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Abstract

We present an imaging technique particularly suited to the detection of a target embedded in

a strongly scattering medium. Classical imaging techniques based on the Born approximation fail

in this kind of configuration because of multiply scattered echoes and aberration distortions. The

experimental set up we consider uses an array of programmable transmitters/receivers. A target is

placed behind a scattering medium. The impulse responses between all array elements are measured

and form a matrix. The core of the method is to separate the single-scattered echo of the target

from the multiple scattering background. This is possible because of a deterministic coherence

along the antidiagonals of the array response matrix, which is typical of single scattering. Once

this operation is performed, target detection is achieved by applying the DORT method (French

acronym for decomposition of the time reversal operator). Experimental results are presented in

the case of wide-band ultrasonic waves around 3 MHz. A 125-element array is placed in front

of a collection of randomly distributed steel rods (diameter 0.8mm). The slab thickness is three

times the scattering mean free path. The target is a larger steel cylinder (diameter 15 mm) that

we try to detect and localize. The quality of detection is assessed theoretically based on random

matrix theory and is shown to be significantly better than what is obtained with classical imaging

methods. Aside from multiple scattering, the technique is also shown to reduce the aberrations

induced by an heterogeneous layer.

PACS numbers: 42.25.Dd, 43.60.+d, 43.20.+g, 46.65.+g
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I. INTRODUCTION

Classical reflection imaging methods, such as echography or radar, are based on the same

principle. One or several transducer(s) emit(s) a wave toward the medium to be imaged.

The incident wave is reflected by the heterogeneities and the backscattered wave field is

measured by the same sensor(s). The backscattered wave contains two contributions:

• A single scattering contribution (path s in Fig.1): the incident wave undergoes only

one scattering event before coming back to the sensor(s). This is the contribution

which is taken advantage of, because there is a direct relation between the arrival time

t of the echo and the distance d between the sensor and the scatterer, t = 2d/c (c is

the sound velocity). Hence an image of the medium’s reflectivity can be built from

the measured signals.

• A multiple scattering contribution (path m in Fig.1): the wave undergoes several

scattering events before reaching the sensor. Multiple scattering is expected to take

place when scatterers are strong and/or concentrated. In this case there is no more

equivalence between the arrival time t and the depth of a scatterer. Thus, classical

imaging fails when multiple scattering dominates.

To image an heterogeneous medium, one tries to reduce the influence of multiple scat-

tering. In that respect, multiple sensors arrays are a great improvement, since coherent

beamforming can be achieved at emission and reception [1]. It consists in focusing the

transmitted wave at the desired point by applying the appropriate time delays to each array

element. In the reception mode, the same delays are applied to the received signals before

they are summed. Single scattering signals coming from a target located at the focus add

up coherently, whereas the summation is expected to be incoherent for multiple scattering

signals arriving at the same time. The gain in single-to-multiple scattering provided by

beamforming is proportional to the number of elements on the array. In medical imaging
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where multiple scattering is usually weak at standard ultrasonic frequencies, this operation

is generally sufficient to correctly image the medium. But in other situations, multiple

scattering can be so high that coherent beamforming fails. The resulting echographic im-

age is pure speckle, with no direct connection with the medium’s reflectivity. There can

be false alarms that one can wrongly attribute to the presence of a strong reflector in the

medium. Furthermore, aberration effects distort the wave front of the focused beam, which

may generate secondary lobes or a displacement of the focal spot.

Our aim is to detect and image an echogene target embedded in a scattering medium.

This issue has received considerable attention in the last decade [2–11]. As mentioned pre-

viously, classical imaging techniques may fail in such media because of multiple scattering

and aberration effects. To solve this problem, various coherent interferometric imaging tech-

niques have been suggested [2–7, 11]. Nevertheless, they are shown to fail when the target

is typically buried beneath one transport mean free path l∗ of the scattering medium [7].

Another route towards target detection in highly scattering media is to tackle with the

radiative transfer equation [9, 10]. However, this approach needs heavy numerical compu-

tations. Moreover, the final resolution of the image is poor since it is limited by l∗ instead

of half the wave length λ/2. This paper proposes an original approach to drastically reduce

the multiple scattering contribution, which can hide the echo from targets (e.g., landmines,

ducts, defects) embedded in the earth [12], in concrete structures [13, 14] (flaws, defects,...)

or austenic steels [15] for non destructive evaluation. Reducing the influence of multiple

scattering is also a challenge in optical coherence tomography (OCT) [16–18], in seismology

[19, 20], in ultrasound imaging [21, 22] or in radar [23]. In optics, correlation techniques have

also been proposed to reduce the multiple scattering influence in dynamic light scattering

experiments [24–28]. However, these methods only address the suppression of the multiple

scattering contribution in the autocorrelation function of intensity. On the contrary, the

approach we propose here can be dedicated to a much wider range of applications, since it

basically applies to the wave field.

In this paper we will use ultrasonic waves in the MHz range for experimental demonstra-

tions, but the technique can be applied to all fields of wave physics for which the multi-

element array technology is available and provides time-resolved measurements of the am-

plitude and the phase of the wave field. The experimental situation is the following: the

medium we want to image is placed in front of a multi-element array (see Fig.1). A pulse sig-
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nal is sent from element i and the wave backscattered by the medium is measured by element

j. This operation is achieved for all possible transmitter/receiver couples. The set of N2

responses forms a matrix K which constitues the global response of the medium. Unlike the

multiple scattering contribution, single scattering signals exhibit a deterministic coherence

along the antidiagonals of the array response matrix whatever the distribution of scatterers

[29]. This particular feature can be taken advantage of to extract the single scattered waves,

even though multiple scattering predominates. This “single scattering filter”(SSF) yields a

filtered matrix KF, ideally devoid of multiple scattering.

Once the separation of single- and multiple-scattered waves is performed, the detection of

the target is achieved by the DORT method [30, 31] (French acronym for decomposition of

the time reversal operator). It consists in a singular value decomposition (SVD) of the array

response matrix. Actually the SVD is written K = UΛV†, where Λ is a diagonal matrix

containing the real positive singular values λi in a decreasing order (λ1 > λ2 > ... > λN). U

and V are unitary matrices whose columns are the normalized singular vectors Ui and Vi.

DORT has shown its efficiency in detecting and separating the responses of several scatterers

in homogeneous or weakly heterogeneous media [31]. Indeed, under the single scattering

approximation and for point-like scatterers [32, 33], each scatterer is associated mainly with

one significant eigenstate linked to a non zero singular value λi. The corresponding singular

vector Vi is an invariant of the time reversal operator KK†. Physically, each eigenvector of

KK† (or singular vector of K) corresponds to a wave that, when it is sent from the array,

focuses onto the associated scatterer. Therefore, it is possible to focus selectively on the

corresponding scatterer and obtain its image by backpropagating Vi either physically or

numerically.

However, in this study, the target is hidden behind a strongly scattering slab. If we apply

the DORT method directly to the array response matrix K, expecting that the target will be

associated to the first singular value λ1 and backpropagating numerically the corresponding

singular vector V1, it fails because of multiple scattering. We will show that once the

single- and multiple-scattering contributions have been separated, DORT can be applied to

the filtered matrix KF, and successfully detects the target despite multiple scattering. A

detection criterion has to be applied to the first singular value λ1 in order to decide if a target

is detected or not. To that aim, we will refer to random matrix theory (RMT) [34, 35] and

to a recent work [36] dealing with the statistical behavior of the matrix K in random media.
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The efficiency of the technique will also be evaluated from RMT and shown to be better

than classical imaging techniques. Finally, the issue of aberration will be adressed. The SSF

is shown to strongly diminish the aberration effects which occur in scattering media.

II. EXPERIMENTAL PROCEDURE

FIG. 1: Experimental setup. A 125-element array is placed in front of a random medium at a

distance a. The whole setup is immersed in a water tank. The inter-element response kij(T, f),

around the time of flight T and at the frequency f , is measured. It contains contributions of single

and multiple scattering paths whose lengths belong to the interval [R − ∆r/2; R + ∆r/2], where

R = cT/2 and ∆r = c∆t/2. Examples of a single scattering path (labelled s, grey line) and of

a multiple-scattering path (labelled m, dashed black line) is drawn. (Xs, Zs) are the coordinates

of the scatterer involved in path s. (X
(1)
m , Z

(1)
m ) and (X

(2)
m , Z

(2)
m ) are the coordinates the first and

last scatterers along path m. The path t represents the single scattering path associated with the

target (continuous black line).

The experiment takes place in a water tank. We use an N-element ultrasonic array

(N = 125) with a 3 MHz central frequency and a 2.5-3.5 MHz bandwidth; each array

element is 0.39 mm in size and the array pitch p is 0.417 mm. The sampling frequency is 20

MHz. The array is placed in front of the medium of investigation, at a distance a = 40 mm.

It consists of parrallel steel rods (longitudinal wave velocity cL = 5.9 mm/µs, transverse

wave velocity cT = 3 mm/µs, radius 0.4 mm, ρ = 7.85 kg/L) randomly distributed with

a concentration n = 12 rods/cm2. The frequency-averaged scattering mean-free path le is

7.7 ± 0.3 mm for this medium between 2.5 and 3.5 MHz [37]. The slab thickness is L = 20
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mm. An air-filled steel cylinder with diameter 15 mm is placed behind the scattering slab.

Our aim is to detect this echogene target. Note that the single scattered wave associated to

the target (path t in Fig.1) has to travel more than five scattering mean free paths through

the random medium. Its intensity is roughly divided by exp (−2L/le) ∼ 180 as it traverses

twice the scattering slab. Multiple scattering, in addition to aberration effects induced by

the slab, make the detection of the target very difficult with classical imaging techniques.

This is highlighted by the echographic image in Fig.2. The first rows of scatterers in the

slab are clearly visible. Beyond a depth of typically one mean free path (∼ 5− 10 mm), the

image displays a speckle pattern without connection with the medium’s reflectivity. The

target, which should be visible in Fig.2 around R = 70 mm, is not detected by classical

echography.

FIG. 2: Standard echographic image of the inspected medium obtained with focused and adaptative

beamforming both at emission and reception. The image is normalized with its maximum and

shown in dB.

We now turn to the acquisition of the inter-element matrix (see Fig. 1). A 2.5-µs-

long sinusoidal burst of frequency 3 MHz is emitted from transducer i into the scattering

sample. The backscattered wave is recorded with the N transducers of the same array.

The operation is repeated for the N emitting transducers. The impulse response between

transducers i and j is noted hij(t). An N × N response matrix H(t) whose elements are

the N2 impulse responses hij(t) is thus obtained. Because of reciprocity, hij(t) = hji(t) and

H(t) is symmetric. In the following, we take as the origin of time t = 0, the instant when
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the source emits the incident wave.

A short-time Fourier analysis of the impulse response matrix H is achieved. The time

signals hij(t) are truncated into successive time windows : kij(T, t) = hij(T − t)WR(t) with

WR(t) = 1 for t ∈ [−∆t/2 , ∆t/2], WR(t) = 0 elsewhere. The value of ∆t is chosen

so that signals associated with the same scattering event(s) within the medium arrive in

the same time window [36]. Actually, the choice of ∆t is particularly important for single

scattering signals, if one wants to detect scatterers properly with the DORT method. In our

experimental configuration, we obtain a value ∆t ≃ 11µs. For each value of time T , the kij

form a matrix K. A Fourier analysis is achieved by means of a discrete Fourier transform

(DFT) and gives a set of response matrices K(T, f) at time T and frequency f .

III. SINGLE AND MULTIPLE SCATTERING CONTRIBUTIONS

As an example, Fig.3 shows the real part of K at the central frequency f = 3 MHz. At

early times (Fig.3(a)), single scattering dominates: multiple scattered echoes have not yet

reached the array. Fig.3(b) represents K at an arrival time larger than 2(a + L)/c: at such

times only multiple scattering can exist. K clearly exhibits a different behavior in the single

and multiple scattering regimes. Whereas multiple scattering results in a seemingly random

matrix K, single scattered waves exhibit a deterministic coherence along the antidiagonals

of K. The reason for this, and its consequences on the statistical properties of the singular

values, have been discussed in [29, 36]. We briefly recall the argument in this section.

The signals kij(T, f) can be written as the sum of a single scattering contribution kS
ij(T, f)

and a multiple scattering contribution kM
ij (T, f)

kij(T, f) = kS
ij(T, f) + kM

ij (T, f) (1)

Let us express both contributions.

The signals kS
ij(T, f) at a time T and frequency f correspond to the sum of partial waves

that reach the array in the time window [T −∆t/2; T +∆t/2]. The “isochronous volume” is

defined as the ensemble of points that contribute to the backscattered signal at a given time.

It is formed by a superposition of ellipses whose foci are transmitter i and receiver j. In a

far-field configuration, we can approximate the isochronous volume by a slab of thickness

∆r = c∆t, located at a distance R = cT/2 from the array and parallel to it (see Fig.1).
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FIG. 3: Real part of matrix K at f = 3 MHz and different arrival times T : (a) when the single

scattering contribution is predominant (T = 58.5 µs); (b) when only multiple scattering occurs

(T = 122.5 µs).

For simplicity but without loss of generality, we also assume that the reflectors as well as

the array elements are point-like. In a 2D configuration, under the paraxial approximation,

kS
ij(T, f) can be expressed as

kS
ij(T, f) ∝ exp (j2kR)

R

Nd∑

d=1

Ad exp

[

jk
(xi − Xd)

2

2R

]

exp

[

jk
(xj − Xd)

2

2R

]

(2)

where k = 2πf/c is the wave number in the surrounding medium, xi = (i − N/2)p is the co-

ordinate along the array. Xd is the transverse position of the dth scatterer which contributes

to the backscattered wave at time T , the amplitude Ad depending on its reflectivity. Both

Ad and Xd are considered random. Note that j =
√
−1 in Eq.2 and has not to be mixed up

with the subscript j which denotes the receiver index.
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As to the multiple scattering contribution, kM
ij (T, f) also correspond to a sum of partial

waves that reach the array in the time window [T − ∆t/2; T + ∆t/2]. They are associated

with multiple scattering paths whose length belongs to the interval [R − ∆r/2; R + ∆r/2],

where R = cT/2 and ∆r = c∆t/2. An example of such a path is drawn in Fig.1. In a 2D

configuration, under the paraxial approximation and assuming point-like transducers and

scatterers, kM
ij (T, f) can be expressed as

kM
ij (T, f) ∝

Nq∑

q=1

Bq

exp
[

jk
(

Z
(1)
q + Z

(2)
q

)]

√

Z
(1)
q Z

(2)
q

exp




jk

(

xi − X
(1)
q

)2

2Z
(1)
q




 exp




jk

(

xj − X
(2)
q

)2

2Z
(2)
q






(3)

The index q denotes the qth path which contributes to the signal received at time T .
(

X
(1)
q , Z

(1)
q

)

and
(

X
(2)
q , Z

(2)
q

)

are respectively the coordinates of the first and last scat-

terers along the path q. Bq is the complex amplitude associated with path q, from the first

scattering event at
(

X
(1)
q , Z

(1)
q

)

until the last one at
(

X
(2)
q , Z

(2)
q

)

.

At this stage, the theoretical expression of kS
ij(T, f) given in Eq.2 does not display any

obvious coherence: kS
ij(T, f) corresponds to a sum of partial waves which are independent

of each other since the distribution of scatterers is assumed random. One can try to express

kS
ij(T, f) as a function of (xi−xj) and (xi +xj) which corresponds to a change of coordinates

in Eq.2:

kS
ij(T, f) ∝ exp (j2kR)

R
exp

[

jk
(xi − xj)

2

4R

]

︸ ︷︷ ︸

deterministic term

Nd∑

d=1

Ad exp

[

jk
(xi + xj − 2Xd)

2

4R

]

︸ ︷︷ ︸

random term

(4)

The term before the sum in Eq.4 does not depend on the distribution of scatterers, it is

deterministic; on the contrary, the term on the right is random. This special feature of

single scattering signals manifests itself as a particular coherence along the antidiagonals

of the matrix K, as depicted by Fig.3(a). Indeed, along each antidiagonal, i.e for couples

of transmitter(i) and receiver(j) such as i + j is constant, the random term of Eq.4 is also

constant, for any given realization of disorder. Thus, there is a deterministic phase relation

between coefficients of K located on the same antidiagonal. It can be expressed in the

following way :

βm =
kS

i−m,i+m(T, f)

kS
ii(T, f)

= exp

[

jk
(mp)2

R

]

(5)
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This is no longer true in the multiple scattering regime, since kM
ij cannot be factorized so

simply. Note that the parabolic phase dependence along each antidiagonal of KS should

be weighted by an attenuation term, decreasing with |xi − xj|, in order to incorporate the

directivity of transducers. Thus Eq.4 is not rigorously true; yet for simplicity, we will neglect

this attenuation term in the following.

IV. SINGLE SCATTERING FILTER (SSF)

Now that we have explained the deterministic coherence of single scattering signals along

the antidiagonals of the array response matrix K, we can take advantage of this special

feature to extract the single scattering contribution from the multiple scattering background.

Once the set of matrices K(T, f) are measured, the separation between single and multiple

scattering contributions is achieved according to the following steps:

• Rotation of each matrix K and construction of two sub-matrices A1 and A2.

• Filtering of matrices A1 and A2. Two new matrices AF

1
and AF

2
are obtained.

• Construction, from AF

1
and AF

2
, of the filtered matrices KF containing the single

scattering signals.

In the following subsections, we explain in details the matrix operations performed at each

step.

A. Matrix rotation

A rotation of matrix elements is achieved as depicted in Fig.4. It consists in building two

matrices A1 and A2 from the matrix K:

A1 = [a1uv] of dimension (2M − 1) × (2M − 1),

such that a1[u, v] = k[u + v − 1, v − u + 2M − 1] (6)

A2 = [a2uv] of dimension (2M − 2) × (2M − 2),

such that a2[u, v] = k[u + v, v − u + 2M − 1] (7)

with M = (N + 3)/4. Here N = 125 and so M = 32 is an even number. The matrices
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FIG. 4: Principle of the data rotation by taking the example of a matrix K of dimension N = 17.

The black points denote the whole elements kij of K. The columns of matrices A1 and A2 contain

the antidiagonals of K. Circles and squares represent respectively elements of A1 and A2. After

filtering A1 and A2, the filtered matrix KF is obtained and corresponds to elements contained in

the central square. Its dimension is (2M − 1) × (2M − 1) (M = 5 here).

A1 and A2 contain the whole antidiagonals of K (see Fig.4). Therefore the coherence of

single scattering signals now manifests itself along the columns of A1 and A2. In the next

subsection, we will no longer make the difference between matrices A1 and A2 because they

are filtered in the same way. They will be called indifferently A. L is the dimension of A.

For matrix A1, L = 2M − 1; for matrix A2, L = 2M − 2. Because of spatial reciprocity,

K is symmetric (kij = kji). Thus, A also exhibits a symmetry: each line of its upper part

is identical to a line of its lower part. The symmetry axis is shown as a black line in Fig.4

and corresponds to the diagonal of the matrix K. So, each column of the matrix A contains

only M independent coefficients, even if its dimension L is superior to M . This fact will be

crucial when the gain in signal-to-noise ratio will be assessed.
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B. Filtering of matrix A

The matrix A is the sum of two matrices AS and AM, which correspond respectively to

the single and multiple scattering contributions

A = AS + AM (8)

The rotation of data can be described as the following change of coordinates (xi, xj) →
(yu, yv):

yu =
xi − xj√

2
and yv =

xi + xj√
2

(9)

In this new basis, Eq.4 becomes

aS
uv(T, f) ∝ exp (j2kR)

R
exp

[

jk
y2

u

2R

]

︸ ︷︷ ︸

deterministic term

× Γv
︸︷︷︸

random term

(10)

where Γv =
∑Nd

d=1 Ad exp

[

jk
(yv−

√
2Xd)

2

2R

]

. Each column of the matrix AS exhibits a known

dependence as a function of index u. On the contrary, the multiple scattering contribution

(Eq.3) cannot be factorized in this way. Even after rotation, the random feature remains

along the columns and the lines of matrix AM.

The extraction of single scattering signals can be achieved by projecting the columns of

the matrix A on the “characteristic space” of single scattering, generated by the vector S

whose coordinates are

su = exp

[

jk
y2

u

2R

]

L−1/2 (11)

The factor L−1/2 ensures the normalization of S. The result P of this projection is

P = S†A (12)

whose coordinates are

pv =
L∑

u=1

s∗uauv =
L∑

u=1

s∗ua
S
uv +

L∑

u=1

s∗ua
M
uv (13)

=
√

L
exp (j2kR)

R
Γv +

L∑

u=1

s∗ua
M
uv (14)

The residual term
∑L

u=1 s∗ua
M
uv corresponds to the projection of multiple scattering signals

on the vector S. The filtered matrix AF is obtained by multiplying the column vector S by
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the line vector P

AF = SP = SS†A (15)

The elements of AF are:

aF
uv =

exp (j2kR)

R
exp

[

jk
y2

u

2R

]

Γv + su

L∑

u′=1

s∗u′aM
u′v (16)

The first term on the right-hand side of Eq.16 is strictly equal to the single scattering

component (Eq.10). Finally, we obtain

aF
uv = aS

uv + su

L∑

u′=1

s∗u′aM
u′v (17)

Eq.17 can be written under a matrix formalism:

AF = AS

︸︷︷︸

Single scattering

+ SS†AM

︸ ︷︷ ︸

Residual noise

(18)

The matrix AF contains the single scattering contribution (AS) as wanted. But it also

contains a residual term due to multiple scattering (SS†AM). This term persists because

multiple scattering signals are not stricly orthogonal to the characteristic space of single

scattering, generated by the vector S. The filtering of the single scattering contribution

is not perfect. Nevertheless, the typical amplitude of the residual noise can be assessed.

Since each column of A contains M independent coefficients, the filtering process decreases

the multiple scattering contribution by a factor
√

M . The single scattering contribution

remaining unchanged, the gain in signal-to-noise ratio (in amplitude), or rather the gain in

“single-scattering-to-multiple-scattering” ratio, is of
√

M .

C. The filtered matrix KF

Once the matrices A1 and A2 are filtered, an inter-element filtered matrix KF, of dimen-

sion (2M − 1) × (2M − 1), is built (see Fig.4) with a change of coordinates, back to the

original system:

• if (i − j)/2 is an integer,

then, kF [i, j] = aF
1 [(i − j)/2 + M, (i + j)/2]

• if (i − j)/2 is not an integer,

then, kF [i, j] = aF
2 [(i − j − 1)/2 + M, (i + j − 1)/2]
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In the following, K0 will denote the matrix that would have been obtained if no filtering

had been performed. K0 has the same dimensions as KF, and simply contains the central

elements of K.

D. Illustration of the single scattering filter (SSF)

As an example, Fig.5 illustrates the action of the SSF on experimental data. Matrices

K0(Fig.5(a)) and KF(Fig.5(b)) are shown at frequency f = 2.7 MHz and time T = 94.5

µs. This arrival time is the one expected for the target echo. Whereas the matrix K0 seems

random, the filtered matrix KF displays a deterministic coherence along its antidiagonals.

From these data, an additional operation is needed to build the image of the medium or

FIG. 5: Results given by the SSF at time T = 94.5 µs and frequency f = 2.7 MHz. (a) Real part

of matrix K0. (b) Real part of filtered matrix KF.
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rather, to detect and image the target placed behind the scattering slab. To that aim, several

imaging techniques are compared in the next section.

V. DETECTION AND IMAGING OF THE TARGET

In this section, we apply the filtering procedure described above to the detection and

imaging of a target embedded in a scattering medium. At a given frequency, two imaging

techniques are compared: focused beamforming (equivalent to echography in the frequency

domain) and the DORT method. As we will see, there is no interest in combining the

SSF with focused beamforming (FB). But its combination with the DORT method provides

excellent results.

A. Focused beamforming (FB)

The simplest way to image the target is to achieve a direct backpropagation of the mea-

sured signals K(T, f), for a given time and frequency couple. The focal plane is parallel to

the array and located at depth R = cT/2; it is discretized in a set of points. The back-

propagation algorithm is based on the Born approximation. It consists first in calculating

the propagation operator G, whose elements are the spatial Green functions gil between the

ith array element and the lth point in the focal plane, as shown in Fig.6. The medium is

considered as homogeneous with a wave celerity c equal to that of the surrounding medium.

At a given time T (corresponding to depth R = cT/2) and frequency f , the final image is

FIG. 6: Principle of FB. The focal plane is parallel to the array and located at depth R = cT/2

from it. It is discretized with a sampling period equal to the array pitch. The distances ril are

much larger than the wavelength.
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a vector I, the absolute value of the backpropagated wave field, which can be plotted as a

function of X, the transverse coordinate in the focal plane:

I =
∣
∣G†K0G

∗∣∣ (19)

This backpropagation algorithm is the equivalent of echography in the frequency domain,

with a poorer temporal resolution due to the duration ∆t of the time-windows. In the

following, we will refer to this imaging technique as “focused beamforming”(FB). FB has

the same drawbacks as classical echography (Fig.2), particularly the presence of speckle

which hides the target. We can point out its inability to detect the target by considering

the image obtained at time T = 94.5 µs and f = 2.7 MHz (see Fig.7). This arrival time

corresponds to the target depth, and 2.7 MHz is the frequency for which the mean-free path

of the slab is the largest (i.e. multiple scattering is the weakest) [37]. The presence of the

scattering slab seriously degrades the image. Two peaks seem to arise but neither of them

is located at the expected position.

FIG. 7: Image obtained by FB at time T = 94.5 µs and frequency f = 2.7 MHz (black line). The

ideal image obtained without the scattering slab is in grey. The vertical black line indicates the

position of the target.

The resulting image I (Eq.19) could also be averaged over the whole frequency domain

(the result would be comparable to Fig.2), or on specific frequency bands for which the

detection is more likely. Indeed, it is possible to establish a detection criterion based on

speckle statistics, for a given probability of false alarm. This will be done, as well as for

other techniques, in Sec.VI.
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In order to improve the results provided by FB, one could think of applying Eq.19 to

the filtered matrix KF instead of the raw matrix K0. Yet it can be shown (Appendix A)

that this would not change the result. A short interpretation can be given. FB relies on the

fact that single scattering signals will add up coherently as long as they come from a focal

point at depth R = cT/2 (axial focusing) and the desired transverse position X (lateral

focusing). The SSF also enhances single scattering signals associated with scatterers located

around R = cT/2, but independently from their transverse position X. Now, if we build the

echographic image (Eq.19) from the filtered signals, there is a redundancy in the choice of

depth R; consequently, the SSF does not bring anything when it is followed by FB. The two

techniques are not complementary. A more rigorous demonstration is given in Appendix A.

B. DORT applied to K0

DORT [30, 31] consists in achieving the singular value decomposition (SVD) of the array

response matrix before imaging the medium:

K0 = U0Λ0V0† (20)

where Λ0 is a diagonal matrix containing the real positive singular values λ0
i in a decreasing

order (λ0
1 > λ0

2 > ... > λ0
M). U0 and V0 are unitary matrices containing the normalized

singular vectors U0

i
and V0

i
. Under the single scattering approximation, each scatterer of

the medium is mainly linked with one singular space associated to a non-zero singular value

λ0
i . The corresponding singular vector V0

i
is the signal to apply to the array in order to

focus on the corresponding scatterer. Thus, the numerical backpropagation of the singular

vectors allows to image each detected scatterer. The image provided by DORT is a vector

I0
i
(T, f) which corresponds to the absolute value of the backpropagated wave field

I0
i

= λ0
i

∣
∣V0

i
G∗∣∣ (21)

I0
i
(T, f) represents the backpropagated image at time T and frequency f of the ith singular

vector V0

i
(T, f).

We would like the first singular space (linked to λ0
1) to be associated with the target

echo. However, the forest of rods in front of the target results in multiple scattering which

hides the target echo. Its influence is illustrated in Fig.8 which displays the result obtained
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with the DORT method at the expected arrival time for the target echo (94.5 µs), and at

the frequency for which multiple scattering is at its weakest (2.7 MHz). Fig.8(a) represents

FIG. 8: (a) Real part of the first singular space λ0
1U

0
1
V0†

1
of K0 obtained at time T = 94.5 µs and

frequency f = 2.7 MHz. (b) Image obtained by backpropagation of the first singular vector V0
1

at

the same time-frequency couple. The DORT image (black line) is compared with the ideal image

obtained without the forest of rods (grey line). The vertical black line indicates the position of the

target.

the real part of the first singular space λ0
1U

0

1
V

0†
1

of the matrix K0 (see Fig.5(a)). It does

not display the feature of a single scattered echo (i.e concentric circles centered around

the target position like in Fig.9(a)). Multiple scattering results in a random matrix K0

(see Fig.5(a)) whose singular spaces are random, without connection with the direct echoes

of scatterers located in the isochronous volume. The corresponding image I0
1

obtained by
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backpropagation of the singular vector V0

1
is shown in Fig.8(b). No peak is observed around

the target location.

C. DORT applied to the filtered matrix KF

Here we combine the DORT method with the SSF described in Sec.IV (SSF+DORT

approach). The procedure is the same as the one described in the previous subsection,

except that K0 is replaced by KF. Fig.9 illustrates the success of this combination. The

FIG. 9: (a) Real part of the first singular space λF
1 UF

1
VF†

1
of KF obtained at time T = 94, 5 µs

and frequency f = 2, 7 MHz. (b) Image obtained by backpropagation of the first singular vector

VF
1

at the same time-frequency couple. The image (black line) is compared with the ideal image

obtained without the forest of rods (grey line). The vertical black line indicates the position of the

target.
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filtered matrix KF (see Fig.5(b)) already shows a possible feature of a single scattered echo

coming from the target. Nevertheless, it is still perturbed by a residual multiple scattering

contribution. Once the SVD of KF is achieved (KF = UFΛFVF†), the first singular space

λF
1 UF

1
V

F†
1

, shown in Fig.9(a), clearly exhibits the feature of the single scattered echo coming

from the target. The backpropagation of the singular vector VF

1
is shown in Fig.9(b).

The image clearly displays a peak at the target position, with a spatial resolution that is

comparable to the free-space situation! Yet the peak amplitude is lower, since the intensity

of the coherent wave coming from the target has undergone an attenuation of ∼ exp(2L/le)

due to the forest of rods.

The comparison of Figs.7, 8 & 9 illustrates the success of our approach. The SSF elim-

inates a major part of the multiple scattering contribution. It allows the DORT method

to extract properly the target echo, which was not possible with classical imaging tech-

niques. However, these results are obtained for a time-frequency couple chosen arbitrarily.

An imaging procedure must work blindly, without knowing the depth of the target or the

frequency band in which the medium is less scattering. The detection of the target has to

be systematized in order to select automatically the arrival time(s) and frequency band(s)

for which the target is detected and can be imaged. Moreover, multiple scattering signals

can generate false alarms because of speckle fluctuations that one can wrongly attribute to

the presence of a strong reflector in the medium. Thus, whatever the imaging procedure,

a rigorous detection criterion has to be established in order to discriminate artifacts and

compare the different techniques on a common basis. This is done in the next section.

VI. DETECTION CRITERIA

At a given time T and frequency f , a target will be detected if the observed quantity is

above a certain threshold. In the case of the DORT method, the detection criterion will be

applied to the first singular value λ1. In the case of FB, the relevant variable is the maximum

of the image I (Eq.19). Since the scattering medium is considered as one realisation of a

random process, setting the detection criteria requires a statistical model for the probability

density function of λ1 and of I. Then a probability of false alarm (PFA) is fixed, and the

corresponding detection thresholds can be established for both methods, which allows to

compare their results for the same PFA.
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The statistical behavior of the singular values λi and of the echographic image I in the

multiple scattering regime has to be known. To that aim, we have performed the same

kind of experiments as described in Fig.1, except that the target has been removed. The

experimental procedure remains unchanged and a set of matrices K0(T, f) and KF(T, f) is

obtained.

We first consider the DORT method, and the statistical properties of the singular values

of K0 and KF in connection with random matrix theory (RMT), as discussed in recent

papers [29, 36]. Experimentally, before achieving the SVD, the matrices K0 and KF of

size (2M − 1) × (2M − 1) are truncated into matrices of size M × M by keeping only one

element in two. This operation is needed in order to remove short-range correlations that

may exist between adjacent entries [36]. These correlations have an important influence on

the distribution of singular values and removing them simplifies the problem. For the sake

of simplicity, we will continue to note the truncated matrices K0 and KF. The SVD of these

matrices is achieved and a set of M singular values λ0
i (T, f) and λF

i (T, f) is obtained at each

time-frequency couple (T, f). The singular values are normalized by their quadratic mean :

λ̃i =
λi

√
1
M

∑M
p=1 λ2

p

(22)

This normalization allows to meet the hypothesis usually made in RMT which consists in

assuming a variance of 1
M

for matrix coefficients [36]. Once this normalization is performed

at each time-frequency couple, a histogram of dimensionless singular values is obtained by

averaging over time T , frequency f and rank i. Two estimators, ρ̂0(λ) and ρ̂F (λ), of the

singular values distribution are finally obtained, respectively for matrices K0 and KF. The

results are displayed in Fig.10.

In the multiple scattering regime, once short-range correlations are removed, we expect

the matrix K0 to be random. In that case, RMT predicts that the distribution of singular

values should follow the “quarter-circle law” (for M >> 1) [34, 38]

ρQC(λ) =







1
π

√
4 − λ2 for 0 < λ < 2

0 elsewhere
(23)

As pointed out by Fig.10(a), the experimental distribution of singular values ρ̂0(λ) deviates

from the quarter circle law ρQC(λ). The reasons for that have been discussed in [36]. When

a detection threshold is fixed for the first singular value λ̃0
1, we will use experimental data

ρ̂0 rather than the theoretical quarter-circle law (ρQC).
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FIG. 10: (a) ρ̂0(λ) (white disks) is compared with the quarter-circle law ρQC(λ) (black line, Eq.23).

(b) ρ̂F (λ) (white disks) is compared with the Hankel law ρH(λ) (black line). (c) ρ̂I(λ) (white disks)

is compared with the Rayleigh law ρR(λ) (black line, Eq.25).
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Contrary to K0, the filtered matrix KF is characterized by a deterministic phase relation

along its antidiagonals. This kind of matrix has already been studied [36]. KF displays the

same statistical properties as a Hankel random matrix. A Hankel matrix is a square matrix

whose elements belonging to the same antidiagonal (i + j = constant) are equal. In the

literature, Bryc et al. [39] have proved, for normalized random Hankel matrices, the almost

sure weak convergence of the distribution of singular values to a universal distribution of

unbounded support ρH(λ). In the following, the distribution ρH(λ) will be referred to as

the “Hankel law”. To our knowledge, no analytical expression of the Hankel law has ever

been found and only a numerical simulation can provide an estimate of ρH(λ). In Fig.10(b),

the experimental distribution of singular values of KF, ρ̂F (λ), is compared to the Hankel

law. The agreement between both curves is excellent. Thus, we will rely on the statistical

behavior of Hankel random matrix, when a detection criterion is set on the first singular

value λ̃F
1 .

We now consider the echographic image I(T, f) and build an estimator for its probability

density function. Experimentally, the points where the reflectivity of the medium is esti-

mated have to be chosen carefully. The image vector I(T, f) has to display independent

coordinates. So, each one has to be associated with a different resolution cell. In pratice,

we have considered the points located at the same transverse position as the transducers

implied in the truncated matrices K0 and KF. The points of the image are separated by

a distance 2p ≃ 0.84 mm larger than the size of the resolution cell λa
D

≃ 0.76 mm (with

D = (2M − 1)p the array size). Each image I(T, f) contains M independent coordinates

Il(T, f). These coordinates are normalized by their quadratic mean at each time T and

frequency f :

Ĩl(T, f) =
Il(T, f)

√
1
M

∑M
p=1 I2

p (T, f)
(24)

Once this renormalization is performed, a histogram of the dimensionless image can be built,

averaging over all time-frequency couples. The estimator ρ̂I(λ) of the image probability

density function is plotted in Fig.10(c).

In the multiple scattering regime, we expect Il to be the modulus of a gaussian complex

random variable with zero mean and variance unity [40, 41]. The associated density of

probability is the Rayleigh law ρR(λ):

ρR(λ) = 2λ exp
(
−λ2

)
(25)
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ρR(λ) is compared to the experimental estimator ρ̂I(λ) in Fig.10. The agreement between

theory and experiment is excellent. Consequently, the Rayleigh law ρR(λ) will be considered

when a detection criterion is set for the main peak of the echographic image.

Now that the probability density functions of λ̃0
i , λ̃F

i and Ĩl are known, a detection crite-

rion can be set for each imaging technique. The relevant quantity for that is the distribution

functions F1 of the first singular values, λ̃F
1 and λ̃0

1, and of the main peak of the echographic

image. F1 will directly provide the probability of false alarm PFA for the target detection

issue, since PFA(α) = 1 − F1(α) = Prob {α ≤ λ} (where α is the detection threshold and

λ is the variable on which the detection threshold is applied).

As we have seen, the distribution ρ̂0(λ) does not strictly follow the quarter-circle law.

Thus, the distribution function F 0
1 of λ̃0

1 will be estimated from experimental measurements

rather than from an analytical expression. By building the histogram of the first singular

value λ̃0
1 and then considering its primitive, we obtain an estimator of the distribution

function F 0
1 of λ̃0

1, which is plotted in Fig.11.

In the case of KF, the distribution of its singular values was found in good agreement

with the Hankel law. The distribution FH
1 of the first singular value of a Hankel random

matrix is calculated numerically [36]. FH
1 (λ) is also plotted in Fig.11.

As to FB, the Rayleigh law ρR(λ) was found to fit the data properly. Unlike the sin-

gular values of a random matrix [42, 43], the coordinates of the echographic image are

independently distributed. In that case, the distribution function FR
1 (λ) of the main peak,

Ĩmax

(

= max
[

Ĩl

])

, of the image can be directly deduced from ρR(λ). FR
1 (λ) is equal to the

M th power of the distribution function FR(λ) of any image coordinate:

FR
1 (λ) = Prob

{

Ĩmax ≤ λ
}

=
[
FR(λ)

]M
,

with, FR(λ) =

∫ λ

0

dxρR(x).

The distribution function FR
1 (λ) is plotted in Fig.11.

At this stage, we have reliable models for the distribution function F1 of the relevant

variable for all three techniques (DORT method, DORT method combined with the SSF,

FB). An admitted probability of error γ (i.e, a false alarm rate) is chosen. The three

detection thresholds α can be obtained from [36]:

α = F−1
1 (1 − γ) (26)
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FIG. 11: Distribution functions F 0
1 (λ) (dash-dotted line), FH

1 (λ) (dashed line) and FR
1 (λ) (contin-

uous line) obtained for M = 32. The vertical lines represent the detection thresholds α for a PFA

γ = 10−3.

TABLE I: Table of detection thresholds deduced from Eq.26 taking γ = 10−3 and of detection

conditions established in Appendix B, with M = 32.

Imaging technique DORT, K0 DORT, KF FB

Detection threshold α = 2.39 α = 2.69 α = 3.15

Detection condition σT

σM
> α√

M
≃ 0.42 σT

σM
> α

√
2

M ≃ 0.12 σT

σM
> α

√
2

M ≃ 0.14

In Fig.11, the detection thresholds are represented with vertical lines; the admitted PFA γ

has been set to 10−3 for all three imaging techniques. The corresponding numerical values

are given in Tab.I.

Once the detection thresholds are known, we can also evaluate the performances of each

technique for detecting a target. It consists in predicting the signal-to-noise ratio above

which the target is detected (“noise” meaning here multiple scattering). Let σ2
T and σ2

M be

the power of signals associated with the target and the multiple scattering contribution. We

can predict above which ratio σT

σM
, the target is detected by each technique with the same

probability of false alarm γ = 10−3. Details of calculations are given in Appendix B. The

performances of each technique are summarized in Tab.I.
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The SSF+DORT approach is the most efficient in terms of detection. Its detection limit

decreases in 1
M

as for FB, which is better by far than the classical DORT method whose

detection limit decreases in 1√
M

. For a given probability of false alarm, the SSF+DORT

approach succeeds in detecting the target for slightly smaller signal-to-noise ratios than FB

(0.12 vs 0.14). As we will see in Sec.VII, this is not the only reason why this approach

provides better results than FB: it also diminishes aberration distortions, whereas the image

obtained with standard echography can be strongly damaged by aberration.

FIG. 12: Time-frequency evolution of Ĩmax(top), λ̃0
1(middle), λ̃F

1 (bottom). On the left, no criterion

of detection is applied. On the right, the gray scales have been adjusted so that for each technique,

all values below the detection criterion are represented in black. The probability of false alarm is

the same for all techniques (γ = 0.1%).

The detection thresholds summarized in Tab.I are now applied to the experimental results.

Fig.12 represents the time-frequency evolution of Ĩmax, λ̃0
1 and λ̃F

1 . From the figures on the

left, it is difficult to decide for which time T and frequency f , the target is detected. The

application of the detection thresholds, based on the same probability of false alarm, provides

an unambiguous answer (see Fig.12). The target is detected over very few time-frequency
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couples for FB and the classical DORT method. On the contrary, the combination of DORT

with the SSF manages to detect the target over the frequency band 2.65 − 2.8 MHz and a

7-µs-long temporal window. It is no accident that the target is best detected around 2.7

MHz. Actually, the forest of rods exhibits a larger scattering mean free path le (≃ 10 mm)

around this frequency [37]. Thus, the slab is more transparent in this frequency bandwidth,

the direct echo of the target is less attenuated by scattering. Setting detection thresholds

with the same PFA provides a systematic way to compare the three techniques and detect

the target, which would not have been possible by a simple look at the echographic image

(Fig.2) or at singular values (Fig.12, left column).

FIG. 13: Images of the target: (a) reference image, without the forest of rods; (b) FB through

the forest of rods; (c) DORT combined with the SSF through the forest of rods. (d) DORT alone

through the forest of rods. All images have been renormalized by their maximum.

Now that we have determined the time-frequency couples for which the target is detected,

the final image can be obtained by summing, for each time T , the images over the frequencies

f which fulfill the detection criterion. The final image is displayed as a function of the

transverse position X and the depth R = cT/2. Fig.13 shows the images obtained for each

imaging technique. The “ideal” image obtained without the forest of rods is also shown

and constitutes the reference (Fig.13(a)). The results are excellent (see Fig.13(c)): the SSF

provides an image of the target which is comparable to the reference image, although its

axial resolution is a bit degraded: the temporal spreading of the target echo compared to the
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“ideal” case is due to the loss of a major part of the initial frequency bandwidth. Whereas

the emitted signal displays a frequency bandwidth of 1 MHz, the target echo is only detected

over a bandwidth of 0.15 MHz. The lateral resolution is nearly as good as the “ideal” image

(see Fig.14(b)), and the correct position of the target is obtained.

The other techniques (DORT alone, FB) manage to detect the target, but only in very

narrow frequency bands, and they are strongly affected by aberration. Even though one

peak is observed around the expected location of the target, there are secondary lobes (for

both techniques) and a displacement of the focal spot (for FB) (see Fig.14(a)). This is due

to the inadequacy of the Born approximation: when backpropagating data, the medium is

considered as homogeneous, which is obviously not valid here. The various techniques of

aberration corrections [7, 44–47] are difficult to apply in our experimental configuration,

because of multiple scattering. On the contrary, the SSF+DORT approach is less sensitive

to the error made when backpropagating data in a supposedly homogeneous medium. As

we will see in the next section, the filtering of the antidiagonals of K smooths the distortions

endured by the wave front, which tends to diminish the aberration effects.

An other interesting observation is the occurrence of an echo above the detection threshold

around T = 115 µs (see Fig.12(f)). This echo is not an artifact due to multiple scattering.

It corresponds to circumferential waves that have propagated around the air-filled cylinder.

This phenomenon has been already observed with the DORT method [48]. The difference of

arrival times between the specular echo (90 µs < T <97 µs) and this second echo (T ≃ 115

µs) is compatible with an A0 Lamb mode. This is interesting for a better characterization

of the target.

VII. ABERRATION

So far, we have dealt with the issue of multiple scattering, and how it could be partially

eliminated by a matrix manipulation, in order to improve target detection. But multiple

scattering is not the only enemy in imaging and detection. Even if only single scattering

takes place, a heterogeneous layer such as the forest of rods induces aberrations that distort

the wavefront reflected by the target. To reconstruct an image, both FB and DORT rely on

the hypothesis that the medium has a constant speed of sound, which is clearly not true.

In this section, we examine the impact of the SSF on aberrations. We consider the same
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FIG. 14: Section of the images obtained at the depth of the target (z = 68 mm). The reference

image without the forest of rods is in continuous black line. (a) DORT method alone (continuous

grey line) and FB (dashed line). (b) DORT method combined with the SSF (continuous grey line).

All curves have been renormalized with their maximum.

experimental set-up, except that now the aberration undergone by the target echo will be

examined independently from the multiple scattering contribution of the forest of rods. To

that end, the impulse response matrix has been measured in three configurations:

• Configuration 1: With the scattering slab and the target; it corresponds to the exper-

imental situation studied until now.

• Configuration 2: With the scattering slab alone (the target has been removed).

• Configuration 3: With the target alone (the scattering slab has been removed).
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Let H(i)(t), denote the corresponding matrices, where the superscript i stands for the

configuration (1, 2 or 3). In order to investigate aberration effects apart form multiple

scattering, we calculate the matrix H = H(1) − H(2). H contains only signals linked to

the target. Particularly, its first arrivals correspond to the single scattering contribution

(ballistic) coming from the target. The later echoes correspond to multiple scattering paths

involving both the target and the forest of rods. In Fig.15, a line of the matrix H(t) is

displayed as a function of the arrival time t in the time window 90− 100 µs. It is compared

with the same line of matrix H(3)(t). The comparison of matrices H and H(3) highlights the

phase and amplitude distortions undergone by the wave-front reflected by the target when

it comes through the scattering slab.

FIG. 15: (a) Line 64 of matrix H(3)(t) in the time-window 90− 100 µs. (b) Line 64 of matrix H(t)

in the same time-window.
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Let us study the action of the SSF on the distortions. The frequency spectrum of H and

H(3) is calculated by means of a DFT in the time-window 90− 100 µs. Two matrices, K(f)

and K(3)(f), are obtained at each frequency f . The distortions induced by the scattering

slab can be quantified by a matrix D(f) whose coefficients dij(f) are

dij(f) =
kij(f)

k
(3)
ij (f)

(27)

If the scattering slab had no effect, the coeffients dij would be real (no phase distortion) and

equal to unity (no amplitude aberration). Obviously, in our case, the coefficients dij show

both amplitude and phase distortions (Fig.16).

FIG. 16: (a) Real part of the distortion matrix D0 at the frequency f = 3.1 MHz. (b) Real part

of the filtered distortion matrix DF at the same frequency.
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Let us express the coefficients kij and k
(3)
ij . Considering Eq.2 with only one scatterer (the

target itself) we have:

k
(3)
ij (f) ∝ exp

[

jk
(xi − XT )2

2RT

]

exp

[

jk
(xj − XT )2

2RT

]

(28)

where the coordinates (XT , RT ) correspond to the target location. For the sake of simplicity,

we have removed the phase term exp(j2kRT )
RT

and the reflectivity term in Eq.2, which are

unimportant here. Using Eq.27 and Eq.28, we have

kij(f) ∝ dij(f) exp

[

jk
(xi − XT )2

2RT

]

exp

[

jk
(xj − XT )2

2RT

]

(29)

As seen in Sec.IV, the SSF consists in projecting the antidiagonals of the matrix K on the

characteristic space of the single scattering contribution. Once this operation is performed,

the coefficients of the filtered matrix KF can be expressed as (see Appendix C)

kF
lm(f) ∝ el+m−1(f) exp

[

jk
(xl − XT )2

2RT

]

exp

[

jk
(xm − XT )2

2RT

]

(30)

where the coefficients ev are given by

if v is an odd number,

then, ev =

〈

d

[

u +
v − 1

2
,
v − 1

2
− u + 2M − 1

]〉

u=1,...,2M−1

(31)

if v is an even number,

then, ev =
〈

d
[

u +
v

2
,
v

2
− u + 2M − 1

]〉

u=1,...,2M−2
(32)

and the symbol < . > denotes an average over the variable in the subscript. Therefore

the coefficients ev result from a smoothing of dij: the effect of the SSF is to average the

distortion coefficients along each antidiagonal. Fig.16(b) represents the filtered distortion

matrix, DF. Its coefficients are dF
ij = ei+j−1. The comparison of matrices D0 and DF shows

that the SSF reduces the fluctuations of the distortion coefficients (see Fig.16).

The standard deviation std [ep] of coefficients ep is smaller than std [dij] by a factor of
√

Nind. Nind is the number of independent elements along each antidiagonal of matrix D,

which depends on the coherence length of the aberrator relatively to the array pitch. If the

matrix D contained independent entries, Nind would be equal to M . In our experimental

configuration, there are correlations between neighbouring elements belonging to the same
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antidiagonal, and Nind ∼ M
2

. Fig.17 illustrates the action of the SSF on the fluctuations of

the distortion coefficients. The evolution of the ratios |〈dij〉| /std [dij] and |〈ep〉| /std [ep] is

plotted as a function of frequency. Note that |〈ep〉| ≡ |〈dij〉|. The ratio between both curves

is close to
√

Nind ≃
√

M
2

= 4.

FIG. 17: Ratios |〈dij〉| /std [dij ] (continous grey line) and |〈ep〉| /std [ep](black continous line) are

plotted as a function of frequency. The horizontal dashed line corresponds to the detection threshold

of Eq.38

Now that it is clear that the SSF has a smoothing effect on the aberrations, let us evaluate

by how much it will improve target detection. We start by keeping only one in four elements

of the filtered matrix KF: its new dimensions are M
2
×M

2
. As before (see Sec.VI), this is done

to remove short-range correlations between matrix elements, which allows us to use relatively

simple results derived from RMT. Next, we perform a singular value decomposition:

KF = UFΛFVF† (33)

If there were no aberrations at all, backpropagating as usual the first singular vector VF

1

would focus at the target position. This is not the case here, because of aberrations induced

by the scattering layer. In order to analyse their effect, let us write KF as the sum of a

“smoothed” matrix
〈
KF

〉
and a perturbation ∆KF:

KF =
〈
KF

〉

︸ ︷︷ ︸

Matrix of rank 1

+ ∆KF

︸ ︷︷ ︸

Random Hankel matrix

(34)
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Note that the absence of subscript behind the symbol < . > means that we now consider

ensemble averages. From Eq.30, we have the coefficients of
〈
KF

〉
and ∆KF:

〈
kF

lm(f)
〉

= 〈el+m−1(f)〉 exp

[

jk
(xl − XT )2

2RT

]

exp

[

jk
(xm − XT )2

2RT

]

(35)

δkF
lm(f) = [el+m−1(f) − 〈el+m−1(f)〉] exp

[

jk
(xl − XT )2

2RT

]

exp

[

jk
(xm − XT )2

2RT

]

(36)

Note that
〈
KF

〉
may be written as

〈
KF

〉
= 〈ep〉K(3) (37)

with 〈ep〉 the average distortion and K(3) the response of the target without the scattering

slab.
〈
KF

〉
is of rank 1 and its only singular vector focuses at the exact location of the

target. ∆KF is the perturbation due to the aberration effects: it explicitly depends on the

fluctuations of the distortion coefficients ep around their mean 〈ep〉. ∆KF has a particular

feature: since the coefficients [el+m−1(f) − 〈el+m−1(f)〉] are constant along each antidiagonal

(l + m =constant), there is a deterministic phase relation between the coefficients of ∆KF

located on the same antidiagonal. As shown in [36], this kind of matrix has the same

statistical behavior as a random Hankel matrix. Backpropagating the first singular vector

of KF will focus at the target position, as long as the perturbation ∆KF is weak compared

to
〈
KF

〉
. A threshold can be evaluated, based on RMT (the details are given in Appendix

D). The SVD will successfully extract
〈
KF

〉
as long as

|〈ep〉|
std [ep]

>
α

√

M/2
(38)

with α the detection threshold found for the first normalized singular value in the case of a

random Hankel matrix (see Sec.VI). This detection threshold is displayed with a horizontal

line in Fig.17. α has been calculated here considering the distribution function FH
1 (λ)

obtained for a random Hankel matrix of size M
2
× M

2
, with M

2
=16. As before, the PFA

has been fixed to γ = 10−3 and we have obtained numerically the threshold α = 2.52. The

SSF+DORT approach succeeds at the frequencies f where the ratio |〈ep〉| /std [ep] (black

curve) is above the detection threshold defined in Eq.38 (see Fig.17).

As an illustration, we choose to work at f = 3.1 MHz, a frequency for which we are

just above the threshold of Eq.38. The SVD is applied to the matrices K0 and KF. The
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unwrapped phases of the first singular vectors V0

1
and VF

1
are plotted in Fig.18(a). They

are compared with the “ideal” phase which is obtained without the scattering slab. It is

given by the parabolic term k (xi−XT )2

2RT
which allows to focus on the target when the first

singular vector is backpropagated numerically. The unwrapped phase of the first singular

vector is a relevant observable because it directly shows the phase distortions of the wave

front which focuses on the target. Without prior filtering, the strong phase distortions of

the wave-front result in a first singular vector V0

1
whose unwrapped phase exhibits erratic

deviations from the “ideal” parabolic law. On the contrary, the SSF leads to a first singular

vector VF

1
whose unwrapped phase is very close to the “ideal” case (Fig.18(a)).

Fig.18(b) displays the images obtained with the numerical backpropagation of the singular

vectors on the focal plane. The backpropagation of VF

1
focuses nicely on the target, nearly as

if there was no aberrating slab. On the contrary, without prior filtering, the singular vector

V0

1
does not focus on the target and it is impossible to deduce the target location from

the image. Finally, we also show the result of FB applied to the matrix K0 (see Sec.V A).

Once again, the phase distortions induced by aberration are so large that the image displays

several main lobes with no connection with the target location.

In this example, the action of the SSF on phase distortions is obvious. The fluctuations

of the distortion coefficients dij are diminished by a factor of
√

M
2

. As long the criterion

(Eq.38) is fulfilled, the SVD succeeds in extracting the unaberrated part
〈
KF

〉
from the

measured matrix. Then, backpropagting the first singular vector VF

1
provides the correct

target location as shown in Fig.18(b).

In the previous sections, we have compared the SSF to FB and showed that it gave much

better results when trying to detect a target behind a multiple scattering and aberrating

layer. The smoothing of the wave-front distortions provided by the SSF partly accounts for

this. Even if the single scattered echo coming from the target is sufficiently large compared

to the multiple scattering contribution, FB may fail in detecting the target because of

the strong phase distortions induced by the scattering slab. On the contrary, the SSF

smoothes the phase distortions enough for the SVD to extract the undistorted wave-front.

Backpropagating the first singular vector in a virtually homogeneous medium finally allows

to image the target, with no secondary lobes, and no displacement of the focal spot.
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FIG. 18: Influence of the phase distortions on the three imaging techniques at frequency f = 3.1

MHz (a) Unwrapped phase of the first singular vectors V0
1
(black dashed line) and VF

1
(gray dashed

line) compared with the “ideal” wave-front (continuous black line) which would be obtained if the

slab was removed. (b) Images of the target obtained with FB (black dashed line), DORT applied to

K0 (grey dashed line) and DORT applied to KF (grey continuous line). The ideal image obtained

without the scattering slab is in continuous black line. All curves have been renormalized with

their mean amplitude.

VIII. CONCLUSION

The approach we developed here combines a “single scattering filter” with the DORT

method. It greatly improves the performance of an array of transmitters/receivers in de-

tecting and imaging a target hidden behind a scattering medium. On the one hand, the

short time-frequency analysis allows to select the frequency bandwidth(s) favourable to the
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detection of the target, unlike classical echography which is performed in the temporal do-

main. This has been made possible by setting a detection criterion based on random matrix

theory. We showed that removing most of the multiple scattering contribution significantly

improves the performance of the DORT method in random scattering media. The results

are even better than focused beamforming in terms of target detection. On the other hand,

the SSF+DORT approach is shown to strongly diminish the influence of aberration effects

(secondary lobes, displacement of the focal spot) which burden classical imaging techniques.

The perspectives of this study are numerous. This technique can be applied to other types of

waves (electromagnetic, seismic, etc.) as long as a coherent array of independent elements is

available. A future step will be to test this approach in real situations, such as the detection

of a target embedded in the soil or of cracks in concrete structures, steel blocks etc.
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APPENDIX A: FB APPLIED TO KF

The aim of this appendix is to show why FB and the SSF are not complementary.

Using Eq.19 and under the paraxial approximation, the coordinate Il of the echographic

image at the arrival time T = 2R/c and frequency f can be expressed as

Il(T, f) =

∣
∣
∣
∣
∣

∑

i

∑

j

kij(T, f) exp

{

−j
k

2R

[
(xi − xl)

2 + (xj − xl)
2]

}
∣
∣
∣
∣
∣

(A1)

One can write Eq.A1 in the basis defined in Eq.9,

Il(T, f) =

∣
∣
∣
∣
∣

∑

u

∑

v

auv exp

{

−j
k

2R

[

y2
u +

(

yv −
√

2xl

)2
]}

∣
∣
∣
∣
∣

(A2)

where the coefficients auv are deduced from kij after the data rotation described in Sec.IV A.

Eq.A2 can be simplified into

Il(T, f) =
∣
∣
∣

√
L

∑

v

exp

{

−j
k

2R

[(

yv −
√

2xl

)2
]}

∑

u

s∗uauv

︸ ︷︷ ︸

pv

∣
∣
∣ (A3)
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where the coordinates su of the vector S are given by Eq.11. We see here that the principle

of FB can be decomposed into two steps corresponding respectively to the sum over index

v and the sum over index u. Actually, the second sum corresponds to the projection of the

columns of matrix A on the characteristic space of single scattering generated by the vector

S, as seen in Sec.IV B. Thus, the SSF constitutes one of the two steps of FB.

Now, one can try to combine the SSF with FB. We can express the image IF
l (T, f) that

we would obtain from the filtered matrix KF. It can be deduced from Eq.A3, replacing auv

by the filtered elements aF
uv,

IF
l (T, f) =

∣
∣
∣
∣
∣

√
L

∑

v

exp

{

−j
k

2R

[(

yv −
√

2xl

)2
]}

∑

u

s∗ua
F
uv

∣
∣
∣
∣
∣

(A4)

Using the expression of aF
uv given in Eq.17, IF

l (T, f) becomes:

IF
l (T, f) =

∣
∣
∣
∣
∣

√
L

∑

v

exp

{

−j
k

2R

[(

yv −
√

2xl

)2
]}

∑

u

s∗ua
S
uv

+
√

L
∑

v

exp

{

−j
k

2R

[(

yv −
√

2xl

)2
]}

∑

u

s∗usu

L∑

u′=1

s∗u′aM
u′v

∣
∣
∣
∣
∣

As the vector S is normalized, we have
∑

u s∗usu = 1 and the latter equation can be simplified

into

IF
l (T, f) =

∣
∣
∣
∣
∣

√
L

∑

v

exp

{

−j
k

2R

[(

yv −
√

2xl

)2
]}

∑

u

s∗u
[
aS

uv + aM
uv

]

∣
∣
∣
∣
∣

(A5)

=

∣
∣
∣
∣
∣

√
L

∑

v

exp

{

−j
k

2R

[(

yv −
√

2xl

)2
]}

∑

u

s∗uauv

∣
∣
∣
∣
∣

(A6)

This equation is strictly identical to Eq.A3:

Il(T, f) = IF
l (T, f) (A7)

which means that the images built from the raw data (matrix K) or the filtered data (matrix

KF) are identical. There is no interest in combining the SSF with FB.

APPENDIX B: DETECTION CONDITION IN PRESENCE OF MULTIPLE

SCATTERING

The aim of this appendix is to predict the performances of each technique (FB, DORT

alone, DORT combined with the SSF) in detecting a target hidden behind a diffusive slab.
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Let σ2
T and σ2

M be the power of signals associated with the target and the multiple scattering

contribution. The performance of each technique is assessed by determining the signal-to-

noise ratio σT

σM
above which the target will be detected.

We consider a time of flight T corresponding to the arrival time for the target echo. The

measured matrix K0 (of dimension M × M) can be decomposed as:

K0 = KT + KM (B1)

KM corresponds to the multiple scattering contribution; its coefficients are assumed to be

gaussian complex random variables, identically and independently distributed, of variance

σ2
M and with zero mean. Because of spatial reciprocity, KM is symmetric. KT is associated

with the target echo. Its coefficients can be expressed as :

kT
ij = σT exp

[

jk
(xi − XT )2

2RT

]

exp

[

jk
(xj − XT )2

2RT

]

(B2)

where (XT , RT ) are the coordinates of the target. The aberration effects generated by the

diffusive slab are neglected.

1. Focused beamforming

The coordinates of the image I are given by :

Il =

∣
∣
∣
∣
∣

∑

i

∑

j

k0
ij exp

{

−j
k

2RT

[
(xi − xl)

2 + (xj − xl)
2]

}
∣
∣
∣
∣
∣

(B3)
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Let us express the intensity of the image, using the decomposition k0
ij = kT

ij + kM
ij :

I2
l =

∑

p,q,r,s

kT
pqk

T∗
rs exp

{

− jk

2RT

[
(xp − xl)

2 − (xr − xl)
2 + (xs − xl)

2 − (xt − xl)
2]

}

︸ ︷︷ ︸

[IT
l ]

2

(B4)

+
∑

p,q,r,s

kM
pq k

M∗
rs exp

{

− jk

2RT

[
(xp − xl)

2 − (xr − xl)
2 + (xs − xl)

2 − (xt − xl)
2]

}

︸ ︷︷ ︸

[IM
l ]

2

(B5)

+
∑

p,q,r,s

kT
pqk

M∗
rs exp

{

− jk

2RT

[
(xp − xl)

2 − (xr − xl)
2 + (xs − xl)

2 − (xt − xl)
2]

}

︸ ︷︷ ︸

IT
l

IM∗

l

(B6)

+
∑

p,q,r,s

kM
pq k

T∗
rs exp

{

− jk

2RT

[
(xp − xl)

2 − (xr − xl)
2 + (xs − xl)

2 − (xt − xl)
2]

}

︸ ︷︷ ︸

IM
l

IT∗

l

(B7)

By injecting the expression of kT
ij into

[
IT
l

]2
(Eq.B4), the intensity of the target peak is:

[
IT
l

]2
= M4σ2

T δ(xl − XT ) (B8)

where δ denotes the Kronecker symbol. The multiple scattering contribution (Eq.B5) results

in an image of speckle whose mean intensity
〈[

IM
l

]2
〉

is given by:

〈[
IM
l

]2
〉

= 2M2σ2
M (B9)

The factor 2 comes from the fact that kM
ij = kM

ji . The third and fourth terms, IT
l IM∗

l and

IM
l IT∗

l , correspond to the interference between the signals associated with the target and

the multiple scattering contribution. These signals are totally decorrelated, hence

〈
IT
l IM∗

l

〉
=

〈
IM
l IT∗

l

〉
= 0 (B10)

In average, the intensity of the echographic image, at the target arrival time, exhibits the

following profile: a peak linked to the target at xl = XT , of intensity M4σ2
T , buried in a

speckle pattern whose mean intensity is 2M2σ2
M .

If the maximum of the image, Imax, is actually linked to the target, then its amplitude

is given by:

Imax ≃ E [Imax] =
√

M4σ2
T + 2M2σ2

M (B11)
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The quadratic mean of the image is:
√
√
√
√ 1

M

M∑

l=1

I2
l ≃

√

M3 (σ2
T + 2σ2

M) (B12)

Upon normalization (Eq.24), Ĩmax is thus given by:

Ĩmax ≃
√

M4σ2
T + 2M2σ2

M
√

M2 (σ2
T + 2σ2

M)
(B13)

At the limit of detection, we can assume that M2σ2
T >> σ2

M >> σ2
T . The validity of this

approximation will be proved a posteriori by the final result. Eq.B13 simplifies into:

Ĩmax ≃ MσT√
2σM

(B14)

As to FB, the detection threshold corresponds to the condition Ĩmax > α, where α is given

by Eq.26 and depends on the PFA γ. Finally, we obtain the following detection criterion:

σT

σM

>
α
√

2

M
(B15)

This condition is reported in Tab.I. It indicates the signal-to-noise ratio σT

σM
above which

the main peak will correspond to the target (with a probability of false alarm γ). Note that

Eq.B15 is only valid for a multiple scattering noise, which is spatially reciprocal. If we had

dealt with an additional noise which does not respect this property, the detection criterion

would be:
σT

σM

>
α

M

2. The DORT method

First, we deal with the classical DORT method, i.e when the SVD is applied directly to

the raw matrix K0. If the first singular value λ0
1 is actually linked to the target echo, then

its expected value is given by [36]:

E
[
λ0

1

]
= MσT

The quadratic mean of singular values is given by [36]:

√

1

M

∑

p=1

[
λ0

p

]2 ≃
√

M (σ2
T + σ2

M)
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Upon normalization(Eq.22), the expected value of λ̃0
1 is thus given by:

E
{

λ̃0
1

}

=

√

M
σ2

T

σ2
T + σ2

M

≃ σT

σM

√
M , for σ2

T << σ2
M

The application of the detection criterion λ̃0
1 > α leads to the following detection condition:

σT

σM

>
α√
M

(B16)

This condition is reported in Tab.I. If we compare it with the one obtained above for FB

(Eq.B15), we see that the DORT method is clearly more sensitive to noise than FB. The

detection criterion varies as M−1/2 for the DORT method, whereas it is M−1 for FB.

The argument is the same for the DORT method applied to KF, except that we have

to take into account the action of the SSF. In Sec.IV B, we have shown that the filtering

of antidiagonals decreases the multiple scattering contribution by a factor
√

M
2

. Thus, the

filtered matrix KF can be decomposed as:

KF = KT + KMF (B17)

The matrix KMF is linked with the residual contribution of multiple scattering. KMF is a

random Hankel matrix whose coefficients have a variance of 2σ2
M/M . The results obtained

for K0 can be applied directly to KF, taking into account the lower variance of multiple

scattering signals. If the first singular value λF
1 is associated to the target echo, then its

expected value is still given by:

E
[
λF

1

]
= MσT

The quadratic mean of singular values is given by :

√

1

M

∑

p=1

[
λF

p

]2
=

√

M

(

σ2
T +

2σ2
M

M

)

Finally, upon normalization (Eq.22), the expected value of λ̃F
1 is given by:

E
{

λ̃F
1

}

=

√

M
σ2

T

σ2
T +

2σ2

M

M

≃ M√
2

σT

σM

, for Mσ2
T << σ2

M

The validity of the approximation Mσ2
T << σ2

M will be proved a posteriori by the final

result. The application of the detection criterion λ̃F
1 > α leads to the following detection

condition:
σT

σM

>
α
√

2

M
(B18)

42



This condition is reported in Tab.I. If we compare it with the one obtained for FB (Eq.B15)

and for the classical DORT method (Eq.B16) , we see that the SSF improves the detection

condition by a factor
√

M compared to the DORT method and hence, reaches the level

of performance of FB. Actually, it is even slightly better than FB since the threshold α

is inferior for DORT applied to KF. This approach succeeds in detecting the target for

higher noise-to-signal ratios, compared to FB. This better performance is reinforced by the

robustness of the SSF to aberration (see Sec.VII), which has been neglected in this Appendix.

APPENDIX C: EFFECT OF THE SSF ON ABERRATION

This appendix deals with the effect of the SSF on aberration. More particularly, we

want to express the coefficients kF
lm of the filtered matrix KF, when aberration exists. The

coefficients of matrix K are given by (Eq.29):

kij(f) = dij(f) exp

[

jk
(xi − XT )2

2RT

]

exp

[

jk
(xj − XT )2

2RT

]

The coefficients dij form the distortion matrix D. The first step of the SSF consists in the

rotation of data described in Sec.IV A. It results in two antidiagonal matrices A1 et A2

(Eqs.6 & 7). Let AD

1
et AD

2
be the two antidiagonal matrices built from matrix D according

the same process of Sec. IV A:

AD

1
=

[
aD

1uv

]
of dimension (2M − 1) × (2M − 1),

such that aD
1 [u, v] = d[u + v − 1, v − u + 2M − 1] (C1)

AD

2
=

[
aD

2uv

]
of dimension (2M − 2) × (2M − 2),

such that aD
2 [u, v] = d[u + v, v − u + 2M − 1] (C2)

From now on, we will call indifferently A, the matrices A1 and A2, and AD, the matrices

AD

1
and AD

2
.

The coefficients of A can be expressed with the coefficients of AD:

auv = aD
uv exp

[

jk
y2

u

2RT

]

exp

[

jk

(
yv −

√
2XT

)2

2RT

]

(C3)

with

yu =
xi − xj√

2
et yv =

xi + xj√
2
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The next step of the filter consists in projecting the columns of A along the characteristic

space of single scattering, generated by the vector S whose coordinates are:

su = exp

[

jk
y2

u

2RT

]

L−1/2

The coordinates of the vector P, result of this projection (Eq.12), can be expressed as :

pv =
L∑

u=1

s∗uauv

=
1√
L

L∑

u=1

exp

[

−jk
y2

u

2RT

]

aD
uv exp

[

jk
y2

u

2RT

]

exp

[

jk

(
yv −

√
2XT

)2

2RT

]

=

[

1√
L

L∑

u=1

aD
uv

]

exp

[

jk

(
yv −

√
2XT

)2

2RT

]

The filtered matrix AF is finally obtained by multiplying the column vector S with the line

vector P (Eq.16). As a result, the coefficients aF
uv are given by:

aF
uv = supv

aF
uv =

[

1

L

L∑

u=1

aD
uv

]

exp

[

jk
y2

u

2RT

]

exp

[

jk

(
yv −

√
2XT

)2

2RT

]

(C4)

If we compare the expressions of auv (Eq.C3) and aF
uv (Eq.C4), we see that the SSF averages

the distortion coefficients along each column of A. This average corresponds to the term
[

1
L

∑L
u=1 aD

uv

]

in Eq.C4.

Afterwards, two matrices AF

1
and AF

2
(containing the filtered antidiagonals) are obtained.

The last step consists in constructing the filtered matrix KF, as described in Sec.IV C :

if (l − m)/2 is an integer

then, kF [l,m] = aF
1 [(l − m)/2 + M, (l + m)/2] (C5)

if (l − m)/2 is not an integer

then, kF [l,m] = aF
2 [(l − m − 1)/2 + M, (l + m − 1)/2] (C6)

By injecting Eq.C4 into the two last equations and reversing the change of coordinates, we

obtain:

kF [l,m] = el+m−1 exp

[

jk
(xl − XT )2

2RT

]

exp

[

jk
(xm − XT )2

2RT

]

(C7)
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where the coefficients el+m−1 are defined as:

if (l − m)/2 is an integer,

then, el+m−1 =
1

2M − 1

2M−1∑

u=1

aD
1 [u, (l + m)/2] (C8)

if (l − m)/2 is not an integer,

then, el+m−1 =
1

2M − 2

2M−2∑

u=1

aD
2 [u, (l + m − 1)/2] (C9)

We can finally express coefficients ev as a function of distortion coefficients dij, using Eqs.C1

& C2 :

if v is an odd number,

then, ev =
1

2M − 1

2M−1∑

u=1

d

[

u +
v − 1

2
,
v − 1

2
− u + 2M − 1

]

(C10)

if v is an even number,

then, ev =
1

2M − 2

2M−2∑

u=1

d
[

u +
v

2
,
v

2
− u + 2M − 1

]

(C11)

Hence, the coefficients ev correspond to the average of distortion coefficients along each

antidiagonal of the matrix D. The latter equations can be rewritten as:

if v is an odd number,

then, ev =

〈

d

[

u +
v − 1

2
,
v − 1

2
− u + 2M − 1

]〉

u=1,...,2M−1

(C12)

if v is an even number,

then, ev =
〈

d
[

u +
v

2
,
v

2
− u + 2M − 1

]〉

u=1,...,2M−2
(C13)

where the symbol < . > denotes an average over the variable in the subsript.

APPENDIX D: DETECTION CONDITION IN PRESENCE OF ABERRATION

In Sec.VII, we have already shown that the filtered KF can de decomposed as follows:

KF =
〈
KF

〉

︸ ︷︷ ︸

Matrix of rank 1

+ ∆KF

︸ ︷︷ ︸

Random Hankel matrix
〈
KF

〉
is the mean of KF, its coefficients are given by:

〈
kF

lm(f)
〉

= 〈el+m−1(f)〉 exp

[

jk
(xl − XT )2

2RT

]

exp

[

jk
(xm − XT )2

2RT

]

.
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The norm of its entries is uniform and equal to the mean of the distortion coefficients, 〈ep〉.
The matrix

〈
KF

〉
is of rank 1.

∆KF corresponds to a perturbation(not necessary small) linked with the fluctuations of

distortion coefficients ep. Its coefficients are given by:

δkF
lm(f) = [el+m−1(f) − 〈el+m−1(f)〉] exp

[

jk
(xl − XT )2

2RT

]

exp

[

jk
(xm − XT )2

2RT

]

.

The coefficients δkF
lm(f) are random variables whose standard deviation is std [ep]. As seen

previously, the matrix ∆KF displays the same statistical behavior as a random Hankel

matrix.

The aim of this appendix is to determine the ratio |〈ep〉| /std [ep], above which the SVD

will succeed in extracting the matrix
〈
KF

〉
along the first singular space. To that aim, we

will use RMT once again.

We will rely on the same kind of argument as in Appendix B 2. Indeed, an analogy

can be made with the detection condition found for the signal-to-noise ratio σT /σM . The

signal amplitude σT corresponds here to the mean value of distortion coefficients |〈ep〉|. The

standard deviation of ep plays the role of “noise”: std [ep] ⇔ σM . Note that the matrix KF

we consider here is of size M
2
× M

2
. If the first singular space of KF corresponds actually to

the “non distorted” matrix
〈
KF

〉
, then the expected value of λF

1 is given by (see Appendix

B 2):

E
[
λF

1

]
=

M

2
|〈ep〉| (D1)

The quadratic mean of singular values is given by (see Appendix B 2):

√

1

M/2

∑

p=1

[
λF

p

]2 ≃
√

M

2

(
|〈ep〉|2 + var [ep]

)
(D2)

Upon normalization (Eq.22), the expected value of λ̃F
1 is thus given by:

E
{

λ̃F
1

}

=

√

M

2

|〈ep〉|2

|〈ep〉|2 + var [ep]
≃ |〈ep〉|

std [ep]

√

M

2
, for |〈ep〉|2 << var [ep] (D3)

The validity of this approximation |〈ep〉|2 << var [ep] will be proved a posteriori by the final

result. As KF is a Hankel matrix, the detection criterion is λ̃F
1 > α. It leads to the final

detection condition :
|〈ep〉|

std [ep]
>

α
√

M/2
(D4)

46



[1] B. Angelsen, Ultrasound Imaging. Waves, Signals and Signal Processing. (Emantec, Trond-

heim, Norway, 2000).

[2] T.-K. Chan, Y. Kuga, and A. Ishimaru, Waves Random Media 7, 457 (1997).

[3] G. Zhang, L. Tsang, and Y. Kuga, IEEE Trans. Geosci. Remote Sens. 35, 444 (1997).

[4] G. Zhang and L. Tsang, IEEE Trans. Geosci. Remote Sens. 36, 1485 (1998).

[5] T.-K. Chan, Y. Kuga, and A. Ishimaru, IEEE Trans. Geosci. Remote Sens. 37, 2192 (1999).

[6] L. Borcea, G. Papanicolaou, and C. Tsogka, Inverse Problems 21, 1419 (2005).

[7] L. Borcea, G. Papanicolaou, and C. Tsogka, Inverse Problems 22, 1405 (2006).

[8] A. Ishimaru, S. Jaruwatanadilok, and Y. Kuga, Waves Random Complex Media 16, 509

(2006).

[9] G. Bal and O. Pinaud, Inverse problems 21, 1593 (2005).

[10] G. Bal, L. Carin, D. Liu, and K. Ren, Inverse Problems 23, 2527 (2007).

[11] J. Garnier and K. Sølna, Inverse Problems 24, 055001 (2008).

[12] P. Norville and W. R. Scott, J. Acoust. Soc. Am. 118, 735 (2005).

[13] S. Feng and D. Sornette, J. Acoust. Soc. Am. 90, 1742 (1991).

[14] V. Kozlov, A. Samokrutov, and V. Shevaldykin, Nondestr. Test. Eval. 13, 73 (1997).

[15] J.-M. Bordier, M. Fink, A. le Brun, and F. Cohen-Tenoudji, Proceedings of the 1991 Ultra-

sonics Symposium 2, 803 (1991).

[16] B. Karamata, M. Laubscher, M. Leutenegger, S. Bourquin, T. Lasser, and P. Lambelet, J.

Opt. Soc. Am. A 22, 1369 (2005).

[17] B. Karamata, M. Leutenegger, M. Laubscher, S. Bourquin, T. Lasser, and P. Lambelet, J.

Opt. Soc. Am. A 22, 1380 (2005).

[18] M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, Appl. Opt. 34, 5699 (1995).

[19] F. Martini, C. J. Bean, S. Dolan, and D. Marsan, Geophys. J. Int. 145, 423 (2001).

[20] S. A. Shapiro and S. Treitel, Phys. Earth Planet. Inter. 104, 147 (1997).

[21] T. Nelson, D. Pretorius, A. Hull, M. Riccabona, M. Sklansky, and G. James, Ultrasound

Obstet Gynecol. 16, 374 (2000).

[22] W. R. Hedrick and C. L. Peterson, Journal of Diagnostic Medical Sonography 11, 300 (1995).
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