians. In this step, the
feature vector is again modified, this time by applying Linear Dis-
criminant Analysis (LDA) and a Maximum Likelihood Linear Transfor-
mation (MLLT) (Fig. 5), so as to replace the Δ features of triphone1 with
a new vector of dimension 40. The training of triphone2b was based
upon the alignment of the previous triphone2 pass. Thus, the mono-
phone, triphone1 and triphone2b acoustic models were trained con-
secutively, each time using the previous model for alignment, with WER
performance improving on each subsequent pass. At this point, the
alignment of triphone2b can be used to train the DNN–HMM, to try to
improve the WER even further.

The role of the DNN–HMM, implemented here as a Deep Belief
Network (DBN), is to output improved estimates of the HMM ob-
servation probabilities for all tied-triphone states on individual frames.
This is obtained by training the DNN via a cross-entropy criterion toFig. 3. Architecture of DAE.
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classify frames into triphone states, using the triphone2b alignment as
training labels, then transforming the network outputs into prob-
abilities with a softmax output layer. The new HMM observation
probabilities replace those obtained in previous passes (Fig. 5), and
final DNN–HMM decoding performed in the classical way (the HMM
transition probabilities are those from the previous GMM–HMM phase).
The DBN implemented is illustrated in Fig. 6 (Dahl et al., 2015, 2011;
Hinton et al., 2012; Popović et al., 2015; Rath et al., 2013), using the K-
dimensional DCT or DAE features as input, over an 11 frame (5 before
and 5 after the current frame) context window. Restricted Boltzmann
Machines (RBM) are cascaded by means of the weight vector W in the
figure. The DNN training operates in two phases. During the pre-
training phase, the RBMs are trained in an unsupervised way using the
contrastive divergence (CD) algorithm. The six, 1024-unit hidden layers
of the RBMs are made up of Bernoulli-Bernoulli units (learning rate 0.4)
except for the first, which is Gaussian-Bernoulli (learning rate 0.01).
The weights learned in pre-training phase are then used to initialize the
DNN model. In the second DNN training phase, 90% of the training set
is used for training, optimizing per-frame cross-entropy, and the re-
maining 10% of the training data for evaluation, cf. Popović
et al. (2015). Four hidden layers of 1024 sigmoid units each were used
in this phase, with the DNN softmax output layer estimating observa-
tion probabilities for the 2403 pruned tied HMM states. The DNN ar-
chitecture was implemented on a CUDA GPU machine. System para-
meters used, including the DNN parameters, total numbers of

Gaussians, tied states (regression tree leaves), search space (beam), and
“acoustic”/LM weight (acwt) parameters, are summarized in Table 1.

4.2. Language model and lexicon issues

The WSJ0 5k NVP bigram LM (lm_wsj_5k_nvp_2gram,
Garofalo et al., 1993), used in the decoding stage of the SSC benchmark
and derived from a fixed 5000-word subset of the Wall Street Journal
(WSJ) text corpus, was also adopted in these tests. Obtaining realistic
WER scores on small corpora, however, can be problematic. Using a
closed vocabulary, as is the case here, tends towards underestimation of
attainable WER. On the other hand, an unbiased lexicon derived ex-
clusively from a small training set might not contain all the words
present in the test set, thus leading to an overly pessimistic WER esti-
mate. To help address these issues, a second estimate of the achievable
WER on these data was also made using another, less task-specific CSR
5k NVP bigram LM (lm_csr_5k_nvp_2gram, Garofalo et al., 1993). This
LM contains newswire text from WSJ, the San José Meteor, and the
Associated Press, along with some spontaneous dictation by journalists
of hypothetical news articles. Results on both LM appear in the next
section.

5. Results and analysis

Table 2 shows a comparison of the Kaldi DNN–HMM results, on the

Fig. 4. Original (top row of each panel) and reconstructed (bottom row of each panel) images of tongue and lips using two dimensionalities of DAE features.

Fig. 5. Overall SSR training procedure. The upper
branch shows the GMM/HMM monophone and two
types of triphone training. In the lower branch, the
DNN, which uses the same features as the GMM/
HMM model, after setting initial parameters, under-
goes first an unsupervised pretraining, then a su-
pervised training; it has as its output estimated ob-
servation probabilities that are fed (vertical arrow)
back into the second triphone model for the final
decoding step. See text for a more complete de-
scription.
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WSJ0 5000-word corpus, to those of the SSC benchmark, using the
same 30-dimensional DCT input features and decoding strategy as in
Cai et al. (2011). Although a test with HTK itself was not repeated here,
the fact that quite similar results were obtained using a GMM–HMM in
Kaldi (column 2) provides reassurance that the figures obtained using
Kaldi are reasonable. The Table shows that the DNN–HMM strategy has
reduced the WER by almost a factor of 3 as compared to the benchmark.

To perform the LM tests proposed in Section 4.2, the procedure was
repeated using the alternate LM, as shown in Table 3 for 30-element

feature vectors of both types (DCT and DAE). One notes first of all that
the DCT and DAE features give similar performances, barring the
monophone case. We will return to this point in the discussion of
Tables 4 and 5. Nonetheless, although the WER performance obtained
on the less specific LM is somewhat worse, as expected, it is still sig-
nificantly better than the SSC benchmark, for both types of features.

To further explore different types of input features, DCT and DAE
feature vectors of dimension K=20, 10, 5 for each visual modality
were also tested. Results are given in Table 4 for the WSJ LM, and in
Table 5 for the CSR LM. Overall, higher scores are again obtained with
the more task specific LM, as expected. The tables also show that for
both LM, similar results are obtained for the two types of features, with
the DCT being slightly better, when the dimensionality K of the input
vectors is 10 or more. For K=5, however, while the DCT features are
no longer salient, the DAE retains most of its effectiveness. A clue to this
behavior is the observation that the DCT performs well even when the
image reconstructed from it is poorly recognizable (comparing Figs. 2
and 4), suggesting that visual fidelity is not a salient quantity for the

Fig. 6. DNN structure used for SSR.

Table 1
SSR system parameters.

Monophone Tot_Gaussian 1700
Triphone1 Regression tree leaves 1800

Tot_Gaussian 9000
Triphone2b Regression tree leaves 3000

Tot_Gaussian 25,000
DNN pretrain Number of hidden layers 6

Units per hidden layer 1024
DNN training Number of hidden layers 4

Units per hidden layer 1024
beam 13.0
Lattice_beam 8.0
acwt 0.1

Table 2
Comparison with original HTK result of Patil et al. (2016), using 30-element DCT features.

ASR system HTK SSC benchmark Kaldi GMM–HMM Kaldi DNN–HMM

WER 17.4% 17.4% 6.45%

Table 3
Comparing results for the 2 different LM, for 30-element feature vectors of both types.

LM WER (%)

lm_csr_5k_nvp_2gram lm_wsj_5_nvp_2gram

DCT monophone 45.55 40.47
Triphone2b 17.40 12.71
DNN 11.44 6.45

DAE Monophone 58.55 59.92
Triphone2b 21.70 14.76
DNN 13.98 7.72

Table 4
Recognition results with WSJ language model.

Feature vector dimension K

30 20 10 5

WER (%) for DCT features Monophone 40.47 37.15 36.36 98.24
Triphone2b 13.00 14.76 12.32 100
DNN 6.45 6.35 7.43 99.51

WER (%) for DAE features Monophone 59.92 44.18 41.15 45.45
Triphone2b 14.76 14.96 15.54 17.79
DNN 7.72 7.72 8.80 10.07

Table 5
Recognition results with CSR language model.

Feature vector dimension K

30 20 10 5

WER (%) for DCT features Monophone 45.55 40.86 39.78 98.34
Triphone2b 17.79 19.16 16.42 100
DNN 11.44 11.53 12.32 99.80

WER (%) for DAE features Monophone 58.55 52.00 49.76 54.25
Triphone2b 21.70 21.41 19.75 22.48
DNN 13.98 13.10 14.37 14.86
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problem at hand. One may hypothesize that the DCT has “already done
some of the work” of the DNN by extracting, apparently salient, fre-
quency information. The DAE, in this interpretation, “unnecessarily”
preserves a higher quality version of the input image, “ignoring” other
possible types of saliency, perhaps even “forcing” the DNN to derive
salient information from the DAE features. Then, for the lowest di-
mensionality, K=5, the DNN may still be able to obtain as much
salient information from the DAE features as for other values of K, while
the DCT has clearly lost crucial information. Thus, although the DAE
has not been completely successful at simultaneously optimizing sal-
iency and low dimensionality, the results it furnishes are intriguing, and
suggest that it may be possible to do better with a more sophisticated
approach.

6. Conclusions and perspectives

A confrontation of the SSC recognition benchmark with DNN–HMM
SSR techniques using the Kaldi Deep Learning package has led to an
improvement in WER of almost a factor of 3 in the most favorable
scenario, thus helping to establish US as a highly attractive SSI mod-
ality. Tests performed using both the original WSJ LM and a less task-
specific CSR LM give WER values that are on these data, using the
significantly improved compared to the benchmark. Before the
DNN–HMM tests, Kaldi was also used to test a GMM–HMM architecture,
in order to demonstrate compatibility with the methods used in the
benchmark. New features derived from the raw benchmark data using a
DAE give results only slightly worse than those obtained with the ori-
ginal DCT features, while retaining their effectiveness even at very low
dimensionality. Both new and original features have now been ap-
pended to the SSC benchmark data.

While these results are promising, SSR still remains somewhat less
accurate than acoustic speech recognition, and further work will be
necessary. In the future, for the SSC benchmark, it will be interesting to
experiment with other feature extraction strategies, for example con-
volutional neural networks, CNN, which might allow the image-resizing
step, where information may be lost, to be skipped. For SSI more gen-
erally, it will be interesting to accumulate much larger (if possible
multi-speaker) data sets, so that some of the mentioned problems as-
sociated with small speech data sets may be avoided.
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