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CONSTRUCTION OF THE CHANNEL BASIS

The first part of this section describes the flexural modes
supported by the homogeneous plate and the associated
wavenumbers. In a second part, we describe the transforma-
tion from the point-to-point basis in which measurements
are performed and the channel basis that is built from the
homogeneous plate eigenmodes.

The flexural modes are derived using the thin plate approx-
imation [1, 2] since the wavelengthλ and the widthW of
the waveguide are much greater than its thicknessd. In this
limit, the out-of-plane component of the vibration,w(x, y),
is constant over the plate thickness. It satisfies the following
equation of motion [1, 2]

ρd
∂2w

∂t2
+D∇4

⊥w = 0 (S1)

with ∇⊥ the horizontal gradient operator,ρ is the material
density andD is the flexural rigidity which can be expressed
as

D =
Ed3

12(1− ν2)

with E the Young modulus andν the Poisson ratio. As
the equation of motion (Eq.S1) is fourth order, there ex-
ists, at each pulsationω, two sets of modes,w(e)(y)eikx and
w(o)(y)eikx, that are either even or odd with respect to the
y−axis. The application of stress-free boundary conditions
at y = ±W/2 leads to the following expressions for these
modes [2]
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where χp =
√
k2 +K2, χm =

√
k2 −K2, K2 =

ω
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ρd/D and A a normalization constant such that
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= 1. The dispersion relationsω(k)

can be derived by solving the following transcendental equa-
tions [1]
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for even modes, and

[

K2 + (1− ν2)k2
]

χm coth (χmW/2) =
[

K2 − (1− ν2)k2
]

χp coth (χpW/2) (S5)

for odd modes. It yields the wavenumberk
(o,e)
i associated to

each modew(o,e)
i at a pulsationω.
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FIG. S1: Dispersion curves of the first four flexural modes for even
(a) and odd (b) components. The wavenumberk is scaled by the
widthW .

Fig. S1 displays the dispersion curves obtained for even
and odd modes in our experimental conditions. The
y−dependence of the first four even and odd eigenmodes at
f = 0.36 MHz are shown in Fig.S2. Note that, unlike a clas-
sical wave-guide, the flexural modes of an elastic plate are not
simple sinusoids but display evanescent components due to
edge effects at the boundaries of the plate.
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FIG. S2:y−dependence of the first four even (a) and odd (b) flexural
eigenmodes atf = 0.36 MHz.

Cross and Lifshiftz [1] also derived the fluxφ carried by the
flexural modes through an homogeneous thin plate

φ = kWI(ν) (S6)

whereI(ν) a constant that solely depends on the Poisson ratio
ν. φ is directly proportional to the wavenumberk. Hence,
one can force each modew(o,e)

i to carry the same energy



2

flux by renormalizing each mode by the square root of its
wavenumberk(o,e)i .

Now that the eigenmodes of the plate have been derived,
one can define the transformation matrixp from the point-to-
point basis to the channel basis.p is of dimensionN ×M . Its
elements correspond to the values of theN eigenmodes taken
at theM positionsyi where the field is measured. Each mode
is normalized by the square root of its wavenumber such that
each of them carries the same energy flux.p is thus given by

p =
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From the reflection/transmission matrices measured in the
point-to-point basis (rp, tp, r′p, t′p), one can deduce the re-
flection/transmission matrices in the channel basis (rc, tc, r′c,
t′c) through the following matrix product

rc = p× rp × pT (S8)

r′c = p× r′p × pT (S9)

tc = p× tp × pT (S10)

t′c = p× t′p × pT (S11)

TheS-matrix can be finally deduced in the properly defined
channel basis,

S =

(

rc t′c
tc r′c

)

(S12)

ORIGINS AND MAGNITUDE OF THE EXPERIMENTAL
NOISE

In this section, we first derive the magnitude of noise in
the experiment and then account for its various origins and its
nature.

The SNR in our measurements has been estimated as fol-
lows. In theory, reciprocity implies the strict equalitiesrij =
rji andr′ij = r′ji for all the elements of the reflection matri-
ces and the equalitytij = t′ji for all the elements of transmis-
sion matrices. Due to noise, these equalities are not strictly
checked and, by comparing thesupposedreciprocal elements,

one can estimate the SNR in the measurements:

SNR = −1

4
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where the symbol〈· · · 〉 denotes an average over the indices in
the subscript. Following this method, the experimental SNR
has been estimated at 8.5 dB, that is to say we have to deal
with noise fluctuations of 14% in intensity.

We now investigate the various origins of noise in our ex-
periment. Fig.S3(a) displays a set of 100 impulse responses
for the same source/receiver position. Each signal is averaged
over 128 laser shots as for the measurement of theS-matrix.
We have chosen to reproduce 100 times the experiment be-
cause each point is used 100 times as a source in the mea-
surement of theS-matrix. Hence, we are exactly in the same
conditions. In Fig.S3(a), the first part of the signals (from
-50 µs to -10µs) corresponds to electronic additive noise.
The second part (from -10µs to +10µs) corresponds to the
source signals. A zoom on this part of the signals is plotted
in Fig. S3(b). At last, the third part (from +10µs to +120µs)
corresponds to the signals reflected by the disordered slab.
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FIG. S3: (a) Set of 100 impulse responses measured in the case of an
excitation and a detection at the same point. The signals have been
filtered over the 0.3-0.4 MHz bandwidth (b) Zoom on the emission
signals highlighting the fluctuations of the thermo-elastic conversion
efficiency.

• The first source of noise comes from the laser-induced de-
formation of the plate surface. To obtain a satisfying signal-
to-noise ratio, we actually work close to the ablation thresh-
old [3]. The slight change of the surface state after each laser
shot leads to fluctuations in the thermo-elastic conversionef-
ficiency [see Fig.S3(b)]. It manifests itself as a multiplicative
noise of 1% in intensity.
• The second source of noise comes from long-term laser

power fluctuations. These fluctuations have been measured
with a power meter and account for a multiplicative noise of
1.5% in intensity over the time of the experiment (20 hours).
• The third source of noise is the electronic additive noise

diplayed by Fig.S3(a). It accounts for an additive noise of 5%
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in reflection and 10% in transmission since the transmitted in-
tensity is about two times smaller than the reflected one in our
experiment. One can say that we could have reduced this addi-
tive noise by more averaging. However, it would have implied
more laser shots at each source point, hence more fluctuations
in the thermo-elastic conversion efficiency. Thus, we had to
make the best compromise between this electronic additive
noise and the multiplicative noise due to surface damaging.
• At last, the remaining source of noise comes from a mis-

calibration of the heterodyne interferometer at few pointsof
measurements (4 points over 100): the specular reflection of
light on the plate can be deteriorated by its roughness and bya
slight bending near its edges induced by the cutting tool. This
calibration issue manifests itself as a multiplicative noise (4%
in intensity) in theS−matrix once projected in the channel
basis.

NORMALIZATION OF S: HOW TO RETRIEVE THE OPEN
CHANNELS IN PRESENCE OF NOISE?

In this section, we show, by means of a simple numeri-
cal simulation, how the normalization ofS performed in the
accompanying Letter allows to retrieve the open channels in
presence ofboth multiplicative and additive noise.

We have numerically generated 1000 realizations of a uni-
tary symmetric random matrixSo of dimension2N × 2N
with a conductance similar to the one measured experimen-
tally (g ∼ 8). As expected, the mean distribution of the trans-
mission eigenvaluesTo (not shown here) follows the bimodal
law (Eq.3 of the accompanying Letter). Then, experimental
noise is simulated by generating two random matricesN and
N′. N accounts for multiplicative noise: its elements are real
gaussian random variables with zero mean.N′ accounts for
additive noise: its elements are circularly symmetric complex
gaussian random variables with zero mean. Anoisyscattering
matrixS is then obtained, such that

S = So · (I+ αMN) + αAN
′ (S13)

with I, the2N × 2N identity matrix. The constantsαM and
αA are tuned such that the signal-to-noise ratio (SNR) is close
to the experimental one (SNR∼ 8.5 dB) and such that the
respective weight of multiplicative and additive noise is the
same as in experiment. Note that the results would be similar
for other ratios between multiplicative and additive noise.

The matrixS of Eq.S13displays the same statistical prop-
erties as the experimental one. The singular value decompo-
sition of the transmission matrixt is then performed,

t = u
√
T v† (S14)

u and v are unitary matrices of dimensionN × N
whose columns,ui and vi, correspond to the transmission
eigenchannels at the input and output, respectively.T =
diag(T1, . . . , TN ) is a diagonal matrix containing theN trans-
mission eigenvalues oftt†. Their mean distributionρ(T ) is
computed by averaging their histogram over the whole set of
realizations ofS. The result is shown in Fig.4(a) and com-
pared to the expected bimodal law. As in our experiment,

noise breaks the unitarity of theS−matrix and one obtains
unphysical transmission eigenvalues superior to 1. However,
here, unlike in the experiment, we have access to thetrue
transmission matrixto. Hence, one can compute thetrue
transmission coefficients,T ′

i , associated to theith input eigen-
channelui,

T ′
i = u

†
i tot

†
oui (S15)

Their mean distributionρ(T ′) is obtained by averaging
their histogram over the whole set of realizations ofS. The
result is shown in Fig.4(b) and compared to the bimodal
law. Althoughρ(T ′) still displays a bimodal lineshape, the
peak corresponding to open channels is repelled around
T ′ ∼ 0.8. This confirms that noise in theS-matrix prevents
from addressing fully open channels. This is in agreement
with the wave-field associated to the open eigenchannel
deduced from the measuredS−matrix displayed in Fig. 3(c)
of the accompanying letter. This channel is actually not fully
transmitted across the scattering medium [see Fig. 3(g) of the
accompanying letter].

We now investigate numerically the effect of the normal-
ization of the measuredS-matrix proposed in the paper. The
eigenvalues of thenoisy scattering matrixS are normalized
as prescribed by Eq.2 of the accompanying Letter. From the
normalized scattering matrix̂S, one can extract a corrected
transmission matrix̂t. Its singular value decomposition can
be performed

t̂ = û

√

T̂ v̂† (S16)

û andv̂ are unitary matrices whose columns,ûi andv̂i, corre-
spond to the transmission eigenchannels at the input and out-

put, respectively.T̂ = diag
(

T̂1, . . . , T̂N

)

is a diagonal ma-

trix containing theN transmission eigenvalues oft̂t̂†. Their
mean distribution̂ρ(T̂ ) is computed by averaging their his-
togram over the whole set of realizations ofŜ. ρ̂(T̂ ) closely
follows the bimodal law [see Fig.S1(c)], as already pointed
out with the normalized experimentalŜ−matrix in the accom-
panying Letter. However, one could claim that these transmis-
sion eigenvalues have not any physical meaning and do not
represent thetrue transmission coefficients as the unitarity of
Ŝ is forced. To refute this argument, one can compute thetrue
transmission coefficient,̂T ′

i , associated to theith input eigen-
channel̂ui

T̂ ′
i = û

†
i tot

†
oûi (S17)

Their mean distribution̂ρ(T̂ ′) is shown in Fig.4(d). ρ̂(T̂ ′)
closely follows the bimodal law. The comparison withρ(T ′)
(Fig. 4(b)) illustrates how the normalization ofS allows to re-
trieve almost completely the open eigenchannels. The maxi-
mumtrue transmission coefficient is here of 97.5%. This is in
agreement with the wave-field associated to the open eigen-
channel deduced from the measuredS−matrix displayed in
Fig. 3(d) of the accompanying letter. This channel was shown
to be almost fully transmitted across the scattering medium
[see Fig. 3(g) of the accompanying letter].
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FIG. S4: Mean distributions,ρ(T ) (a),ρ(T ′) (b), ρ̂(T̂ ) (c) andρ̂(T̂ ′)
(d), obtained by averaging over the whole set of numerical realiza-
tions ofS for a SNR of 8.5 dB (analogous to the experimental SNR).
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FIG. S5: True transmission coefficients,T ′ (blue circles) and̂T ′ (red
squares), vs transmission eigenvalues,T and T̂ , respectively. The
line of unity slope is shown for comparison (black continuous line).
The T̂ ′ vs T̂ cloud of points are fitted with a slope of 0.93 (black
dashed line).

Fig. S5 displays the true transmission coefficientsT ′

and T̂ ′ versus the transmission eigenvaluesT and T̂ . Not
surprisingly, the transmission eigenvaluesT deduced from
thenoisyS−matrix do not match the associated transmission
coefficientsT ′, especially for large transmission eigenvalues.
Interestingly, the transmission eigenvaluesT̂ deduced from
the normalizedŜ−matrix are strongly correlated to the
associated transmission coefficientsT ′ since the associated
cloud of points is close to the line of slope 1 in Fig.S5.
This proves again the validity of theS−matrix normalization
that allows to retrieve the open eigenchannels across the
disordered medium in presence of noise and obtain with a
good precision the associated transmission coefficients (error
of 7%).

MEASUREMENT OF THE WAVE-FIELD ASSOCIATED TO
EACH EIGENCHANNEL

This section describes the experimental procedure followed
to measure the wave-field associated to each eigenchannel.
Impulse responses are measured between the line of sources
and a grid of points that maps the scattering medium, follow-
ing the same procedure used for the measurement of theS-
matrix. The grid pitch is 1 mm. The whole set of impulse re-
sponses forms a transmission matrixk(t). A temporal Fourier
transform ofk is performed. The wave-field associated to an
incident plane wave is obtained by performing the product be-
tween the eigenvector[1 · · · 1] and the matrixk(f). For the
wave-field associated to each eigenchannel, the columns of
k are first decomposed in the channel basis. The wave-field
associated to an eigenchannel corresponds to the product be-
tween the corresponding eigenvectorui of tt† and the matrix
k.
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