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a b s t r a c t

We present two sets of novel features that combine multiscale representations of signals with the com-
pact timbral description of Mel-frequency cepstral coefficients (MFCCs). We define one set of features,
OverCs, from overcomplete transforms at multiple scales. We define the second set of features, SparCs,
from a signal model found by sparse approximation. We compare the descriptiveness of our features
against that of MFCCs by performing two simple tasks: pairwise musical instrument discrimination,
and musical instrument classification. Our tests show that both OverCs and SparCs improve the charac-
terization of the global timbre and local stationarity of an audio signal than do mean MFCCs with respect
to these tasks.

! 2010 Elsevier B.V. All rights reserved.

1. Introduction

For speech signal processing tasks, for instance, speaker verifi-
cation (Bimbot et al., 2004; Ganchev et al., 2005), or speech recog-
nition (Rabiner and Juang, 1993), the use of Mel-frequency cepstral
coefficient features (MFCCs) has proven extremely effective be-
cause they provide compact and perceptually meaningful descrip-
tions of the distribution of formants. Though the source-filter
model does not fit every manner of sound production, the use of
MFCCs has also benefited tasks involving discrimination between
timbres in non-speech signals, such as musical instrument recogni-
tion (Essid et al., 2006; Joder et al., 2009), musical fingerprinting
(Casey et al., 2008), and environmental sound classification (Cowl-
ing and Sitte, 2003; Couvreur and Laniray, 2004; Defréville et al.,
2006). To improve performance in many of these tasks, MFCCs
are often combined with other features, such as the set of time-
and frequency-domain features specified in the MPEG-7 audio
standard (Manjunath et al., 2002).

To describe a signal with time-varying statistics in terms of
MFCCs, one computes them in a time-localized fashion over short
windows during which the signal is assumed to be stationary,
e.g., typically 20–30 ms windows spaced every 10 ms for speech
signals. This duration is reasonably based for speech processing
on the physics of speech production (Rabiner and Juang, 1993),

i.e., the human voice is limited in the number of timbres it can pro-
duce per unit time. However, the assumption of stationarity over a
single short-time duration for music signals is often unreasonable
if we consider the phenomena that occur over a range of different
time-scales, for instance, transients, vibrato, tremolo, sustained
harmonics, etc. Furthermore, many phenomena can occur simulta-
neously, which are inseparable in MFCCs by their non-linearity. It
does not make sense to think that the MFCCs of a portion of a mu-
sic signal that contains a strong transient are meaningful other
than to say the power spectral density is more wideband than in
another segment. In such a case, it would be more perceptually rel-
evant to separate the description of the transient (Herrera-Boyer
et al., 2003) from that of the rest of the local signal.

For recognition tasks involving signals with phenomena occur-
ring over multiple time-scales, such as musical signals (Cowling
and Sitte, 2003; Couvreur and Laniray, 2004; Defréville et al.,
2006; Aucouturier et al., 2007; Casey et al., 2008; Joder et al.,
2009), MFCCs generated using a single window size and uniform
translations must be suboptimal with respect to their descriptive-
ness, than are features computed with considerations for the diver-
sity of time-scales present. What is desired for such signals then is
a set of features that have the compact descriptiveness of MFCCs
while taking into account the local statistics of the signal so that
one may better distinguish its contents. In other words, for signal
content having slowly varying statistics it is unnecessary to com-
pute MFCCs every 10 ms using a 30 ms window; and for signal con-
tent occurring over short time-scales we should avoid ‘‘smearing”
its influence over a large window. We want to separate the
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influence of these contents so that the signal features are more lo-
cal and specific, and can better characterize a signal.

In this paper we address these issues by defining and testing
two sets of novel features that provide information about the spec-
tral shape of a signal, as well as the time-scales involved. One set of
features, OverCs (pronounced ‘‘over seas”), basically aggregates the
MFCCs computed from redundant transforms performed at multi-
ple scales. The other set of features, SparCs (pronounced ‘‘spar
seas”), looks at the distribution of energy among frequency and
scale of a sparse model of a signal found using sparse approxima-
tion and a multiscale time–frequency dictionary. Sparse approxi-
mation methods have been shown to provide efficient and
meaningful parametric representations adapted to audio data
(Mallat and Zhang, 1993; Gribonval and Bacry, 2003; Daudet,
2006; Leveau et al., 2008), where small-scale atoms are used to
model transients, and large-scale atoms are used for tonals. This
provides a level of source separation that can remove the influence
of short-scale phenomena on the spectral description of large-scale
phenomena. Though sparse approximation has a large computa-
tional complexity, we consider the case where a database of audio
signals has already been decomposed, for instance, in its compres-
sion (Ravelli et al., 2008). We expect that both of these features will
be more discriminative than mean MFCCs for content recognition
tasks because they consider multiple scales. We test this by com-
paring the discriminative ability of these features with those of
mean MFCCs in two simple tasks: pairwise musical instrument dis-
crimination, and musical instrument classification. For each of
these features, we select a small number of coefficients to compare
with the mean MFCCs at a fixed dimensionality. The signals we use
are excerpted from real musical recordings, and have been used in
other automatic classification works (Essid, 2005). We find that for
both tasks our proposed features perform better than the mean
MFCCs.

The rest of this paper is organized as follows. In Section 2 we re-
view MFCCs, and then sparse approximation with time–frequency
dictionaries. We define our new features in Section 3, and provide
some examples. In Section 4 we detail our experiments and discuss
the results and their significance. Finally, we conclude with a
description of ongoing work in several directions.

2. Background

In this section, we review MFCCs, as well as sparse approxima-
tion using greedy iterative methods with a time–frequency
dictionary.

2.1. Review of Mel-frequency Cepstral Coefficients (MFCCs)

The cepstrum models the distribution of spectral energy in a
time-domain signal. Given a real length-N discrete signal, x, de-
fined over 0 6 n < N, and its discrete Fourier transform (DFT),
X ¼ DFTfxg, its real cepstrum is defined (Rabiner and Juang,
1993)

c½l# , DFT$1flog jXjg ¼ 1ffiffiffiffi
N

p
XN$1

k¼0

log jX½k#jej2pkl=N ; l ¼ 0;1; . . . ; N $ 1

ð1Þ

where the logarithm is used to separate the filtering from the exci-
tation signal. The magnitudes of the cepstrum provide a description
of the spectral shape of x independent of a wideband excitation sig-
nal. Because this fits the manner of speech production, the cep-
strum has been very successful for tasks of speaker and speech
recognition (Rabiner and Juang, 1993).

To create a less redundant and perceptually-relevant represen-
tation of the spectral shape of x, one finds the energies in frequency

bands according to perceived pitch by the Mel-frequency scaling,
which maps a frequency f (Hz) to Mels by /ðf Þ ¼ 1127
lnð1þ f=700Þ. The filterbank we use has L ¼ 40 overlapping bands
with triangular magnitude responses, weighted such that each has
equal area, beginning at a low frequency of 133.33 Hz, and ending
at the high frequency of 6853.84 Hz (Ganchev et al., 2005). The first
13 filters are linearly spaced every 66.67 Hz with a bandwidth of
133.33 Hz, and weighting 0.015. The last 27 filters have center fre-
quencies that are logarithmically spaced from 1073.4 Hz to
6413.59 Hz. The center frequencies of the filters are given by

fcðlÞ ¼
133:33þ 66:66l; l ¼ 1;2; . . . ; 13

1073:4ð1:0711703Þðl$14Þ; l ¼ 14;15; . . . ; 40:

"
ð2Þ

Each filter ðl ¼ 1;2; . . . ;40Þ is given by

Hl½k# ,

0; 0 6 kFs=N < fcðl$ 1Þ
kFs=N$fcðl$1Þ
fcðlÞ$fcðl$1Þ ; fcðl$ 1Þ 6 kFs=N < fcðlÞ
kFs=N$fcðlþ1Þ
fcðlÞ$fcðlþ1Þ ; fcðlÞ 6 kFs=N < fcðlþ 1Þ

0; fcðlþ 1Þ 6 kFs=NFs

8
>>>><

>>>>:

; ð3Þ

where Fs is the Nyquist sampling rate (Hz), fcð0Þ ,
133:33; fcð41Þ , 6853:84, and the band-dependent magnitude
factors falg are given by

al ,
0:015; 1 6 l 6 13

2
fcðlþ1Þ$fcðl$1Þ ; 14 6 l 6 40:

(
ð4Þ

With this filter bank, we compute the Mel-frequency cepstral
coefficients (MFCCs) by a discrete cosine transform (DCT)

ccM ½m# , bLðmÞ
XL

l¼1

XP$1

k¼0

log jX½k#alHl½k#j
 !

cos
mp
L

l$ 1
2

# $% &
; ð5Þ

defined for 0 6 m < L, and where the normalization factor is defined

bRðyÞ ,
1=

ffiffiffi
R

p
; y ¼ 0ffiffiffiffiffiffiffiffi

2=R
p

; 1 6 y 6 R:

(
ð6Þ

For speech and audio data, the DCT provides a satisfactory decou-
pling of the components of their log magnitude spectra (Logan,
2000). Since speech and audio signals are non-stationary, MFCCs
are calculated in practice using overlapping sliding windows. We
define the short-time MFCCs

ccM ½m; p# , bLðmÞ
XL

l¼1

XN$1

k¼0

log jX½k; p#alHl½k#j
 !

cos
mp
L

l$ 1
2

# $% &
;

ð7Þ

for 0 6 m < L, and where the DFT of x localized at time p is defined

X½k; p# , 1ffiffiffi
P

p
XP$1

n¼0

x½nþ p#w½n#e$j2pkn=P; 0 6 k 6 P $ 1; ð8Þ

for time shifts 0 6 p < N $ P, and a real window w that is non-zero
for 0 6 n < P, and that satisfies

1ffiffiffi
P

p
XP$1

n¼0

jw½n#j2 ¼ 1: ð9Þ

In speech recognition and music processing it is typical to use win-
dows of length 20 – 30 ms, over which durations the signal can be
said to be approximately stationary. These windows are usually
placed at translations of half their duration. For speech signals, only
the first M ¼ 13 coefficients are typically kept (Rabiner and Juang,
1993), excepting the term at m ¼ 0 since it reflects only the short-
term energy of the signal.
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2.2. Sparse Approximation with Time–Frequency Dictionaries

Sparse approximation attempts to find a small subset of M
atoms in a dictionary D ¼ fgcgc2C to approximate the length-N
function x to some specified maximum error !P 0, e.g.,

minM subject to x$
XM

m¼1

acmgcm

'''''

'''''

2

2

6 !; ð10Þ

where fcmg
M
m¼1 ( C, and facmg

M
m¼1 is the set of weights associated

with the M atoms selected in D. The term sparse refers to the desir-
able property by which the number of atoms selected M ) N, the
dimension of the signal. Usually, jCj * N such that many possible
solutions exist.

Various methods have been proposed to solve (10), e.g., a gree-
dy iterative strategy (Mallat and Zhang, 1993), or convex optimiza-
tion with a relaxed sparsity constraint (Chen et al., 1998). The
method we use in this paper is Matching Pursuit (MP) (Mallat
and Zhang, 1993). MP selects the ðM þ 1Þth atom from D by the
criterion

cMþ1 ¼ argmin
c2C

RMx$
hRMx; gcigc

kgck
2
2

'''''

'''''

2

2

¼ argmax
c2C

jhRMx; gcij
kgck2

; ð11Þ

where the inner product between two real length-N functions x and
y is defined

hx; yi ,
XN$1

n¼0

x½n#y½n#; ð12Þ

and the Mth-order residual signal is defined

RMx , x$
XM

m¼1

acmgcm : ð13Þ

MP defines the ðM þ 1Þth weight by

acMþ1
,

hRMx; gcMþ1
i

kgcMþ1
k22

: ð14Þ

In this way, MP iteratively selects the atom that maximally reduces
the ‘2-norm of an intermediate residual, beginning with R0x ¼ x.

Various dictionaries have been used in the sparse approxima-
tion of speech and audio signals, such as Gabor time–frequency
atoms (Mallat and Zhang, 1993), harmonic atoms (Gribonval and
Bacry, 2003; Leveau et al., 2008), or unions of bases, such as cosine
and wavelet bases (Daudet, 2006), and multiscale cosine bases
(Ravelli et al., 2008). In this work, we use time–frequency atoms
that have a single modulation frequency x and phase /, time scale
s, and time shift u. Considering that an element c 2 C is the qua-
druple cm ¼ ðsm; um; xm; /mÞ, a real length-N time–frequency
atom is defined

gcm ½n# , g
n$ um

sm

# $
cosðxmnþ /mÞ; 0 6 n < N; ð15Þ

where gðtÞ is a continuous prototype lowpass function, for instance
a Gaussian window. The dictionary specified by Table 1 contains
atoms of scale 128 samples located at translations that are integer
multiples of 32 samples i.e., um ¼ 32l; l 2 Z, and with modulation
frequencies that are positive integer multiples of 43.1 Hz, i.e.,
xm ¼ 2pl43:1=Fs; l 2 Zþ (up to the Nyquist frequency pFs). When
the dictionary D is complete, then limM!1kRMxk22 ¼ 0, i.e., the rep-
resentation converges such that the error becomes zero (Mallat
and Zhang, 1993). In this article, we use MP Toolkit (Krstulovic
and Gribonval, 2006) and Gaussian lowpass functions.

3. Incorporating Scale Information with Cepstral Features

We now define two sets of novel features, OverCs and SparCs,
that combine a time-domain scale characterization of a signal with
a frequency-domain spectral characterization. For OverCs, we use
overcomplete transforms performed at multiple scales. For SparCs,
we use a signal model found by sparse approximation and a mul-
tiscale time–frequency dictionary. Sparse approximation allows a
minimum amount of source separation between phenomena that
occur over different time scales. Though OverCs are less computa-
tionally intensive than SparCs, it does not allow for any source
separation.

3.1. OverCs: MFCC-like Features from Overcomplete Transforms

We generate OverCs by first computing short-time MFCCs (7)
using windows of multiple scales. The parameters of the windows
we use are the same as for the overcomplete dictionary detailed in
Table 1. This means that we essentially project x onto all atoms of
this dictionary, and then use these values to compute mean MFCCs
for each scale. Let us define ccM ½m; p; s# to be (7) computed using a
window scale 128 + 2ðs$1Þ, which are the L MFCCs of x over the time
region ½p; pþ 128 + 2ðs$1ÞÞ. Now we define the set of short-time
MFCCs

Cs;! , fccM½m;p; s# : ccM½0;p; s# > !; 1 6 m < 40g; ð16Þ

from time regions of scale index s in x with energy greater than
!P 0 (to avoid signal frames near to silence), and where we have
excluded all m ¼ 0 cepstral coefficients since they only contain en-
ergy information. We then form averages of this set

ccM ½m; s# , 1
jCs;!j

X

p2Cs;!

ccM½m;p; s#; ð17Þ

where p 2 Cs;! means those p that exist in Cs;!. In other words, we
average all contributions in cepstral index m and scale index s over
the short-time frames of size s. Finally, since there will be redun-
dancy across scales in each cepstral index, we perform a DCT in
the scale direction to generate the OverCs:

f½m; z# , b8ðzÞ
X8

s¼1

ccM½m; s# cos ðz$ 1Þp
8

s$ 1
2

# $% &
; ð18Þ

for 1 6 z 6 8, and using the normalization factor (6).

3.2. SparCs: MFCC-like Features from Sparse Models

Consider that we have approximated x by M atoms selected
fromD by MP, thus producing anM-order model (10). We first sep-
arate the M atoms in the sparse model based on their modulation
frequency and scale parameters. Let us associate each atom with
an integer and define this index set M , f1;2; . . . ;Mg. Thus, atom
m 2 M has parameters ðsm; um; xm; /mÞ. We define the following

Table 1
Dictionary parameters of a scaled, shifted, and modulated Gaussian lowpass function:
scale s, time resolution Du , and frequency resolution Df . Durations are specific to a
sampling rate Fs ¼ 44100 Hz.

s (samples/ms) Du (samples/ms) Df (Hz)

128/2.9 32/0.7 43.1
256/5.8 64/1.5 43.1
512/11.6 128/2.9 43.1
1024/23.2 256/5.8 43.1
2048/46.4 512/11.6 21.5
4096/92.9 1024/23.2 10.8
8192/185.8 2048/46.4 5.4
16384/371.5 4096/92.9 2.7
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mappings from the scale-frequency space of the model. For the dic-
tionary specified in Table 1, we map each atom scale to an integer
by

SðsÞ,1þ log2ðs=128Þ;s2f128;256;512;1024;2048;4096;8192;16384g:
ð19Þ

Based on the 40-band filterbank described in Section 2.1, we define
the modulation frequency mapping

WðxÞ , l; fcðl$ 1Þ 6 Xx < fcðlþ 1Þ; 1 6 l 6 39
40; fcð40Þ 6 Xx < fcð41Þ

"
; ð20Þ

where X , Fs=2p, and the center frequencies are given by (2). Now,
we define the index set of atoms in the sparse model that have some
scale index r and modulation frequency index l as

Mlr , fm 2 M : WðxmÞ ¼ l; SðsmÞ ¼ rg: ð21Þ

Note that there is no longer any notion of where in time a given
atom exists.

From the set fMlr : 1 6 l 6 40; 1 6 r 6 8g, we accumulate the
magnitude weights as a function of modulation frequency and
scale:

X½l;r# ,
X

m2Mlr

alHlðxmÞ acm
(( ((; ð22Þ

where the filter weights falg are given by (4), and we define, similar
to (3),

Fig. 1. ccM ½m; s# (17) and j logXðr; lÞj (22) for two musical instruments playing a chromatic scale from C5 to B5.
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HlðxÞ ,

Xx$fcðl$1Þ
fcðlÞ$fcðl$1Þ ; fcðl$ 1Þ 6 Xx < fcðlÞ
Xx$fcðlþ1Þ
fcðlÞ$fcðlþ1Þ ; fcðlÞ 6 Xx < fcðlþ 1Þ

0; else

8
>><

>>:
; ð23Þ

to weight the contribution of the atom to the lth frequency bin of
the relevant scale index. We take the two-dimensional DCT of
X½l;r#, which, for this dictionary of 8 scales and filterbank of 40
bands, is defined

n½m; z# ,
X40

l¼1

X8

r¼1

X½l;r# , b40ðmÞ,

cos
ðm$ 1Þp

40
l$ 1

2

# $% &
b8ðzÞ cos

ðz$ 1Þp
8

r$ 1
2

# $% &
; ð24Þ

for 1 6 m 6 40 and 1 6 z 6 8, with the normalization factors de-
fined by (6). Finally, we create the SparCs by setting n½1;1# ¼ 0,
and normalizing the rest:

n̂½m; z# , n½m; z#ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP40
m¼1
P8

z¼1jn½m; z#j2
q : ð25Þ

SparCs are very fast to compute if a sparse decomposition is already
available.

3.3. Examples of SparCs and OverCs

Fig. 1(a) and (c) show the magnitude mean short-time MFCCs
(17) for two different musical audio signals recorded from a
clarinet and trumpet (IOWA, 2009). Each instrument plays an

1 5 10 15 20 25 30 35 39
1
2
3
4
5
6
7
8

m

z

1 5 10 15 20 25 30 35 40
1
2
3
4
5
6
7
8

m

z

1 5 10 15 20 25 30 35 39
1
2
3
4
5
6
7
8

m

z

1 5 10 15 20 25 30 35 40
1
2
3
4
5
6
7
8

m

z

Fig. 2. OverCs jf½m; z#j (18) and SparCs jn̂½m; z#j (25) from data in Fig. 1. Mean MFCCs of these two signals are shown in Fig. 3.
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ascending chromatic scale (C5 to B5), lasting 32 s (clarinet) or 97 s
(trumpet). Notice that each row contains the average short-time
MFCCs over the entire signal calculated with a window of one
scale. Each column displays how the average short-time MFCCs
change as a function of scale over the entire signal at a particular
cepstral index m. For the same signals we see in Fig. 1(b) and (d)
the distribution of energy among atom scale and frequency,
X½l;r# (22) from their sparse approximations. Of the two, the trum-
pet clearly has a wider bandwidth in frequency and scale. Note that
MP does not perform any windowing in the decomposition.

For these same examples, Fig. 2(a) and (c) show their OverCs
(18), and Fig. 2(b) and (d) show their SparCs (25). We see that
the SparCs are much more compact than the OverCs. The elements
f½m;1# and n̂½m;1# are most closely relatable to mean MFCCs since
they are an average of the cepstral coefficients observed over all
eight scales. We show these for both instruments in Fig. 3. The fact
that large coefficients are concentrated in different regions of the
transformed frequency-scale space motivates the idea that SparCs
and OverCs can be useful for classifying sound sources.

In summary, the OverCs of a signal are obtained by computing
short-time MFCCs (7) with multiple window sizes — in essence
projecting the signal onto all elements of a multiscale time–fre-
quency dictionary and then filtering and computing the DCT for
each scale — and then decoupling the MFCCs over scale by per-
forming a DCT in the scale direction (18). The SparCs of a signal
are obtained by first performing a sparse approximation over a
multiscale time–frequency dictionary, then building the fre-
quency-scale function (22) from the parameters of the decomposi-
tion, taking the 2-dimensional DCT of this function (24), and then
removing the energy term and normalizing the rest (25).

4. Application to Automatic Musical Instrument Recognition

We now discuss our evaluation of the performance of these new
sets of features with respect to two tasks of musical instrument
recognition. Our musical instrument data consists of a subset of
the one described in (Essid, 2005) — containing monophonic data
recorded at 44.1 kHz, some of which belong to the RWC database
(Goto et al., 2002), and some recordings made by Essid et al. (Essid,
2005) — and some data extracted ourselves from commercial CDs.
Our database consists of seven instruments, that represent our
classes: clarinet (Cl), oboe (Ob), violin (Vl), cello (Co), guitar (Gt),
piano (Pn), and trumpet (Tr). For each of these instrument classes
we have several five-second excerpts from solo recordings from
five different sources per class, for instance, different instruments,
performers, recording conditions, and music, for a total of 2,755
excerpts. No excerpt from two different sources comes from the
same CD. It should be emphasized that these data are extracted
from real music performances, and thus are not isolated note

recordings. For example, there exist double and triple stops in
the violin and cello examples, chords in the guitar and piano exam-
ples, pitch bends in the clarinet, as well as reverberation. We sum-
marize our database in Table 2.

We create the SparCs feature database using the dictionary de-
fined in Table 1 with a Gaussian window, to the order M where the
signal-to-residual energy ratio reaches 20log10ðkxk2=kR

Mxk2Þ ¼ 30
dB. We create the OverCs feature database with the same parame-
ters as in Table 1. From these features, we select three different
subsets of 13 ðm; zÞ features:

I1 , fð2;1Þ; . . . ð14;1Þg ð26Þ
I2 , fð2;1Þ; . . . ð9;1Þ; ð1;2Þ; . . . ; ð3;2Þ; ð1;3Þ; ð2;3Þg ð27Þ
I3 , fð2;1Þ; . . . ð8;1Þ; ð1;2Þ; . . . ; ð3;2Þ; ð1;3Þ; ð2;3Þ; ð1;4Þg; ð28Þ

where, for instance, SparCsðI1Þ ¼ fn̂½2;1#; . . . n̂½14;1#g. For the sake
of comparison, we also compute and select the first 13 elements
(excepting the energy term) of the mean MFCCs feature vector built
with Hamming windows of 30 ms scale and 10 ms translations, and
keeping only those MFCCs from signal segments where the normal-
ized signal energy exceeds the threshold !P 0:1. This number of
coefficients is a common choice in speech processing (Rabiner and
Juang, 1993).

The reasoning behind these feature choices is as follows. Fea-
tures in I1 do not consider change in energy as a function of atom
scale, and should closely approximate the mean MFCCs, as seen in
Fig. 3. We thus expect the performance of this feature set to be
close to that of the mean MFCCs. Features in I2 include a few ele-
ments describing how energy is distributed as a function of scale;
and those in I3 include a few more. We expect that including
information about energy variation over atom scales will help dis-
criminate instruments that have similar spectral shapes, but differ-
ent excitations and note transitions. There should be a trade-off in
the usefulness of the number of terms selected from each part of
the SparCs and OverCs, and certainly some of their components
will be more useful than others for discriminating between certain

1 5 10 15 20
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Trumpet

Mean MFCCs
SparCs
OverCs

Fig. 3. The first twenty elements of Mean MFCCs, OverCs f½m; z#, and SparCs n̂½m; z# for z ¼ 1, for the data shown in Fig. 2.

Table 2
Summary of instrument database, showing the number of 5-s excerpts for each of the
five sources, and the total number of excerpts for each instrument class.

Instrument Label # sources # excerpts Total #

Clarinet Cl 5 56 280
Cello Co 5 116 580
Guitar Gt 5 74 370
Oboe Ob 5 90 450
Piano Pn 5 77 385
Trumpet Tr 5 49 245
Violin Vl 5 89 445
Total number of examples 2755
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groups of instruments. As a first step though, we use the three fea-
ture subsets (26)–(28).

To compare the discriminatory ability of each set of features, we
use a Support Vector Machine (SVM) with a radial basis function
kernel, which was also used in (Essid, 2005) — although there with
a much larger set of features, coupled with different feature selec-
tion schemes. We perform two different types of tests: pairwise
discrimination, and instrument classification. In the pairwise dis-
crimination task we assume the unknown instrument is one of
two, and we must determine which one it is. Assume we are dis-
criminating between Ob and Vl. To create the test data we select
49 realizations randomly for one source of Ob, and 49 realizations
randomly from one source of Vl, as shown in Fig. 4. We create the
training data by choosing 49 realizations randomly from each of
the remaining sources of both instruments. In the training stage,
two parameters must be fixed: the penalty parameter of the error
term C, and a kernel parameter c. These parameters are optimized
by a ‘‘grid search” procedure (Hsu et al., 2009), which tests several
pairs of ðC; cÞ and selects the one giving the best 5-fold cross-
validation accuracy. The grid is defined with C 2 f2i : i ¼
$5; $3; . . . ; 15g; c 2 f2i : i ¼ $15; $13; . . . ;3g. Finally, we test
the optimized SVM using the testing data. For each instrument
class pair, we repeat this procedure ten times for each of the 25 dif-
ferent possible source pairings, and then average the results. The
SVM parameters ðC; cÞ can change for each pair of sources; never-
theless, preliminary tests show that classifier performance is ro-
bust to these changes of ðC; cÞ.

In the more general instrument classification task of one-vs-all,
we assume the unknown instrument is one of the seven in Table 2.
To create the test data in each instrument classification task, we

select 49 realizations randomly from one source for the instrument
class being tested. To create the training data we select 49 realiza-
tions randomly from each of the remaining sources of the instru-
ment being tested, and 49 realizations randomly from each of all
five sources of the six other instrument classes. No realizations
from the same source appear in both the training and testing data.
We train the SVM by the grid search strategy described above.
After running the classification task described, we repeat the same
procedure ten times for each source of the instrument class we are
detecting.

Fig. 5 shows the results of the pairwise instrument discrimina-
tion task with respect to the performance of mean MFCCs, for each
of the features OverCsðI2Þ and SparCsðI2Þ. We see that in only
two pairings (CoOb, CoTr) does the inclusion of scale information
not help the discrimination with respect to using mean MFCCs. For
the pairwise instrument discrimination task, we summarize the
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Fig. 4. Example of testing and training data selection in pairwise discrimination
task for Ob-Vl. Test data (49 realizations) is selected randomly from sources in
black, for each instrument class. Training data (49 realizations) is selected randomly
from each of the four remaining sources of each instrument.

Fig. 5. Correct discrimination rates for all instrument pairs relative to that of the mean MFCCs for OverCsðI2Þ and SparCsðI2Þ.

Table 3
Correct instrument discrimination rates for each set of features.

MFCCs OverCsðI1Þ OverCsðI2Þ OverCsðI3Þ SparCsðI1Þ SparCsðI2Þ SparCsðI3Þ

Mean 94.00 94.35 95.37 95.39 91.98 93.95 93.95
Stan. dev. 5.07 4.41 4.23 4.82 6.47 5.22 5.36

Table 4
Confusion matrix for instrument classification using mean MFCCs (top), OverCsðI2Þ
(middle), and SparCsðI2Þ (bottom) features. Best scores are in bold.

Cl Co Gt Ob Pn Tr Vl

MFCCs
Clarinet 72.53 2.45 5.47 5.59 1.59 9.31 3.06
Cello 3.18 70.33 6.94 0.24 4.90 0.041 14.37
Guitar 13.55 3.51 75.18 0 7.63 0 0.12
Oboe 9.43 0.12 0.12 78.16 0 11.96 0.20
Piano 3.51 2.53 9.10 0 84.04 0.82 0
Trumpet 9.59 0 0 12.73 1.43 73.35 2.90
Violin 6.20 12.28 0.61 0.45 0.04 5.35 75.06

OverCsðI2Þ
Clarinet 83.92 1.18 1.22 4.73 0.45 7.59 0.90
Cello 1.14 78.90 4.20 0.61 1.14 0.24 13.75
Guitar 3.67 5.18 81.06 0.081 8.69 0 1.30
Oboe 5.88 0.33 0.29 81.02 0 11.88 0.61
Piano 0.49 2.82 9.31 0 86.69 0.65 0.04
Trumpet 8.08 0 0 11.92 0.37 77.10 2.53
Violin 1.47 13.80 0.73 0.12 0 1.55 82.33

SparCsðI2Þ
Clarinet 82.98 3.67 1.39 2.33 0.20 7.51 1.92
Cello 6.45 76.61 4.45 0.77 2.12 1.02 8.57
Guitar 0.20 7.59 75.22 0 16.94 0 0.04
Oboe 5.22 0.16 0 81.18 0 13.43 0
Piano 3.31 3.35 21.96 0 69.92 0.04 1.43
Trumpet 6.86 0.86 0 10.94 0 76.77 4.57
Violin 5.31 17.67 0.73 0.37 0.41 2.53 72.98
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statistics of the rates of correct discrimination for each of the
features in Table 3. We tested the statistical significance of the
differences of these means with an ANOVA test. We find no
significant difference in the performance of mean MFCCs and
SparCsðI2Þðp - 0:3Þ. On the other hand, OverCsðI2Þ perform better
than MFCCs on average ðp < 10$16Þ.

We summarize the results of the instrument classification task
in Table 4 as confusion matrices, i.e., percentages of each classifica-
tion using the mean MFCCs, OverCsðI2Þ and SparCsðI2Þ features.
For example, in the first line we see that the SVM trained to recog-
nize clarinet using the mean MFCCs feature correctly classified
72.53% of the clarinet realizations presented, but classified 2.45%
of them as cello. From these tables, we see that we obtain the best
classification rates here with the OverCsðI2Þ features.

In Table 5 we show the average rate of correct classification
for every feature. ANOVA tests show that SparCsðI2Þ perform
marginally better than mean MFCCs on average with p - 0:03
but they perform significantly better for some instruments (Cl,
Co with p < 10$6). OverCsðI2Þ features perform systematically
better than mean MFCCs features. For most of the instruments
this difference is highly significant ðp < 10$6Þ, whereas it is less
so for Tr ðp - 10$3Þ and for Ob, Pn ðp - 10$2Þ. For Cl, Co, Gt and
Vl, adding the scale information significantly improves the recog-
nition task by 6–11% with respect to mean MFCCs ðp < 10$6Þ. Of
all instruments, we find the least gain in classification for Pn —
only 2.65% ðp - 0:0086Þ. It should be noted that the piano is the
only percussive instrument in our database. Its spectrum has a
regular, decaying behavior except in its attacks. Thus, adding
scale information is probably irrelevant in this case. For instru-
ments with sustained sound, however, the scale parameters
could be capturing some of the fine details of the timbre, for in-
stance, loudness stability, and playing techniques, for instance,
vibrato.

5. Conclusion and Future Work

We have presented two sets of new features, OverCs and
SparCs, that combine the compact timbral descriptiveness of
MFCCs with multiscale representations of signals. OverCs are
created from considering the mean MFCCs calculated over multi-
ple time-scales. SparCs are created from sparse representations
created with Matching Pursuit (MP) and multiscale time–fre-
quency dictionaries. With these features we seek to overcome
some of the inherent limitations of MFCCs computed using a sin-
gle window size for non-stationary signals that have a variety of
content occurring over different time-scales, such as audio and
music signals.

We tested these new features in two simple tasks: pairwise mu-
sical instrument discrimination, and musical instrument classifica-
tion. The results of these tests show that our features outperform
mean MFCCs, and in some cases by a significant amount. By select-
ing only 13 coefficients from these features, classification rates are
close to state-of-the-art automatic instrument identification,
where best results are usually obtained with highly optimized clas-
sifiers and high-dimensional feature selection steps. For example,
(Essid, 2005) reports typical correct classification rates of 80–90%
using 160 features per audio segment and an optimized SVM ker-
nel. (Note that this different experimental setup and database

make comparisons with the work in this paper difficult.) While
OverCs appear to outperform SparCs in most cases, SparCs can be
computed very quickly when the sparse representations have al-
ready been found.

Our current research is examining a number of issues raised by
this study. First, what is the optimal choice of features for classifi-
cation purposes? It is likely that some performance could be
gained by using feature selection techniques to determine the
trade-off between the number of features (across the frequency
and scale indices) and the performance and robustness of classifi-
ers. Also, for the sake of comparison with standard MFCC methods
we have only kept 13 coefficients in our feature vectors; further
experimentation will help determine the best subset of coefficients
from our new features for a given task.

Second, are there other types of signals where these scale-
dependent features are useful? Our preliminary experiments in
speaker recognition and spoken digit recognition using SparCs
indicate that there is not much to be gained by using scale-depen-
dent models over even simple vector quantization strategies using
MFCCs. While the structure of speech signals does not employ as
wide a variety of scales as musical signals, we can conjecture that
there may be other types of signals where this approach brings sig-
nificant benefits, such as environmental sounds that distinguish
themselves through a variety of time-scales. It should be noted
as well that a similar set of features was successfully used in
(Ravelli et al., 2008) for music genre recognition, again obtaining
results comparable to state-of-the-art.

Finally, in this study we have only tried to extend the MFCC in
its traditional use, but we do not take full advantage of the explan-
atory power of sparse decompositions. In particular, it is still an
open issue whether our proposed features could be useful for
instrument identification in a polyphonic, i.e., multi-instrumental,
setting. This is perhaps where we will see a significant advantage
in using sparse approximation over redundant transforms in com-
puting and comparing these kinds of features.
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