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Regularization of the inverse problem is a complex issue when using Near-field Acoustic Holography
(NAH) techniques to identify the vibrating sources. This paper shows that, for convex homogeneous
plates with arbitrary boundary conditions, new regularization schemes can be developed, based on
the sparsity of the normal velocity of the plate in a well-designed basis, i.e. the possibility to approx-
imate it as a weighted sum of few elementary basis functions. In particular, these new techniques
can handle discontinuities of the velocity field at the boundaries, which can be problematic with
standard techniques. This comes at the cost of a higher computational complexity to solve the
associated optimization problem, though it remains easily tractable with out-of-the-box software.
Furthermore, this sparsity framework allows us to take advantage of the concept of Compressive
Sampling: under some conditions on the sampling process (here, the design of a random array, which
can be numerically and experimentally validated), it is possible to reconstruct the sparse signals
with significantly less measurements (i.e., microphones) than classically required. After introducing
the different concepts, this paper presents numerical and experimental results of NAH with two
plate geometries, and compares the advantages and limitations of these sparsity-based techniques
over standard Tikhonov regularization.

PACS numbers: 43.60.Sx, 43.60.Pt, 43.60.Vx

I. INTRODUCTION

Nearfield Acoustic Holography (NAH), first introduced
by Maynard et al1, is a widespread method to mea-
sure the normal velocity of vibrating structures, based
on some measurements of the radiated soundfield at a
close distance. This set of pressure measurements, called
hologram, is processed to fulfill two different goals. At
a given angular frequency ω, one seeks numerically ei-
ther the prediction of the far field by solving a direct
propagation problem, or the reconstruction of the normal
velocity distribution ẇ of the source vibrating structure
by solving an inverse back-propagation problem. While
the former option presents no computational difficulty (it
will not be discussed here), the latter one is subject to
ill-conditioning and requires a regularization procedure.

Fig. 1 shows the block diagram of NAH data acquisi-
tion and processing as discussed in this paper, as well as
the block diagram of the control measurements using a
laser vibrometer. Further details are given in section II.

Although conceptually simple, at least in the case of
a planar vibrating structure1, a practical use of NAH
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still requires a careful experimental design, some precise
measurements and a non-trivial data processing gener-
ally carried out in the spatial frequency domain (also
called k-space or wavenumber domain). In particular,
the two following issues are commonly raised. As for
most inverse problems, regularization is an essential com-
ponent. In order to avoid the amplification of noise in
evanescent waves, many regularization principles have
been proposed, and this issue is still a very active field of
research2–4. However, a usual side effect of regularization
is the loss of high spatial frequencies, which damages the
reconstruction of free ends for example. Furthermore, to
be able to image the vibration field at high frequencies,
it is often found necessary to sample finely the pressure
field in the measurement plane. This may require a large
number of microphones, with the associated issues of syn-
chronization, calibration, A/D conversion, and total data
throughput.

The goal of this paper is to demonstrate that, in the
case of a star-shaped homogeneous plate, sparse regu-
larization principles and/or compressive sampling tech-
niques lead to significant improvements for these two is-
sues over standard NAH techniques. In fact, this process-
ing can be viewed as an example of a model-based inverse
problem, that have been developed in a large number of
other contexts, for instance in geophysics5. In acous-
tics, the HELS method6 can also be seen as a model-
based inversion, based on least squares. The key point of
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sparsity-based methods, which to the best of our knowl-
edge have not been used in the context of NAH, is that
they address the two issues of regularization and num-
ber of measurements within a unified theoretical frame-
work. These methods have already been applied to a
large variety of inverse problems, such as the one pixel
camera7, magnetic resonance imaging8 or synthetic aper-
ture radar9.
The downside of the proposed method over more

generic methods is that the domain under study must be
planar, star-shaped (which includes all convex shapes),
and homogeneous. However, one should emphasize that
it holds for any type of boundary conditions, that do
not have to be known. For instance, it can be used to
study vibrating plates that are part of complex struc-
tures, regardless on how they are attached to the struc-
ture. Possible extensions to more complex geometries are
also discussed.

To summarize the outline of the paper, the three most
important contributions can be stated as follows:

• Sparse regularization for NAH: in a well-designed
basis (called dictionary), the sought-after velocity
field is approximately sparse, which means that it
can be well approximated by a linear combination
of a small number of elementary basis functions.
The solutions obtained using this sparsity principle
as a regularizer have, as we shall see, a good fit
with the reference data (laser velocimetry), with-
out loss of spatial high frequencies. We discuss in
section III the design of a dictionary of elementary
basis functions adapted to the considered problem.

• Sub-Nyquist random sampling for NAH: proof of
concept. Within the sparse regularization frame-
work, a fine sampling of the hologram plane is
indeed not necessary. The theory of compressive
sampling (CS, also called compressed sensing), pre-
sented in section IV, gives a theoretical foundation
on how to include sparsity priors directly at the
signal acquisition stage. Thus, under the sparsity
assumption, it is possible to significantly reduce the
number of measurements (i.e., microphones), even
well below spatial Nyquist rates. However, CS the-
ory tells us that, for a successful identification of
the sparse components, measurements have to be
as incoherent as possible with the sparsity basis (in
other words, each measurement must carry infor-
mation about all significant coefficients). To satisfy
this in our experimental setup, we first develop a
proof of concept: we simulate measurements with a
random array by randomly selecting a subset of mi-
crophones from a large regular antenna. The corre-
sponding experimental results are described in sec-
tion V, demonstrating the proposed CS approach
to NAH, which combines a random subsampling of
the hologram measurements with sparse regulariza-
tion for the reconstruction of the velocity field.

• Experimental validation and discussion. Finally,
we design and build a new NAH array where a lim-
ited number of microphones are actually randomly

placed in the plane above the vibrating structure.
The design of this array is described in section VI,
with supporting numerical simulations and experi-
mental results comparing the new antenna with the
randomly subsampled design used in the proof of
concept. Section VII discusses the benefits of this
approach for a precise identification of a vibration
pattern (robustness to calibration errors, ability to
reconstruct high spatial frequencies and disconti-
nuities at the boundaries, reduced number of mi-
crophones, ...), the new issues it raises (choice of
an appropriate dictionary of basis functions, tuning
of the parameters of the sparse regularization algo-
rithms, numerical complexity of the algorithms, ...),
as well as possible extensions to overcome some of
theses difficulties and apply it in a wider context.

II. STANDARD IMPLEMENTATIONS OF NAH

In this section we describe the standard techniques for
NAH, including Tikhonov regularization that will be used
as baseline for comparison with the proposed sparse reg-
ularization method.

A. Measurement techniques

A first matter to consider in collecting NAH data is
whether the vibrating source is controlled or not, which
sets the spectral support of the acoustic field to be pro-
cessed. Some observe the structure in operational condi-
tions, others apply controlled excitation, either harmonic
to study the behavior at a given frequency, or with a wide
frequency band support (impulsive or random) to collect
a response over the same support, and to allow an ex-
haustive study such as structural modal analysis.
Another issue regarding the measurement technique

concerns the sensors to be used. While the sole mean
for measuring the acoustic field has long been using mi-
crophones or arrays of microphones, some authors have
recently discussed the advantages of using particle veloc-
ity sensors10–12. Whatever choice is made for the sensors
and type of excitation, the acquired signals must undergo
a time and frequency analysis prior to the NAH process
itself, in order to separate the harmonic acoustic fields of
interest.

B. Geometries involved

When considering planar structures, the mathemati-
cal formulation of NAH and its numerical implementa-
tion are simpler and take advantage of very fast Discrete
Fourier Transform (DFT) algorithms. Provided some
adaptations are made, cylindrical and spherical geome-
tries can also be processed rather simply. These basic im-
plementations are exhaustively described by Williams13.
For objects with arbitrary shapes, it is necessary to

carry out the NAH process using more complex methods,
that involve large matrix inversions using singular value
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decomposition (SVD). This comes at the price of a high
computational cost, e.g. the inverse boundary element
method (IBEM)14,15 based on the integral formulation
of the radiation theory or the HELS method6.

C. Mathematical formulation
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FIG. 1. Block diagram of the experimental process. The
left column is the “ground-truth” reference measurement with
laser vibrometer, the right column is the NAH processing.

Pressure on a plane of elevation z0 radiated by a plate
with a distribution of normal velocities ẇ(x, y, 0) of el-
evation 0 at angular frequency ω is given by the con-
volution of the source distribution with the propagator

g(x, y, z) = g("r) = −iρck eik||!r||

2π||"r|| :

p(x, y, z0) = g(x, y, z0) $xy ẇ(x, y, 0) (1)

Here $xy denotes 2-D convolution in the x and y vari-
ables, c the wave velocity, ρ the air density and k = ω/c
the wavenumber. The 2-D Spatial Fourier transform of
this equation, with respect to x and y, yields :

P (kx, ky, z0) = G(kx, ky, z0)Ẇ (kx, ky, 0). (2)

where kx an ky are the wavenumbers in the x and y
directions respectively.
The implementation of standard NAH uses a dis-

cretized formulation. The pressure and plate velocity are
sampled in a rectangular domain (i.e., the antenna), and
their spatial Fourier transforms are approximated by the
discrete Fourier transforms of their sampled versions:

Fp = GFẇ (3)

where:

• ẇ denotes the vector of source normal velocities to
be identified, discretized on a rectangular regular
grid,

• p is the vector of measured pressures, also dis-
cretized in the hologram plane,

• F is the 2-D spatial DFT operator, and

• G is zero except on the diagonal where it is equal
to G sampled at the wave vectors of the DFT basis
vectors.

The pressure in function of the plate velocity writes

p = F−1GFẇ. (4)

The matrix product F−1GF will be noted H and its
conjugate transpose H#. The resolution of the inverse
problem provides an estimate of the normal velocity ˆ̇w
of the structure. Naive inversion of Equation (4) yields

ˆ̇w = F−1G−1Fp = H−1p (5)

where G, being diagonal, is easily invertible. However,
due to its ill-conditioning, the computation of the sources
using this equation is very unstable, and thus requires
regularization as described in the next section.

D. Need for regularization

The basic theory of NAH asks for the hologram to ex-
tend on a larger area than the source, so as to enclose
the limits of the acoustic field produced by the vibrat-
ing source. In some cases, this constraint cannot be ful-
filled and some precautions must be taken. Some authors
study the reconstruction of the source limited to a re-
gion of interest from the measurement of a patch smaller
than the source16,17. In this case, one has to take care
of the leakage artifacts generated by the truncation of
the field. This can be performed in various ways, the
simplest being to taper the measured field with a flattop
window (or Tukey window). Some use a wavelet-based
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pre-processing of the measured field to lessen the trun-
cation artifacts17.
The hologram p must be recorded at a short distance

z0, in order to collect the decisive information carried
by evanescent waves18, which decay rapidly, e.g. ex-
ponentially in the case of planar geometries. Yet, the
measured field is generally contaminated by noise of var-
ious nature. Hence, the naive back-propagation process
(Equation (5)) ruins the reconstruction, as it implies the
amplification of the evanescent components together with
part of the measurement noise lying in the same k-region
(high wavenumbers). It is therefore necessary to use a
regularization step along with the NAH process. The
simplest candidate for this task is a low-pass filter in
the spectral domain. The optimization of such a filter
has generated an abundant literature2–4. It essentially
consists in finding the cutoff frequency and slope of the
filter, through the determination of a scalar regulariza-
tion parameter. For this purpose, various algorithms are
in competition; here, we briefly describe the most pop-
ular, called Tikhonov regularization, as implemented in
the following experiments.

E. Tikhonov regularization

Tikhonov regularization, widely used in many ill-posed
inverse problems, adds a penalty term to the inverse
problem and, generally, involves the resolution of the fol-
lowing minimization problem:

ˆ̇w = argmin
ẇ

‖p−Hẇ‖22 + λ‖Lẇ‖22 (6)

where L is the so-called Tikhonov matrix and λ the reg-
ularization parameter. The result of the Tikhonov regu-
larization can be expressed in closed form as

ˆ̇w = RλH
−1p (7)

where Rλ writes

Rλ = (H#H+ λL#L)−1H#H. (8)

H and its inverse cancel when equations (7) and (8)
are combined, avoiding the computation of this ill-
conditionned inverse. However, this expression of Rλ

highlights the fact that, in the basic application of the
Tikhonov regularization to NAH where L is chosen to be
the identity matrix, Rλ acts as a low-pass spatial filter.
For our study, we use an improved Tikhonov approach
where L is chosen so that this filter is sharpened up2,
and the Generalized Cross-Validation (GCV)2,4 is used
to estimate the regularization parameter.
Though numerous studies have proved that this stan-

dard implementation of NAH provides good results, there
are still theoretical and practical issues. Two of them can
be emphasized. First, it does not capture well the dis-
continuities at the boundaries when free boundary con-
ditions are used: indeed, the regularization acts as a
low-pass filter and therefore smoothes all discontinuities.
Second, at high frequencies, this techniques requires the
sampling of the hologram plane on a fine grid to satisfy

the Nyquist criterion; this may require a very high num-
ber of microphones (and corresponding A/D converters
and acquisition channels). This study will show that,
by setting this inverse problem into a sparse regulariza-
tion framework, both issues can be alleviated. In the
next section, we recall the concept of sparsity, and in
particular we emphasize that the new formulation of the
regularized inverse problem is very similar to a Tikhonov
approach, up to a change of basis and a different norm
for the penalty term.

III. NAH IN A SPARSITY FRAMEWORK

In this section, we first give a brief description of the
main notions regarding sparsity (section III.A), and the
corresponding optimization algorithms (section III.B).
We then investigate the choice of a dictionary of basis
functions where the signal of interest can be sparsely ap-
proximated (section III.C). Finally, this allows us to re-
cast the NAH inverse problem into a sparsity-promoting
optimization problem, which is the first original contri-
bution of this work.

A. Sparsity

Sparsity is the property of a given signal to be de-
composed as a linear combination of a small number of
pre-defined basis functions, called atoms. It is used in nu-
merous applications19, ranging from data compression to
source separation, signal analysis etc. More precisely, we
call dictionary D a set, that we here assume of finite size
M , of atoms dk ∈ RN : D = {dk}k=1...M . The dictionary
D can be a basis of RN (M = N), or an overcomplete
family spanning RN (M > N).
A finite-size discrete signal x ∈ RN is sparse in D if

there exists a set of coefficients αj such that

x =
∑

j∈J

αjdj (9)

where J is a subset of {1 . . .M}, of much smaller size:
'J = Card(J) $ M . This decomposition can be exact
(exact sparsity), or approximate (compressibility). How-
ever, from a given signal x, there is in general no unique
decomposition such as Equation (9) if D is overcomplete.
In order to find the sparsest set of coefficients α that
verifies Equation (9), or that provides the best balance
between data fidelity and sparsity, a large number of al-
gorithms have been developed, and in particular the (1
optimization techniques that will be described in the next
section.

In the case of NAH, we will assume that the discretized
version of the Fourier-domain velocity map of the source
plane ˆ̇w is approximately sparse in an appropriate basis:

ˆ̇w ≈ Dα (10)

where the vector α has only 'J non-zero elements, and
D ∈ RN×M is the matrix whose columns are all the dk in
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D. As we shall see, this assumption is only justified for
an appropriate choice of dictionary D. This is a crucial
point if one wants to use sparse decompositions, as this
really influences how sparse a given class of signals can
be: the sparser the decomposition (the smaller 'J), the
better the estimation.
Provided that this holds, the NAH inverse problem can

be re-cast as follows : for a given set of pressure measure-
ments p (the hologram), find the sparsest set of coeffi-
cients α such that p = HDα (note that, here, the matrix
H is obtained by direct discretization of Equation (1), i.e.
quadratures of the integrals used to compute the convo-
lution, avoiding truncature artifacts of the Fourier trans-
form). More precisely, if one introduces the (0 pseudo-
norm of the vector α = [α1 . . .αM ]T as ‖α‖0 = 'J (num-
ber of nonzero coefficients), the problem to be solved is

argmin
α

‖α‖0 subject to p = HDα, (11)

Unfortunately, as the (0 pseudo-norm is non convex, and
in general exactly solving this problem would require a
combinatorial exhaustive search, that immediately be-
comes non-tractable. In the next section, we describe
the algorithm we used to provide practical solutions to
this problem.

B. !1 optimization algorithms

The technique used in the conducted experiments re-
places the (0 pseudo-norm, found in Equation (11), by a
“relaxed” (1-norm: ‖α‖1 =

∑

k |αk|. This leads to the
Basis Pursuit (BP) approach:

argmin
α

‖α‖1 subject to p = HDα, (12)

The advantage of this proxy is that the (1-norm is convex,
allowing the use of powerful optimization algorithms.
Furthermore, minimizing the (1-norm under the linear
equality constraint still promotes sparsity : most of the
components αk are pushed to zero, allowing only few
non-zero coefficients.
In practice, when noise is present, the following ap-

proach is used, that will be named L1 in the following:

argmin
α

‖α‖1 subject to ‖p−HDα‖22 ≤ ε. (13)

This requires tuning the data fidelity constraint ε: the
larger ε, the sparser the solution α that can be achieved,
at the cost of a loss in the reconstruction accuracy. The
choice of ε and its impact in practical situations is dis-
cussed in Section VI.D.3.
Here, we shall emphasize the parallel between

Tikhonov regularization –Equation (6)– and sparse (1
regularization –Equation (13). The latter can be ex-
pressed in Lagrangian form as :

argmin
α

‖p−HDα‖22 + λ‖α‖1 (14)

with an appropriate choice of λ. This is known as the
Basis Pursuit Denoising (BPDN) framework20. Compar-
ing Equations (14) and (6), one can see that the main

difference lies in the choice of the norm: the (2-norm
of the Tikhonov regularization spreads the energy of the
solution on all decomposition coefficients α, while the (1-
norm approach of BPDN promotes sparsity. In addition,
sparse regularization gives an extra degree of freedom
with the choice of dictionary D.
While the Tikhonov solution can be expressed in closed

form (Equation (7)), the L1 method requires solving
a potentially heavy optimization problem. However,
numerous algorithm exist (second-order cone program-
ming, interior point algorithms, iterative reweighted least
squares, gradient projection...), and several toolboxes are
available, such as SPGL1 toolbox21,22 or CVX23,24, used
in the following.

It should be noted that, as an alternative to (1 opti-
mization techniques, one can look for approximate solu-
tions of the original problem (11), based on the (0 pseudo-
norm. This can be done using so-called greedy techniques
(for instance, Orthogonal Matching Pursuit25), that se-
lect atoms one by one.

C. Design of a dictionary

The mechanical systems used for the validation are
thin plates, point shock excited so that an acoustic im-
pulse response field is produced (for details on experi-
mental setup see section V.A). They are measured in
the hologram plane by a planar microphone array, (cf.
Figure 1).
Considering a plate, the dictionary yielding the spars-

est representation of the velocity field would be the col-
lection of modal deflection shapes. Unfortunately, these
can be known explicitly only in very specific cases, in
particular with well controlled boundary conditions. If
they were known, the problem would become consider-
ably simpler in many aspects, but the objective of NAH
imaging is often precisely to measure these modal deflec-
tion shapes. Hence, the dictionary used here should be
more generic.
Theoretical results26 indicate that plane waves provide

good approximations to solutions of the Helmholtz equa-
tion on any star-shaped plate (i.e. plate shapes such that
there exists a point in the plate that can be connected
to any point via a line segment entirely included in the
plate, in particular, all convex plates are star-shaped),
under any type of boundary conditions. These results
have been recently extended to thin isotropic homoge-
neous plates27. Mathematically, the velocity of the plate
ẇ, as a solution of the Kirchhoff-Love equation, can be
approximated by a sum of plane waves and evanescent
waves :

ẇ(x, y) ≈

(

∑

n

αne
i"kn·"x + βne

"kn·"x

)

1S(x, y) (15)

where 1S(x, y) is the indicator function that restricts the
plane waves to the domain S of the plate. Here, the
evanescent part is not critical for reconstruction27 and is
neglected.
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FIG. 2. Construction of dictionary atoms. Left: shape S of
the plate, rectangular domain S̄ used to build the dictionary,
and a Fourier basis vector on S̄. Right: the corresponding
atom.

The construction of the dictionary D exploits this ap-
proximation property with plane waves. To build D, we
generate plane waves with wavevectors placed on a rect-
angular grid in the Fourier plane (with steps κx and κy in
the x and y directions respectively, centered at the origin
of the Fourier plane), and restrict them to the domain of
the plate S, as illustrated on Figure 2. This is actually
equivalent to restricting to S the basis vectors of the dis-
crete Fourier transform on a larger rectangular domain S̄
of size Lx = 2π/κx and Ly = 2π/κy, containing S. The
main degree of freedom in the design of the dictionary is
the size of S̄. The larger Lx and Ly are, the finer is the
sampling of the wavevectors, yielding better approxima-
tions of the velocity fields, but also raising the numerical
dimension of the problems to be solved. Unless specified
otherwise, experiments will be conducted with S̄ twice
the size of S. Finally, as we can only solve finite size
problems, we will only considered wavenumbers below a
certain threshold.

D. Validation of the proposed dictionary

To validate the proposed dictionary design, we show in
this preliminary experiment that typical operating deflec-
tion shapes (ODSs) can be well approximated in such a
dictionary. By laser velocimetry, we measure 44 ODSs of
a rectangular plate, between 78 Hz and 3800 Hz. We then
compute their sparse approximation, using only 'J = 8
atoms. The approximations were found with the Orthog-
onal Matching Pursuit algorithm25, as it allows an eas-
ier control on the sparsity 'J than (1-based optimization
techniques. Note that the set of selected atoms can be
different for each ODS. The quality of the approximation
is gauged by normalized cross-correlation, as computed
by Equation (16).
Experimental results indicate that the quality of this

approximation is good: the correlation, beginning at 99%
at 78 Hz, shows a slight decrease with frequency, but
remains always higher than 86% within the whole fre-
quency range. It can be concluded that, at least in the
case of a rectangular plate, a small number of atoms is
sufficient to approximate the ODS, and this justifies the

use of a sparse model. Further justification will be given
by the experiments described in section V, first on a rect-
angular plate, then on a more complex D-shaped plate.

E. Summary

This section has described how the sparsity assumption
with an appropriate dictionary may replace Tikhonov
regularization in the resolution of the NAH inverse prob-
lem. In section V, we will provide an experimental vali-
dation of this new framework, that shows the benefits of
this alternative approach, especially in the faithful rep-
resentation of high spatial frequencies.

IV. NAH AND COMPRESSIVE SAMPLING

In the steps described above, we have only used an
appropriate dictionary design to view the NAH regular-
ization problem as a sparse optimization problem, but we
have not changed the hardware settings nor the acquisi-
tion scheme. However, recent theoretical advances have
shown that, with some freedom on the sampling process,
such sparse formulation of the problem can sometimes
also help in reducing the number of measurements needed
to reconstruct a given sparse signal, sometimes well below
the number of samples given by the classical Shannon-
Nyquist sampling paradigm. This new theory is called
Compressive Sampling28 (CS). It can be remarked that
in the literature, this theory is also called Compressed
Sensing, emphasizing the parallel between sensing and
sampling.

A. Basics of Compressive Sampling

Formally, compressive sampling consists of: a) purpos-
edly reducing the number of measurements, leading to a
linear system p ≈ Hẇ with (many) more unknowns than
equations; b) exploiting the sparsity of ẇ in a dictionary
D to actually recover it through sparse regularization.
In the general case, the under-determined linear sys-

tem associated to the matrix A = HD has an infinite
number of solutions, and ẇ cannot always be estimated
when only p is known. The key point is that, under
some properties of the matrix A, the unknown ẇ can
be estimated in a stable fashion provided that it is suf-
ficiently sparse in the dictionary D. Interestingly, algo-
rithms used to recover this solution are the same that are
used for finding a sparse decomposition of a signal28–30,
introduced in subsection III.B.

B. A word about theoretical guarantees

Much theoretical work in the field of sparse regular-
ization has shown that the so-called Restricted Isome-
try Property (RIP)28 of the matrix A guarantees that
sparse regularization will provide an accurate and stable
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estimate of ẇ from the incomplete and noisy observation
p ≈ Hẇ, when ẇ is sufficiently sparse.
The RIP condition essentially means that A, when re-

stricted to sparse vectors, approximately preserves the
energy. Verifying that a particular matrix satisfies the
RIP is considered numerically hopeless. However, many
theoretical results show that various families of ran-
dom matrices satisfy the RIP with very high probabil-
ity. Compressed sampling exploits this property: by de-
signing sampling systems associated to (pseudo)-random
matrices, one can perform fewer measurements than the
classical Shannon-Nyquist paradigm would require, while
preserving the ability to reconstruct sparse data.
In NAH, there is a priori a limited freedom in the de-

sign of the acquisition scheme. Randomness will be in-
troduced by randomly locating the microphones in the
hologram plane. Yet, the matrix H of the system mod-
els a propagation operator that dampens exponentially
the evanescent components of the hologram. It is thus
very unlikely that A verifies the RIP, and it is illusive to
hope to fully rely on theoretical guarantees in this setting.
In practice, as we shall see, reconstruction results pro-
vided by random acquisition with a reduced number of
microphones remains valid, which is in line with current
knowledge in CS: practical performance remains correct
much beyond theoretical guarantees (which are merely
sufficient, but non necessary, conditions).

C. Putting Compressed Sensing in practice for NAH?

In the case of a signal sparse in the spatial Fourier ba-
sis, it has been shown that few point measurements in
the spatial domain are sufficient to recover exactly the
signal31, and that the reconstruction is robust to noise.
In the experimental setup considered in section V, the
measurements are not strictly point measurements, but
are more sensitive to the sources near the sensors. The
theory suggests that an array with randomly placed sen-
sors is a good choice of measurement scheme: in con-
junction with sparse reconstruction principles, random
microphone arrays perform better than regular arrays,
as the measurement subspace becomes less coherent with
the sparse signal subset (and therefore each measurement
/ microphone carries more global information about the
whole experiment).
Note that this point of view seems to contradict a re-

cent paper32, stating that a random microphone deploy-
ment presents no particular benefit for NAH; here we
must emphasize that the benefit of randomness is only
apparent when employing a sparse regularization tech-
nique instead of a more standard regularization scheme.
In practice, it is difficult to manufacture a completely

random array, and the precise calibration of the micro-
phone locations on such an array can raise its share of dif-
ficulties too, as discussed further in section VII. Hence,
to assess the potential of CS for NAH, we proceed in two
steps. In a first step, we use existing arrays to measure
holograms on a dense regular grid, and select a random
subset of microphones to simulate randomly located mi-
crophones. The corresponding detailed experiments are

described in the next section. Given the success of this
proof of concept, we further proceed to the design and
construction of a random array. Section VI details the
design of this array and the experimental NAH results
achieved with it.

V. SUBSAMPLING THE HOLOGRAM MEASUREMENTS

A. Setting

1. Sample structure and excitation

An experimental validation of NAH using sparsity and
CS is performed using two metallic plates.
Rectangular plate. The first plate is rectangular, in
aluminum, with dimensions 4mm×500mm×400mm. Its
four corners are attached to light rubber silent blocks, so
that the conditions at the boundaries approach those of
a free plate.
D-shaped plate. The second plate is D-shaped, made
of a disk where one segment has been cut off, as shown on
Figure 4 ; this shape is known to exhibit a complex modal
behavior. This structure is a 4mm thick steel disk, with a
220mm radius, and the segment has been cut according
to a 300mm chord. It is clamped on its side, with a
clamped area of 20 square centimeters.
These vibrating systems are excited using an impulse

hammer located on its underside, that exerts controlled
point shocks (cf. Figure 1). Since the hammer is driven
by an electromagnet with constant amplitude, repro-
ducibility is ensured. The impact is located so as to
excite a significant number of relevant bending vibration
modes. The acoustic impulse response measurements are
carried out in a non-ideal environment, where reverbera-
tion occurs and may perturb the recordings.

2. Ground truth measurements

For reference purposes, a measurement of the actual
velocity field of the source is collected by a laser vibrom-
eter, on a fine regular grid providing 50 × 40 = 2000
vibration impulse responses which are considered as the
ground truth. For the rectangular plate, the grid has a 10
mm step along both coordinate axes. For the D-shaped
plate, 1979 out of the 2000 measurements actually lie in-
side the plate, with steps of 8.5mm and 8.2mm in the x
and y coordinates, respectively.

3. Standard hologram measurements

Hologram measurements are performed with an ar-
ray of 120 electret microphones, and a custom-built 128-
channel digital recorder. The standard NAH hologram is
collected using a 12× 10 regular microphone array with
a 50 mm square step, the overall dimensions of the ar-
ray are therefore 550 mm x 450 mm. This basic array
is moved precisely according to 16 interleaved positions
in order to build a 48 × 40 = 1920 points measurement

7

ha
l-0

07
20

12
9,

 v
er

si
on

 1
 - 

24
 J

ul
 2

01
2



grid, with a 12.5 mm square step. The recorded signals
are time-aligned.
For the rectangular plate, the array is placed at a dis-

tance z0 =20mm from the plate, while for the D-shaped
plate, because of the clamping system, it was located
30mm above the plate.

4. Pre-processing

The recorded time-domain holograms made of acous-
tic impulse responses are processed in order to provide
holograms in the temporal Fourier domain. The result-
ing harmonic pressure fields or harmonic holograms can
thereafter undergo the various NAH processes. In or-
der to ensure a better signal-to-noise ratio (SNR), we
only process holograms corresponding to radiative oper-
ating deflection shapes (ODS) of the plate. These can
be found as the peaks of the temporal Fourier transform
of the impulse responses, and are scattered throughout
the frequency range between 50 Hz and 4000 Hz. The
complete experimental process is depicted on Figure 1.

5. Performance measure

The accuracy of the reconstructed velocity fields ˆ̇w are
compared with the ground truth ẇ. The performance of
the various NAH techniques is evaluated using the corre-
lation coefficient, commonly used in experimental modal
analysis and defined by:

C := max
i,j

ˆ̇wT ẇi,j

‖ ˆ̇w‖2 · ‖ẇ‖2
(16)

where ẇi,j is the version of ẇ shifted from i pixels in the
x-direction and j pixels in the y-direction. This accounts
for possible misfits in the location of the measurement
grids between the vibrometry data and the holograms.

B. Results: Tikhonov vs sparse regularization

First, we propose a simple comparison between
Tikhonov regularization and L1 sparse regularization, us-
ing different subsamplings of the whole set of measure-
ments.
Figure 3-a shows four “ground truth” ODSs for the

rectangular plate, associated to temporal frequencies of
78 Hz, 402 Hz, 1483 Hz, and 3297 Hz. From the pressure
hologram, we performed different types of NAH recon-
struction :

• Figure 3-b is obtained from the whole set of 1920
measurements (array of 120 microphones at 16 po-
sitions), using Tikhonov regularization;

• Figure 3-c is obtained from a set of 120 measure-
ments placed on a regular grid, corresponding to a
single position of the basic array, using Tikhonov
regularization;

• Figure 3-d is obtained from a set of 120 measure-
ments placed on a regular grid (same measurements
as 3-c), with L1 sparse regularization;

• Figure 3-e is obtained from a set of 120 measure-
ments placed on slightly tighter regular grid, so
that all the measurements are above the plate, with
L1 sparse regularization;

• Figure 3-f is obtained from a set of 120 measure-
ments randomly selected amongst the 1920 original
measurements, with all the measurements above
the plate, processed with L1 sparse regularization.

The subsampled Tikhonov approach (Figure 3-c)
works well for a large range of medium frequencies, but it
fails at both ends of the frequency range. At very low fre-
quencies, the low-pass filter used for regularization is so
narrow that its design allows leakage of higher frequencies
(a drawback that does not depend on the number of mea-
surements, as seen on Figure 3-b). At very high frequen-
cies, the spatial sampling of the pressure hologram does
not satisfy the Shannon-Nyquist criterion, and therefore
spatial aliasing occurs. On the opposite, NAH results
obtained with L1 sparse regularization (Figure 3-d and
Figure 3-e) reproduce faithfully the ODSs with the same
number of microphones, even at high spatial frequencies.
Interestingly, in the case of L1 sparse regularization it is
better to concentrate the measurements strictly “inside”
the plate (Figure 3-e). This is explained by the fact that,
although the plate is unbaffled, the propagation model as-
sumes a baffled plate. The mismatch between these two
models is acceptable for the microphones directly above
the plate, but is much larger for the microphones outside
the plate aperture. Therefore, discarding these measure-
ments yields better reconstructions. Moreover, keeping
the same number of microphones on a smaller area allows
for a slightly denser grid. The last column (Figure 3-f)
shows that similar results are obtained when the mea-
surements are randomly selected amongst the 1920 orig-
inal measurements (ensuring that all the selected mea-
surements are above the plate).

To validate the technique in a more general case, we
used the same experimental protocol for the D-shaped
plate. Results are shown on Figure 4. Although the
shape and the boundary conditions in these case are more
complex, the exact same conclusions can be drawn, at
least qualitatively. However, the associated ODSs are
less sparse, and therefore slightly more measurements are
needed in order to recover them accurately.

C. Results: regular vs random array

In order to validate these results in a more quantitative
manner, we compare on the whole frequency range the
different spatial subsampling strategies (random or reg-
ular), for the two regularization techniques (Tikhonov
or L1 sparse). Figure 5 compares standard NAH using
the regularly subsampled array (120 measurements), L1
sparse regularization using a regular array of 120 mea-
surements above the plate taken from the full set of 1920
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(c) TikhREG120
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(d) L1REG120
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C=88%
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C=88%

C=92%

C=80%

FIG. 3. Rectangular plate : Tikhonov vs L1 regularization, in various subsampling scenarii. From left to right :
a) Ground truth;
b) Tikhonov regularization + Regular array (120 microphones) at 16 positions : 1920 measurements;
c) Tikhonov regularization + Regular array (120 microphones) at 1 position : 120 measurements;
d) L1 regularization + Regular array (120 microphones) at 1 position : 120 measurements;
e) L1 regularization + Regular subsampling of the 1920 measurements, only “inside” the vibrating plate : 120 measurements;
f) L1 regularization + Random subsampling of the 1920 measurements, only “inside” the vibrating plate : 120 measurements.

NAH measurement, and L1 sparse regularization using
120 measurements above the plate randomly drawn from
the whole set of 1920 measurements. Whereas all the al-
gorithms have similar performance for medium frequen-
cies, the accuracy of Tikhonov-based NAH drops in the
low and high frequency ranges. L1 sparse regularization
improves significantly on both sides, with slightly better
performance for the random array.

VI. USE OF A RANDOM ARRAY

The previous section has shown that it is possible to
maintain good reconstruction results while randomly un-
dersampling the pressure hologram measurements. In
this section, we put this idea into practice by construct-
ing an array of randomly located microphones. The main
advantage of using this array is that we can perform all
the measurements at once, with a single excitation, as
opposed to the regular array that had to be moved in 16
interleaved positions in order to finely grid the hologram

plane, and hence required a series of 16 impulse excita-
tions and measurements. However, uniformly distributed
random arrays are difficult to build for practical reasons
(microphone mounts), and therefore we performed nu-
merical simulations for the design of simpler random ar-
rays. These arrays have the advantage that they can be
built using several straight bars.

A. Considered array designs

The considered array designs are qualified according
to their arrangement: regular, tensorial, parallel, crossed
oblique, oblique, random from regular, or random, and
are defined as follows:

• regular: a regular array, that is computed for ref-
erence. In practice, for example, 120 microphones
would be placed on I = 12 bars parallel to the
y-axis; each bar would hold J = 10 microphones
evenly spread.

• tensorial: microphones are located at all positions
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FIG. 4. D-shaped plate : Tikhonov vs L1 sparse regularization. Same subsampling as on Figure 3.
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FIG. 5. Comparison of 3 approaches for the NAH identifi-
cation of the radiating ODS up to 3.3kHz : Tikhonov regu-
larization with regular array (120 measurements), L1 sparse
regularization with regular array (120 regularly spaced mea-
surements “inside” the plate), and L1 sparse regularization
with random subsampling (120 measurements randomly se-
lected from a regular grid 1920 measurements, restricted to
be over the plate).

(xi, yj), where {xi}i=1...I and {yj}j=1...J are uni-
formly drawn in the (0, 1) interval. The xi deter-
mine the positions of the bars, and the yj the po-
sition of the microphones along the bars.

• parallel: microphones are located at all posi-

tions (xi, yj,i), where {xi}i=1...I and, for every i,
{yj,i}j=1...J are uniformly drawn in the (0, 1) in-
terval. Here, the position of the microphones is
different along each bar.

• crossed oblique, same as parallel, but the bars are
not constrained to be parallel to the y-axis.

• oblique, same as crossed oblique, but the bars are
constrained not to cross each other.

• random from regular: a random selection of micro-
phones located of a denser regular array.

• random : purely random location of the micro-
phones, at positions {(xk, yk)}k=1...I×J , uniformly
drawn in (0, 1) × (0, 1). Note that a practical is-
sue using this array would be to calibrate the exact
location of each microphone.

Figure 6 shows examples of such arrays in the regular,
random, and oblique arrangements.

B. Numerical simulations

Reconstructions have been simulated for these test ar-
rays, with varying numbers of sensors. The simulated
plate is a simply supported square steel plate, with di-
mensions 1mm×200mm×200mm. The simulated holo-
gram and the plate are separated by 20mm. The domain
used to build the dictionary has dimensions twice the di-
mensions of the plate. It should be noted that the modes
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FIG. 6. Examples of microphone distribution for three de-
sign strategies: a) regular array, b) random array c) pseudo-
random oblique array. The area colored in gray is the area
of the hologram plane located exactly at the vertical of the
vibrating plate. The dots indicate the location of the micro-
phones.

of the plates are not exactly sparse in the dictionary used
here.

Figure 7 shows the reconstruction error (as defined in
Equation (16)) obtained with arrays of 10 to 100 sensors,
for each type of considered array, for the modes (2,12)
and (12,2), at 1053 Hz, and (8,8) at 911 Hz. For each
type of random array and each number of sensors, the er-
ror is averaged over 30 different draws of the random ar-
ray. Reconstructions are obtained by (1 optimization as
described above, solving the Basis Pursuit problem (12)
with the CVX23,24 package.

The regular arrays fail to yield a correct reconstruc-
tion of the (2,12) and (12,2) modes, because the spatial
Shannon-Nyquist criterion is not met with 100 or less

a)

b)

c)

FIG. 7. Average reconstruction error with respect to the num-
ber of microphones, for different types of arrays. a) (2,12)-
mode at 1053 Hz. b) (12,2)-mode at 1053 Hz. c) (8,8)-mode
at 911 Hz.

measurements. Results with the regular arrays are bet-
ter for the (8,8) mode as the Shannon-Nyquist criterion
is met in this case.

The uniformly distributed random arrays have good
performance even for sub-Nyquist measurements, but, as
pointed before, are cumbersome to build.

Other arrays have varying performances, the best on
average being here the crossed oblique array. It should
be noted that the performance of the parallel, crossed
oblique and oblique arrays are different for the (2,12)
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and (12,2) modes which differ only by their orientation.
It is not unexpected, since these array are not invariant
by a 90o-rotation.
Finally, the oblique array (Figure 6-c) leads to a good

tradeoff between reconstruction fidelity and hardware
feasibility. Therefore, this design was chosen for the ex-
perimental validation, which is presented next.

C. Experimental validation

To evaluate the impact of the array design on the re-
construction accuracy, we compared on the whole fre-
quency range three subsampling strategies, using L1
sparse regularization for reconstruction. The results are
displayed on Figure 8. Figure 8-a shows the “ground
truth” ODSs acquired with the experimental setting de-
scribed in section V. The reconstructions were obtained
from measurements performed over the plate as follows:

• Figure 8-b is obtained from 42 measurements
placed on a regular grid, corresponding to a reg-
ular subsampling of the 1920 NAH measurements;

• Figure 8-c is obtained from 42 measurements ran-
domly selected from those of the 1920 microphones
that were above the plate;

• Figure 8-d is obtained from 42 measurements se-
lected from the 80 microphones of the implemented
oblique array that were above the plate.

We obtained similar results when varying the number of
microphones above a minimum number of microphones
that depends on the reconstructed ODS.

D. Tuning the Compressive Sensing reconstruction

1. Choice of the algorithm

As an alternative to the L1 approach used so far, one
can use other classes of sparse solvers. A popular choice is
the Orthogonal Matching Pursuit25 (OMP), that builds
an approximate solution of the original sparse problem
(11) in an iterative manner : a first atom is selected,
its contribution is removed, and the process is iterated
on the residual until a number J of atoms have been
selected. Besides its simplicity, a potential advantage of
OMP is that the sparsity level can be freely chosen.
In practice, the choice of a sparse regularization algo-

rithm to perform NAH reconstruction depends on several
factors. As we have seen, sparse regularization relies on
the design of a dictionary in which the source is suffi-
ciently sparse. Moreover, any regularization technique
requires the tuning of a regularization parameter, which
is dependent both on the source under study and on the
algorithm. The robustness of the reconstruction results
when these parameters are “blindly” tuned is therefore
an important criterion to drive the choice of an algorithm.

2. Tuning of the dictionary

For the identification of the considered free plate’s
ODSs, as said before, the dictionary consists in the spa-
tial Fourier atoms of a surface S̄ larger than the plate.
When varying the dimensions of this S̄ between 100%
and 600% of that of the plate we found that the corre-
lation with the reference ODS was very stable with L1
reconstruction. When using OMP with a fixed stopping
criterion, the correlation varied more significantly with
the size of S̄. This is illustrated on Figure 9-a.
Figure 9-b (resp. Figure 9-c) shows the typical recon-

struction accuracy as a function of the frequency, with
L1 (resp. with OMP). The error bars show the extremal
values of the reconstruction accuracy for each frequency
when the dimensions of S̄ are varied between 100% and
600% of those of the plate. This corresponds to NAH re-
construction with sparse regularization from recordings
made with about 80 microphones of the random array of
section VI.
One can observe that the L1 algorithm behaves stably

whatever the spatial extent of the dictionary, while the
performance of OMP depends heavily on the fine tuning
of the dictionary, and is hard to control a priori. We con-
clude that, even if OMP is often more efficient in terms
of computation time, L1 should be prefered for its better
robustness with respect to the tuning of the dictionary.

3. Tuning of the regularization parameter

Because of the above highlighted lack of robustness of
OMP with respect to the tuning of the dictionary, we
now focus on L1. When using the L1 algorithm, the
input error parameter ε is required, as described in sec-
tion III.B. This parameter is defined as a function of
the measurement noise (acoustic background, electronic
noise), the microphones positioning error, the propaga-
tion model error and the approximate sparsity of the
source. Since these items are not easily quantifiable, ex-
cept for the background and electronic noises, it is not
obvious to set objectively the value of ε so that the al-
gorithm stops when the most accurate approximation of
the source is found. Nevertheless, by studying the cor-
relation between reconstructed velocity and the ground
truth (see Figure 10), we can see that a relatively large
range of ε is acceptable. ε is expressed as a function of
the hologram norm: ε = α‖p‖2. It appears that a level
of 20% to 30% of the signal norm is acceptable for the 4
selected frequencies. However, an objective method for
the evaluation of ε is still to be designed to get free from
the experimental conditions.

VII. DISCUSSION

A. Improvements of NAH by CS

This subsection emphasizes several improvements of
NAH brought by the use of compressive sampling and
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FIG. 8. Comparison of spatial subsampling strategies with L1 sparse regularization. From left to right :
a) Ground truth;
b) Regular array (42 microphones) over the plate;
c) Random selection of 42 microphones from regular set of 1920 measurements over the plate;
d) 42 microphones from oblique array.
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FIG. 10. Variation of correlation coefficient according to the
input noise parameter ε = α‖p‖2

proposes some interpretations of previously observed re-
sults.

13

ha
l-0

07
20

12
9,

 v
er

si
on

 1
 - 

24
 J

ul
 2

01
2



1. Calibration errors

At low frequencies, the Tikhonov-based NAH recon-
struction exhibits large errors in the estimation of the
amplitude (see Figure 3-b/c) at 78 Hz and 402 Hz). This
may come from the straightforward dependence of re-
constructed ODSs on the SNR of the measured acous-
tic pressures. Indeed, pressure measurements suffer from
background and electronic noise, but also from possible
calibration errors.
Sparsely regularized NAH is less dependent on the sen-

sors amplitude errors, since the identified ODSs are lin-
ear combinations of atoms picked up in a deterministic
dictionary. Of course, the algorithm will not succeed in
catching the relevant atoms if the amplitude errors are
too strong, especially at high frequencies. However, when
only a few microphones are affected by small calibration
errors, the reconstruction is not badly corrupted, as il-
lustrated on Figure 3-d/e/f.

2. Hologram extent

The experimental standard NAH process is performed
over a finite measurement aperture. This rises high
wavenumbers components representing the edges of the
aperture. Backpropagation exponentially amplifies these
components, distorting the reconstructed source. In or-
der to lower these effects, the acoustic pressure field is
recorded over a surface larger than the source, so as to
reach null pressure points. The edges of the obtained
hologram are thereafter smoothed using a flat top taper-
ing window. However, such an extension of the hologram
implies more microphones or additional measurements.
The above NAH experiments using sparse regulariza-

tion show that the reconstruction is poorer when the mi-
crophones outside the vibrating domain are considered.
Therefore, these measurements are discarded and only
the microphones located above the source are used. One
possible explanation for this result lies in the fact that the
propagation model considers implicitly a baffled plate,
while in the experiments, the plate was unbaffled. The
mismatch between the two models being larger for the
microphones outside the plate aperture, better results
are obtained by discarding these measurements.

3. Robust regularization

The plates under study have free edges, where large
amplitudes of vibration occur. This leads to sharp dis-
continuities of the source vibration field, whose signa-
ture in the k-space is located at high spatial wavenum-
bers. With the improved Tikhonov regularization using
the low-pass filter described in section II.D, this high-k
area is filtered out, which artificially smoothes the dis-
continuities. This is more critical for the low frequency
ODSs where the evanescent components are prominent
and for which the cut-off wavenumber is lower. This is-
sue is illustrated on Figure 3-b/c especially at 78 Hz.

Eventually, sparse regularization strategies should im-
prove the reconstruction of discontinuities, since they do
not use any low-pass filtering in the k-space. Moreover
the atoms of the dictionary present discontinuities at
there edges which should contribute to a better identi-
fication of the free edges. This is not observed systemat-
ically but is obvious on Figures 3-e/f.

4. Spatial sampling and aliasing

For standard NAH measurements, the pressure field
is sampled according to a regular mesh with whose step
sets the k−space limit of occurrence for spatial aliasing.
For the rectangular plate, the ODSs hold vibrating com-
ponents with wave numbers higher than the limit for fre-
quencies above 2450Hz. This explains that the regular
array combined with the Tikhonov regularization fails at
higher frequencies (cf. Figure 5 - TikhREG120).
Interestingly, sparse regularization with regular sam-

pling provides correct reconstructions. Here again the
deterministic nature of the dictionary atoms avoids alias-
ing. Nevertheless when the acoustic field is highly un-
dersampled using a regular array, the lack of information
does not allow a correct reconstruction (see Figure 8-b))
An advantage of random sampling in the sparse regu-

larization case is that it always allows a significant down-
sampling of the acoustic field. In order to highlight this
fact, the number of microphones used for the CS pro-
cess is decreased until the reconstruction fails. Figure 11
shows the evolution of the correlation coefficient in the
low, mid and high frequency range, with respect to the
number of microphones for two competing NAH meth-
ods, with the rectangular plate. Considering the random
array using L1 sparse regularization (Fig. 11-b)), for each
number of sensors, 100 random draws of the set of mi-
crophones are performed out of the pseudo-random array
and the 100 subsequent correlation coefficients are aver-
aged. The average remains quasi constant down to about
40 microphones, regardless of the frequency on all the
band of interest (see also Figure 3-f and Figure 8). Thus,
using about 40 measurements is enough to identify the
ODS at all frequencies with a very good accuracy (C over
80% in average), while the regular array using Tikhonov
regularization fails according to the Nyquist limit dic-
tated by the number of sensors (Fig. 11-a)). Note that
with 40 randomly placed microphones using sparse regu-
larization, in the high frequency range (Figure 8) at 3297
Hz), the spatial sampling is much lower than the Nyquist
limit, yet the sources are accurately identified.

5. Algorithms complexity

Comparing the methods used in this work brings a few
remarks regarding the complexity of the algorithms, in
terms of computation speed. When the Tikhonov reg-
ularization parameter is known, at a given frequency,
Standard NAH is by far the fastest process. However,
an exhaustive search step of this parameter is possibly
needed at each frequency of interest, which severely slows
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FIG. 11. Accuracy of ODSs identification at different frequen-
cies with respect to the number of microphones. Top: Regular
array with Tikhonov regularization; Bottom: Random array
with L1 sparse regularization over 100 averaged draws.

down the computation. As for CS using the (1 minimiza-
tion process (L1) for the reconstruction, it is significantly
more demanding in terms of computational cost, but typ-
ical computation time remain reasonable (of the order of
1s per ODS, on a standard PC).

VIII. CONCLUSIONS

This paper presents some experiments that illustrate
the use of sparsity principles for NAH, that are valid for
any star-shaped homogeneous plate. As a first contri-
bution, sparsity principles have been shown to act as an
alternative regularization technique. Its main benefit is
that it can easily be tailored to specific geometries and
boundary conditions, while not suffering from the typical
spatial low-pass filtering effect - this is particularly use-
ful at low frequencies. Secondly, this can be used to ob-
tain good results with generally a lower number of micro-
phones than standard NAH, using the recent paradigm
of compressive sensing: using randomly placed micro-
phones, NAH can still be performed at frequencies above
the spatial Nyquist rate. The main difficulty in using
sparsity-promoting techniques is that recovering the de-
sired Operational Deflection Shapes can be significantly
more demanding than in the case of standard NAH, as
it requires solving a large optimization problem under
sparsity constraints. However, a number of such algo-
rithms have been developed in the last few years, and
can usually be used without substantial modification.

While the method has been demonstrated with homo-
geneous, isotropic and convex plates, it can be extended
to a wider class of structures. Vibrations of anisotropic
plates are also sparse in the dictionary defined in section
III.A. Vibrations of structures with cylindrical or spher-
ical shapes can be described by a similar model, with
measurements taken over a conformal surface around the

source. Plates with inhomogeneous thickness can also be
handled numerically by the Vekua theory. Finally, for
plates with complex geometries (possibly non-convex),
that can be divided into simple star-shaped subdomains,
a similar approach can be pursued, provided that con-
tinuity constraints are incorporated into the inversion.
The experimental validation of these extensions is left
for further research. Another extension of the method
would be, for homogeneous plates, the application of a
more constrained model, where the plane waves used in
the decomposition of the velocity field are constrained to
have wavevectors of the same magnitude27.
As a concluding remark, the Compressive Sensing

framework is a good illustration of an increasing trend in
imaging techniques, to jointly optimize the sensing pro-
cedure together with the data processing algorithms. In
this respect, this contribution gives a new insight about
the somehow controversial issue whether NAH arrays
should be random or not32: in our setting, randomness
is useful, but only when combined with a sparse regular-
ization technique.
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To comply with the reproducible research principles33,
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