
1

Informed Source Separation using Iterative
Reconstruction

Nicolas Sturmel, Member, IEEE, Laurent Daudet, Senior Member, IEEE,

Abstract—This paper presents a technique for Informed Source

Separation (ISS) of a single channel mixture, based on the Mul-

tiple Input Spectrogram Inversion method. The reconstruction

of the source signals is iterative, alternating between a time-

frequency consistency enforcement and a re-mixing constraint.

A dual resolution technique is also proposed, for sharper tran-

sients reconstruction. The two algorithms are compared to a

state-of-the-art Wiener-based ISS technique, on a database of

fourteen monophonic mixtures, with standard source separation

objective measures. Experimental results show that the proposed

algorithms outperform both this reference technique and the

oracle Wiener filter by up to 3dB in distortion, at the cost of a

significantly heavier computation.

Index Terms—Informed source separation, adaptive Wiener

filtering, spectrogram inversion, phase reconstruction.

I. INTRODUCTION

Audio source separation has attracted a lot of interest in the
last decade, partly due to significant theoretical and algorith-
mic progress, but also in view of the wide range of applications
for multimedia. Should it be in video games, web conferencing
or active music listening, to name but a few, extraction of the
individual sources that compose a mixture is of paramount
importance. While blind source separation techniques (e.g. [1])
have made tremendous progress, in the general case they still
cannot guarantee a sufficient separation quality for the above-
noted applications when the number of sources gets much
larger than the number of audio channels (in many cases,
only 1 or 2 channels are available). The recent paradigm of
Informed Source Separation (ISS) addresses this limitation, by
providing to the separation algorithm a small amount of extra
information about the original sources and the mixing function.
This information is chosen at the encoder in order to maximize
the quality of separation at the decoder. ISS can then be
seen as a combination of source separation and audio coding
techniques, taking advantage of both simultaneously. Actually,
the challenge of ISS is to find the best balance between the
final quality of the separated tracks and the amount of extra
information, so that is can easily be transmitted alongside the
mix, or even watermarked into it.

Techniques such as [2], [3], [4] for stereo mixtures, and
[5], [6], also applicable to monophonic mixtures, are all based
on the same principle: coding energy information about each
source in order to facilitate the posterior separation. Sources
are then recovered by adaptive filtering of the mixture. For the
sake of clarity, we will assume a monophonic case, in a linear
and instantaneous mixing (further extensions will be discussed
in the discussion Section) : J sources sj(t), j = 1 . . . J , are
linearly mixed into the mix signal m(t) =

P
j sj(t). If the

local time-frequency energy of all sources is known, noted

|Sk(f, t)|2, k = 1 . . . J , then the individual source sj(t) can
be estimated from the mix m(t) using a generalized time-
frequency Wiener filter in the Short-Time Fourier Transform
(STFT) domain. Computing the Wiener filter ↵j of source j
is equivalent to computing the relative energy contribution of
the source with respect to the total energy of the sources. At
a given time-frequency bin (t, f), one has :

↵j(t, f) =
|Sj(t, f)|2P
k |Sk(t, f)|2

(1)

The estimated source s̃j(t) is then computed as the inverse
STFT (e.g., with overlap-add techniques) of the weighted
signal ↵j(t, f)M(t, f), with M the STFT of the mix m.

This framework has the advantage that, by construction, the
filters ↵j sum to unity, and this guarantees that the so-called
re-mixing constraint is satisfied :

X

j

s̃j(t) = m(t). (2)

The main limitation, however, is in the estimation of the phase:
only the magnitude S̃j(t, f) of each source is estimated by this
adaptive Wiener filter, and the reconstruction uses the phase
of the mixture. While this might be a valid approximation for
very sparse sources, when 2 sources, or more, are active in
the same time-frequency bin, this leads to biased estimations,
and therefore potentially audible artifacts.

In order to overcome this issue, alternative source separation
techniques have been designed [7], [8], taking advantage of
the redundancy of the STFT representation. They are based
on the classical algorithm of Griffin and Lim (G&L)[9], that
iteratively reconstructs the signal knowing only its magnitude
STFT. Again, these techniques only use the energy information
of each source as prior information, but perform iterative
phase reconstruction. For instance, the techniques developed
in [7], [8] are shown to outperform the standard Wiener filter.
However, in return, reconstructing the phases breaks the re-
mixing constraint (2).

The goal of this paper is to propose a new ISS framework,
based on a joint estimation of the source signals by an iterative
reconstruction of their phase. It is based on a technique called
Multiple Input Spectrogram Inversion (MISI) [10], that at each
iteration distributes the remixing error e = m(t) �

P
j s̃j

amongst the estimated sources and therefore enforces the
remixing constraint. It should be noted that, within the context
of ISS, it uses the same prior information (spectrograms1, or
quantized versions thereof) as the classical Wiener estimate.

1The word spectrogram is used here to refer to the squared magnitude of
the STFT
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Therefore, the results of the oracle Wiener estimate will be
used as baseline throughout this paper, “oracle” meaning here
with perfect (non-quantized) knowledge of the spectrogram of
every source.

In short, the two main contributions of this article can be
summarized as follows :

• the modification of the MISI technique to fit within a
framework of ISS. The original MISI technique [10]
benefits from a high overlap between analysis frames
(typically 87.5 %), and the spectrograms are assumed to
be perfectly known. The associated high coding costs are
not compatible with a realistic ISS application, where the
amount of side information must be as small as possible.
We show that a controlled quantization, combined with a
relaxed distribution of the remixing error, leads to good
results even at small rates of side information.

• a dual-resolution technique that adds small analysis win-
dows at transients, significantly improving the audio
quality where it is most needed, at the cost of a small - but
controlled - increase of the amount of side information.

All these experimental configurations are evaluated for a
variety of musical pieces, in a context of ISS.

The paper is organized as follows: a state of the art is
given in Section II, where the G&L and MISI techniques are
presented. In Section III, we propose an improvement to MISI,
with preliminary experiments and discussion. In Section IV,
we address the problem of transients and update our method
with a dual-resolution analysis. In Section V, the full ISS
framework is presented, describing both coding, decoding and
reconstruction strategies. Experimental results are presented in
Section VI, with a discussion on various design parameters.
Finally, Section VII concludes this study.

II. STATE OF THE ART

A. Signal reconstruction from magnitude spectrogram

By nature, an STFT computed with an overlap between
adjacent windows is a redundant representation. As a con-
sequence, any set of complex numbers S 2 CM⇥N does not
systematically represent a real signal in the time-frequency
(TF) plane. As formalized in [11], the function G =
STFT [STFT�1[.]] is not a bijection, rather a projection of
a complex set S 2 CM⇥N into the sub-space of the so-called
“consistent” STFTs, which are the TF representations that are
invariant trough G.

The G&L algorithm [9] is a simple iterative scheme to
estimate the phase of the STFT from a magnitude spectrogram
|S|. At each iteration k, the phase of the STFT is updated with
the phase of the consistent STFT obtained from the previous
iteration, leading to an estimate:

Ŝ(k) = G(|S|ei\Ŝ(k�1)

)

It is shown in [9] that each iteration decreases the objective
function

d(Ŝ(k), S) =

P
m,n | |Ŝ(k)(m,n)|� |S(m,n)| |2

P
m,n |S(m,n)|2 (3)

However, this algorithm has intrinsic limitations. Firstly,
it processes the full signal at each iteration, which prevents
an online implementation. This has been addressed in other
implementations based on the same paradigm, see e.g. Zhu
et al. [12] for online processing and LeRoux et al. [11] for
a computational speedup. Secondly, the convergence of the
objective function does not guarantee the reconstruction of
the original signal, because of phase indetermination. The
reader is redirected to [13] for a complete review on iterative
reconstruction algorithms and their convergence issues.

B. Re-mixing constraint and MISI

In an effort to improve the convergence of the reconstruc-
tion within a source separation context, Gunawan et al. [10]
proposed the MISI technique, that extracts additional phase
information from the mixture. Here, the estimated sources
should not only be consistent in terms of time-frequency
(TF) representation, they should also satisfy the re-mixing
constraint, so that the re-mixing of the estimated sources is
close enough to the original mixture. Let us consider the time-
frequency remixing error Em so that:

Em = M �
X

i

Ŝi (4)

Note that Em = 0 when using the Wiener filter. In the case
of an iterative G&L phase reconstruction, Em 6= 0 at any
iteration. Here, MISI distributes the error equally amongst the
sources, leading to the corrected source at iteration k, C(k)

j :

C(k)
j = G(Ŝ(k�1)

j ) +
Em

J
(5)

where J is the number of sources.
Therefore, if the spectrogram of the source is perfectly

known, it only consists in adapting the G&L technique with
an additional phase update based on the re-mixing error:

Ŝ(k)
j = |Ŝ(0)

j |ei\C(k)
j (6)

and the MISI algorithm alternates steps 4, 5 and 6. It should
be emphasized that, with MISI, the time-domain estimated
sources do not satisfy the remixing constraint (equation (2)),
step (4) playing a role only in the estimation of the phase.

III. ENHANCING THE ITERATIVE RECONSTRUCTION

The MISI technique [10] presented in the previous section
assumes that the spectrogram of every source is perfectly
known. However, in the framework of ISS, we have to transmit
the spectrogram information of each source with a data rate
that is as small as possible, i.e. with quantization. At low bit
rates (coarse quantization), the spectrograms may be degraded
up to the point that modulus reconstruction is necessary.
Therefore we will not only perform a phase reconstruction
as in MISI, but a full TF reconstruction (phase and modulus)
from the knowledge of both the mixture and the degraded
spectrogram.
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Fig. 2. MISI separation results on the test signal, for different spectrogram
quantization levels. Scores are relative to the oracle Wiener filter, and error
bars indicate standard deviations.

A. Activity-based error distribution

It is here assumed that only a degraded version of the source
spectrogram is given. Equation (5) can still be used to rebuild
both magnitude and phase of the STFT. However, a direct
application of this technique leads to severe crosstalk, as some
re-mixing error gets distributed on sources that are silent.

In order to only distribute the error where needed, we define
a TF domain where a source is considered active based on its
normalized contribution ↵j , as given by the Wiener estimate in
eqn. 1. For the source j, the activity domain  j (equation (7))
is the binary TF indicator where the normalized contribution
↵j of a source j is above some activity threshold ⇢

 j(n,m) =

(
1 if ↵j(n,m) > ⇢

0 otherwise
(7)

Now, the error is distributed only where sources are active:

Ŝ(k)
j (n,m) =  j(n,m)

✓
G(Ŝ(k�1)

j ) +
Em(n,m)

D(n,m)

◆
(8)

where D(n,m) is a TF error distribution parameter. It is
possible to compute D(n,m) as the number Na of active
sources at TF bin (n,m) (i.e., D(n,m) =

P
j  j(n,m)).

However, it was noticed experimentally that a fixed D such
that D >> Na provides better results. This means that only a
small portion of the error is added at each iteration, and that
the successive TF consistency constraint enforcements (the G
function) validate or invalidate the added information. The
exact tuning of parameters D and ⇢ is based on experiments,
as discussed in section III-B. We expect that the lower ⇢, the
lesser the artifacts of the reconstruction, but also the higher the
crosstalk (sources interferences) because the remixing error is
distributed on a higher number of bins.

B. Preliminary experiments

A first test is performed to validate the proposed design,
and to experiment on the various parameters. We use a
monophonic music mixture of electro-jazz at a 16bits/44.1kHz
format. Five instruments are playing in this mixture : a bass,
a drum set, a percussion, an electric piano and a saxophone.
These instruments present characteristics that interfere with
one another. For instance, the bass guitar and the electric piano
are heavily interfering in low frequencies, whereas drums and
percussions both have strong transients. The saxophone is very
breathy but the breath contribution is far below the energy of
the harmonics.

The spectrograms are log-quantized (in dB, cf [14], [6])
with three quantization steps : u = 0 (no quantization), 2 and
4dB. For each of these three conditions, we use two overlap
values of 50% and 75% and a window size of 2048 samples
at 44,1kHz sampling rate. Two values of the activity threshold
are tested: ⇢ = .1 and .01. The phase of each source is
initialized with the phase of the mixture, and 50 iterations
were performed.

We test 3 variants of the proposed separation method :
1) M1 : with D = 40 and activity detection.
2) M2 : with D = Na and activity detection.
3) M3 : with D = Na and no activity detection.
For this evaluation, we use the three objective criteria of

the BSS Eval toolbox[15], namely the Source to Distortion
Ratio (SDR), the Source to Interference Ratio (SIR) and the
Source to Artifact Ratio (SAR). Results given on Figure 1 are
relative to the Oracle Wiener filter estimation performances,
taken as reference. In the present experiment the absolute mean
(respectively, standard deviation) of the Oracle Wiener filter
were : SDR = 9.0 (1.3) dB, SIR = 21 (5.1) dB, SAR = 9.4
(1.2) dB for both 50% and 75% overlap. Results of MISI on
the same signal are given on Figure 2.

C. Discussion
The results are presented on Figures 1 and 2 and the

reconstructed sources are available on the demo webpage
[16]. The performance of unquantized MISI is very high,
but decreases rapidly when quantization increases. This is
directly linked to the fact that the spectrogram is constrained,
which would be even more problematic when part of this
spectrogram is missing, for bitrate reduction purposes. The
activity-based error distribution (M1 and M2 vs M3) improves
significantly the three objective criteria both in mean and stan-
dard deviation. This is expected as the activity domain prevents
reconstruction of a source on a bin where its contribution to
the mixture is negligible. One can also see that lowering the
activity threshold ⇢ (from .1 - upper line - to .01 - lower line
-) improves the SAR but lowers the SIR: a lower value of ⇢
distributes the error on a larger amount of bins. While this
provides less “holes” in the reconstructed TF representation
(higher SAR), it also involves more crosstalk between sources
(lower SIR). In every condition, the tradeoff between SIR and
SAR when lowering ⇢ seems to be a loss of about 1dB on the
SIR for a gain of 1dB on the SAR. Since the SIR is already
high on the oracle Wiener filter (> 15dB), it seems a better
tradeoff to favor SAR, in order to improve the global SDR
gain. Therefore, the lower value ⇢ = .01 will be used for the
rest of the paper.

The improvements brought by D >> Na (M1) compared
to D = Na (M2) are less important. The precise choice of D
is experimented on fig. 3. Large values of D seem to provide
a better convergence: the energy of the error that is distributed
to a source but that does not belong to it (on a consistency
basis) will be easily discarded because of its small value and
because of the energy smearing effect of the G function.

When the spectrogram is quantized with u = 4 dB quantiza-
tion step, the reconstruction performance reaches a maximum
with D = 40 for 50 iterations.
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Fig. 1. Separation results for the three variants of the proposed method : M1 (D = 40, activity detection), M2 (D = Na, activity detection) and M3
(D = Na, no activity detection). Scores are relative to the oracle Wiener filter, and error bars indicate standard deviations. Different parameters are tested :
the quantization step u, the STFT overlap (50% and 75%) and the activity threshold ⇢.
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Fig. 4. Improvements over the Wiener filter for a varying quantization step
u. Window size of 2048 samples with 50% overlap, ⇢ = 0.01.

Finally, the effect of spectrogram quantization is clear.
As expected, increasing the quantization steps lowers the
SDR but also dramatically lowers the SAR because of added
artifacts caused by the quantization. Figure 4 presents the
SDR improvement when varying the quantization step u, for
algorithm M1. Even for a relatively high quantization step of
4dB, results still outperform the oracle Wiener filter.

To summarize the results of this preliminary experiment,
we have shown that - at least for the sounds under test -

the proposed method M1 (activity detection, D = 40) can
outperform the oracle Wiener filter, while keeping the amount
of side information low, with a crude quantization of the
spectrograms (u = 4 dB). However, these results are not
perfect, especially in terms of perception. When listening to
the sound examples (available online [16]), one can hear a
number of artifacts, especially at transients. Indeed, transient
reconstruction from a spectrogram or from a Wiener filter
is a well-known issue [17], as time domain localization is
mainly transmitted by the phase. The next section alleviates
this problem by using multiple analysis windows.

IV. IMPROVING TRANSIENTS RECONSTRUCTION

The missing phase information at transients leads to a
smearing of the energy, pre-echo or an impression of over
smoothness of the attack. In order to prevent these issues,
a window switching can be used, with shorter STFT at
transients [17], [18], [19]. In Advanced Audio Coding (AAC)
for instance, the window switches from 2048 to 256 samples
when a transient is detected. Here, because we want the same
TF grid for sources that can have very different TF resolution
requirements, we do not switch between window sizes but
rather use a dual resolution at transients, keeping both window
sizes. Note that this leads to a small overhead in terms of
amount of side information to encode (both short- and long-
window spectrograms have to be quantized and transmitted at
transients), but does not require transition windows.

A. Transients detection

We use the same non-uniform STFT grid for every source
and for the mixture, keeping the ability of TF addition and
subtraction for error distribution. In order to obtain this non-
uniform grid, we process in three steps at the coding stage:

1) a binary transient indicator Tj(t) is computed for each
source j, using the Complex Spectrum Difference [20]:
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Fig. 5. Large and small windows in the dual-resolution STFT.

Tj equals to 1 if a transient is detected at time t, 0
otherwise.

2) The transients are combined in Tall so that

Tall = T1 � T2 � T3 � . . .

where � is the logical OR function.
3) Tall is cleaned so that the time between two consecutive

transients is greater or equal to the length of two large
windows.

The non-uniform STFT is therefore constructed by concatena-
tion of the large-window STFT on all frames, plus of short-
window STFT on transient frames in Tall. Figure 5 shows this
dual-resolution STFT when a transient is detected.

B. Experiments

In order to evaluate the improvements brought by dual-
resolution, we use the same sound samples as before : an
electro-jazz piece of 15 seconds of music composed of 5
sources. The same parameters are also used: 50 iterations,
D = 40, ⇢ = 0.01, and two overlap values : 50% and 75%.
The large and small window sizes are set to 2048 and 256
samples, respectively.

Results are presented on Figure 6, showing improvement
over the Wiener filter as before. Note that we used the
same Wiener filter reference (single-resolution) throughout this
experiment. Transient detection with 50% overlap (leading
to an increase in data size from 15 to 25%, depending on
the number of detected transients), are close to the results
obtained with an uniform STFT at 75% overlap (100% more
data): transient detection brings the same separation benefits
as increasing the overlap, with the added value of sharper
transients. Audio examples are available on the demo web
page [16].

V. PRACTICAL IMPLEMENTATION IN AN ISS FRAMEWORK

This section presents the new source reconstruction method
in a full ISS framework. We call our method Informed Source
Separation using Iterative Reconstruction (ISSIR). First the
coding scheme will be presented, together with parameter
tuning. Then, the decoding scheme will be presented.

A. Coder

Data coding is used to format and compact the information
needed for the posterior reconstruction. The size of this coded
data is of prime importance :

0 20 40 60 80 100 120
0

10

20

frequency bin

fil
te

r b
an

d

Fig. 7. Logarithmic bin grouping in subbands, for 25 subbands and 129
bins

• In the case of watermarking within the mixture (which
would then be coded in PCM), high capacity watermark-
ing may be available [21], limited by a constraint of
perceptual near-transparency. The lower the bit rate, the
higher the quality of the final watermarked mixture, used
for the source reconstruction.

• In the case of a compressed file format for the mixture,
the side-information could be embedded as meta-data
(AAC allows meta-data chunks, for instance). In this case,
the size of the data is also important in order to keep the
difference between the coded audio file and the original
audio file to a minimum.

Of course, increasing the bit rate would eventually lead to
the particular case where simple perceptual coding of all the
sources (for instance with MPEG 2/4 AAC) would be more
efficient than informed separation.

In order to achieve optimal data compaction, we make the
following observation: most of the music signals are sparse
and mostly described by their most energetic bins. Therefore,
spectrograms coding should not require the description of TF
bins with an energy threshold T lower than e.g. -20dB below
the maximum energy bin of the TF representation. What we
propose is then to discard the bins that are lower than T in
Energy. T is the first parameter to be adjusted in order to fit the
target bit rate, with T  �20 dB. Note that former work, e.g.
[6], also threshold the spectrogram, but much lower in energy
(-80 dB). The second parameter for data compaction is the
quantization of the spectrogram with step u. As seen before,
increasing u decreases the reconstruction quality but lowers
the number of energy levels to be encoded. Since increasing
u did not change much the entropy of the data distribution,
we choose u = 1dB for the whole experiment. The third
parameter ⇢ used for the activity domain is set to .01 and is
not modified in our experiments.

The data size of the activity domain is then fixed throughout
the experiments. In order to compact this information even
more, we group time-frequency bins on the frequency scale
using logarithmic rules similar to the Equivalent Rectangu-
lar Bandwidth (ERB [22]) scale. This psychoacoustic-based
compression technique has also been used in informed source
separation in [4], [5]. For the experiments in this paper we
use 75, 125 or 250 non overlapping bands on large windows
(1025 coded bins) and 25 bands on small windows (129 coded
bins), as presented on Figure 7.

Additional parameters such as spectrogram normalization
coefficients, STFT structure, transient location and quantiza-
tion step are transmitted apart: such information represents a
negligible amount of data as most of it is fixed for the whole
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Fig. 8. Block diagram of the ISSIR coding framework.

file duration. At the end of the coding stage, a basic entropy
coding (in our experiment setup, we used bzip2) is added.

Figure 8 shows the coding scheme, with the feedback loop
for the adjustment of the model parameters to the target bit
rate in kb/source/s. The target bit rate is a mean amongst the
sources, as some sources will require more information to be
encoded than others. Such framework allows mean data rates
as low as 2kb/source/s.

B. Decoder

The decoder performs all the previous operations back-
wards. It first initializes each source using the log-quantized
data and the phase of the mixture M . Then, the iterative
reconstruction is run for K iterations and the signals are finally
reconstructed using the decoded activity domain  j .

VI. EXPERIMENTS

In this section we validate our complete ISSIR framework
on different types of monophonic mixtures. As the problem of
informed source separation is essentially a tradeoff between
bit rate and quality, we perform the experiments by setting
different thresholds T and filter bank sizes for the single and
dual window STFT algorithm presented before. The baseline
for comparison is a state-of-the-art ISS framework based on

Wiener filtering [6], where JPEG image coding is simply used
to encode the spectrograms. For a fair comparison, we also use
this method with the same ERB-based filter bank grouping. For
reference, we also compute the results of the original MISI
method, with spectrogram quantization and coding.

The test database is composed of 14 short monophonic
mixtures from the Quaero database2, from 15 to 40 s long, with
various musical styles (pop, rock, industrial rock, electro jazz,
disco) and different instruments. Each mixture is composed
of 5 to 10 different sources, for a total of 90 source signals.
The relation between the sources and the mixture is linear,
instantaneous and stationary ; however, the sources include
various effects such as dynamic processing, reverberation or
equalization, so that the resulting mixtures are close to what
would have been obtained by a sound engineer on a Digital
Audio Workstation.

Figure 9 presents the mean and standard deviation of the
improvements over the oracle Wiener filter for the whole
database. As before, SDR, SIR and SAR are used for the
comparison of the different methods. Reported bit rates are
averaged over the whole database, at a given experimental
condition. Four mixtures under Creative Commons license are
given as audio examples on the demo web page [16]:

• Arbaa (Electro Jazz) - mixture nb. 2 - 5 sources
• Farkaa (Reggae) - mixture nb. 4 - 7 sources
• Nine Inch Nails (Industrial Rock) - mixture nb. 8 - 7

sources
• Shannon Hurley (Pop) - mixture nb. 12 - 8 sources

A. Bit rates and overall quality

As expected, increasing the bit rate improves the recon-
struction on all criteria. The two ISSIR algorithms always
outperform the baseline method of [6], although not signif-
icantly at very low bit rates when the non-uniform filterbank
is used. The dual-resolution framework requires more data,
and only outperforms the single resolution algorithm for bit
rates higher than 10kb/source/s, where the latter tends to reach
its maximum of 1.7dB improvement over the oracle Wiener
filter. At 32kb/source/s, the dual resolution method reaches its
own maximum of approx. 3dB improvement over the oracle
Wiener filter. For even higher bit rates, MISI gives significantly
better results, but the high amount of total side information is
not compatible with a realistic ISS usage.

2www.quaero.org
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Fig. 9. Reconstruction results for the different methods, on monophonic mixtures at different bit rates. Results are given relative to the oracle Wiener filter.
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Fig. 10. Separation results compared to the oracle Wiener filter for every tested mixture with mean and standard deviation for a bit rate of 10kb/source/second.

B. Performance as a function of the sound file

The previous experiments are associated with a strong
variance: results are highly dependent both on the type of
music and on the sources. Figure 10 presents the SDR results
for the 14 sound files, at an average bit rate of 10kb/source/s.
It can be observed that the variations are happening both from
mixture to mixture and within the mixture. At this bit rate, the
dual resolution algorithm may not always perform better than
the single resolution algorithms, as can be seen for mixtures
3, 5, 13, and 14. However, the proposed technique (single or
dual) always outperforms the reference method of [6].

C. Computation time

Since the proposed reconstruction algorithm is iterative, the
decoding requires a heavier computation load than simple
Wiener estimates. A Matlab implementation of the dual-
resolution scheme led to computation times of 6 to 9 s per
second of signal, for 50 iterations, on a standard computer.

As a proof of concept, the single resolution iterative recon-
struction was also implemented in parallel with the OpenCl
[23] API, using a fast iterative signal reconstruction [11]. On
a medium range graphic card, the computation time dropped
to .3 to .4 s per second of signal. The adaptation of this
fast scheme to the dual resolution case is, however, not
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straightforward.

D. Complex mixtures

In the case of complex mixtures (multichannel, convolutive,
etc), the main issue is the error distribution as in equation (8),
that requires itself a partial inversion of the mixing function.
In fact, actual source separation is done at this level, and this
paper shows that a simple binary mask at this stage is sufficient
in order to achieve good results on monophonic mixtures.
The framework presented in this paper could then be adapted
for a vast variety of source separation methods, especially
in the cases when the mixing function is known. In the
case of multichannel mixtures, for instance, error repartition
distribution be done using beamforming techniques.

VII. CONCLUSION

This paper proposes a complete framework for informed
source separation using an iterative reconstruction, called
Informed Source Separation using Iterative Reconstruction
(ISSIR). In experiments on various types of music, ISSIR
outperforms on standard objective criteria a state-of-the-art
ISS technique based on JPEG compression of the spectrogram,
and even the oracle Wiener filtering by up to 3dB in source-
to-distortion ratio.

Future work should focus on the optimization of the al-
gorithm in order to lighten the computation load, and on its
extension to multichannel and convolutive mixtures. Psychoa-
coustic models should also be considered as a way to compact
and shape the side information. Finally, formal listening tests
should confirm the objective results, although it should be
emphasized that setting up a whole methodology for such ISS
listening tests (that is not established as in other fields, e.g.,
audio coding), is a work in itself that goes beyond the current
study.
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