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CONSTRUCTION OF THE CHANNEL BASIS for even modes, and

The first part of this section describes the flexural modes [K” + (1 — v*)k?] xom coth (xm W/2) =
supported by the homogeneous plate and the associated [K? — (1 —1*)k?] X, coth (x,W/2)  (S5)
wavenumbers. In a second part, we describe the transforma-

tion from the point-to-point basis in which measurementsy, oqd modes. It yields the wavenumtiéf”e) associated to
are performed and the channel basis that is built from the (0,€)

: each modev,;”"’ at a pulsation.
homogeneous plate eigenmodes. ¢
The flexural modes are derived using the thin plate approx-a b)

imation [1, 2] since the wavelength and the widthi? of 4600 4600
the waveguide are much greater than its thicknésk this 4400 4400
limit, the out-of-plane component of the vibration(z,y),  ~ .., ~_ 4200
is constant over the plate thickness. It satisfies the fatigw §4000 2 4000
equation of motionT, 2] . 3800

d32w DU 4 — s1 2600 3600

1% W + DV LW = 0 ( ) 0.32 fregf:ncy W 0.36 0.32 ﬁegf:ncy W 0.36

with V_ the horizontal gradient operatqgs,is the material

density andD is the flexural rigidity which can be expressed F!C- Si: Dispersion curves of the first four flexural modes fomeve
as y giaity P (a) and odd (b) components. The wavenumkes scaled by the

width .

_ Ed

12(1 —v?) Fig. S1 displays the dispersion curves obtained for even
with E the Young modulus and the Poisson ratio. As and odd modes in our experimental conditions. The
the equation of motion (EgSY) is fourth order, there ex- y—dependence of the first four even and odd eigenmodes at
ists, at each pulsation, two sets of modesy(®) (y)e’** and  f = 0.36 MHz are shown in FigS2 Note that, unlike a clas-
w' (y)et*, that are either even or odd with respect to thesical wave-guide, the flexural modes of an elastic plate are n
y—axis. The application of stress-free boundary conditionssimple sinusoids but display evanescent components due to
aty = +W/2 leads to the following expressions for these edge effects at the boundaries of the plate.
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K2y — 2 sinh ( 9 ) sinh (xmy) | (S3)  FiG. 52:y—dependence of the first four even (a) and odd (b) flexural
m

eigenmodes af = 0.36 MHz.
where x, = VEk2+ K2, x»m = VK2-K?, K? =
wy/pd/D and A a normalization constant such that Crossand Lifshiftz]] also derived the fluy carried by the

fi’VV[//?Z dy |w(o,e)(y)|2 — 1. The dispersion relations(k) flexural modes through an homogeneous thin plate
can be derived by solving the following transcendental equa ¢ = kWI(v) (S6)
tions [1]

9 N _ where!(v) a constant that solely depends on the Poisson ratio
57+ (1= vA)R?] xom timh O W/2) = v. ¢ is directly proportional to the wavenumbér Hence,

2 2\1.2
[K? — (1= v*)k?] xp tanh (x,W/2), (S4)  gne can force each mode!” to carry the same energy



flux by renormalizing each mode by the square root of itsone can estimate the SNR in the measurements:

wavenumber:!”. 2
<\7’z‘j—7"jz'| > o
{95}

i . SNR = 1 10log;q X
Now that the eigenmodes of the plate have been derived, 4 <|rij\2>
one can define the transformation magsitrom the point-to- {()li#7}
point basis to the channel basgsis of dimensionV x M. Its <|r;j — 7l |2>
elements correspond to the values of i@igenmodes taken +10log;, x - (G5}
at theM positionsy; where the field is measured. Each mode <|7“§j| > -
is normalized by the square root of its wavenumber such that (@l
each of them carries the same energy fipixs thus given by <’tij - t}¢’2> N
+2 x 10logy R
M wi® () o w® (yar) <|tij| >{(zy)}

where the symbo[- - -} denotes an average over the indices in
the subscript. Following this method, the experimental SNR

wil), (1) wd)s (yar) has been estimated at 8.5 dB, that is to say we have to deal
B RV O 57 with noise fluctuations of 14% in intensity.
P= 1w wi® (yur) (S7) We now investigate the various origins of noise in our ex-
ke k() periment. Fig.S3a) displays a set of 100 impulse responses

for the same source/receiver position. Each signal is geera
over 128 laser shots as for the measurement oStheatrix.
= - S We have chosen to reproduce 100 times the experiment be-
L VFEny2 VEnp cause each point is used 100 times as a source in the mea-
surement of th&-matrix. Hence, we are exactly in the same
From the reflection/transmission matrices measured in theonditions. In Fig.S3a), the first part of the signals (from
point-to-point basisi(, tp, ), t.,), one can deduce the re- -50 us to -10 us) corresponds to electronic additive noise.
flection/transmission matrices in the channel basist(., r/,, ~ The second part (from -1fis to +104s) corresponds to the
t..) through the following matrix product source signals. A zoom on this part of the signals is plotted
in Fig. S3b). At last, the third part (from +10s to +120us)
corresponds to the signals reflected by the disordered slab.

re=p XTp X Pp’ (S8)
incident wave
r:: =p X r’p X pT (Sg) 0.02 0.02 ®)
te =p X tp X p’ (S10) oot _oot
te =p Xty xp’ (S11) % o S
3 reflected wave 2
i . . . -0.01 -0.01
The S-matrix can be finally deduced in the properly defined
channel basis, 00%5 0 50 0 00 ) 5 10
time [ps] time [ps]
re t. FIG. S3: (a) Set of 100 impulse responses measured in the case of an
S= te 1. (S12)  excitation and a detection at the same point. The signals have been

filtered over the 0.3-0.4 MHz bandwidth (b) Zoom on the emission
signals highlighting the fluctuations of the thermo-elastic conversion

efficiency.
ORIGINS AND MAGNITUDE OF THE EXPERIMENTAL e The first source of noise comes from the laser-induced de-
NOISE formation of the plate surface. To obtain a satisfying signa

to-noise ratio, we actually work close to the ablation thres
) , , . . .. old [3]. The slight change of the surface state after each laser

In this §ect|on, we first derive the. magmtude Pf, noise '_nshot leads to fluctuations in the thermo-elastic conversfen
the experiment and then account for its various origins &nd i ficiency [see FigSab)]. It manifests itself as a multiplicative
nature. noise of 1% in intensity.

The SNR in our measurements has been estimated as fol- ¢ The second source of noise comes from long-term laser
lows. In theory, reciprocity implies the strict equalities =  power fluctuations. These fluctuations have been measured
;i andrj; = %, for all the elements of the reflection matri- with a power meter and account for a multiplicative noise of
ces and the equality; = ¢/, for all the elements of transmis- 1.5% in intensity over the time of the experiment (20 hours).
sion matrices. Due to noise, these equalities are notlgtrict e The third source of noise is the electronic additive noise
checked and, by comparing teepposedeciprocal elements, diplayed by FigS3@a). It accounts for an additive noise of 5%
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in reflection and 10% in transmission since the transmitted i noise breaks the unitarity of the&—matrix and one obtains
tensity is about two times smaller than the reflected oneiin ouunphysical transmission eigenvalues superior to 1. Howeve
experiment. One can say that we could have reduced this addiere, unlike in the experiment, we have access totithe
tive noise by more averaging. However, it would have impliedtransmission matrix,. Hence, one can compute theie
more laser shots at each source point, hence more fluctsatiotransmission coefficientd}, associated to thé" input eigen-

in the thermo-elastic conversion efficiency. Thus, we had tachanneh;,

make the best compromise between this electronic additive

noise and the multiplicative noise due to surface damaging. T = uiTtotI,Ui (S15)

e At last, the remaining source of noise comes from a mis-_ o ) ) )
calibration of the heterodyne interferometer at few poafts 1 heir mean distributionp(7”) 'is obtained by averaging
measurements (4 points over 100): the specular reflection P€ir histogram over the whole set of realizationsSof The
light on the plate can be deteriorated by its roughness aiad by €SUlt iS shown in Figa(b) and compared to the bimodal
slight bending near its edges induced by the cutting toais Th 12W: Although p(7”) still displays a bimodal lineshape, the

calibration issue manifests itself as a multiplicativeseof4% p(/aak corresponding to open channels is repelled around
in intensity) in theS—matrix once projected in the channel £ ~ 0.8. This confirms that noise in th8-matrix prevents
from addressing fully open channels. This is in agreement

basis.
with the wave-field associated to the open eigenchannel
deduced from the measur&d-matrix displayed in Fig. 3(c)
NORMALIZATION OF S: HOW TO RETRIEVE THE OPEN of the accompanying letter. This channel is actually ndt/ful

CHANNELS IN PRESENCE OF NOISE? transmitted across the scattering medium [see Fig. 3(djeof t
accompanying letter].
In this section, we show, by means of a simple numeri-

cal simulation, how the normalization &f performed in the ~ We now investigate numerically the effect of the normal-
accompanying Letter allows to retrieve the open channels ifzation of the measurefi-matrix proposed in the paper. The
presence oboth multiplicative and additive noise eigenvalues of th@oisy scattering matrixS are normalized

We have numerically generated 1000 realizations of a unias prescribed by Eq.2 of the accompanying Letter. From the
tary symmetric random matri$, of dimension2NV x 2N  normalized scattering matris, one can extract a corrected
with a conductance similar to the one measured experimeritansmission matrix. Its singular value decomposition can
tally (g ~ 8). As expected, the mean distribution of the trans-be performed
mission eigenvalues, (not shown here) follows the bimodal _
law (Eq.3 of the accompanying Letter). Then, experimental t= ﬁ\/7i\“fT (S16)
noise is simulated by generating two random matriseand
N’. N accounts for multiplicative noise: its elements are reallt @nd¥ are unitary matrices whose columiis andvs;, corre-
gaussian random variables with zero mea¥. accounts for spond to the transmission eigenchannels at the input anrd out
additive noise: its elements are circularly symmetric ctexp  put, respectively.7 = diag (T}, o ,TN) is a diagonal ma-
gaussian random variables with zero meamaofsyscattering

AU : trix containing theN transmission eigenvalues tE". Their
matrix S is then obtained, such that

mean distributionp(7") is computed by averaging their his-
/ togram over the whole set of realizations$f 5(1") closel
§=So- (I+ anlN) +aaN (S13) foﬁows the bimodal law [see FigS1(c)], as alrpe(ad)y point)éd

with I, the2N' x 2N identity matrix. The constants,; and out with the normalized experimenﬁi—matrix in the accom-
a4 are tuned such that the signal-to-noise ratio (SNR) is clos@anying Letter. However, one could claim that these trassmi
to the experimental one (SNR 8.5 dB) and such that the Sion eigenvalues have not any physical meaning and do not
respective We|ght of mu|tip|icative and additive noisehsg t I;epresent thérue transmission coefficients as the Unitarity of
same as in experiment. Note that the results would be similap is forced. To refute this argument, one can computertie
for other ratios between multiplicative and additive noise  transmission coefficient,, associated to thé" input eigen-

The matrixS of EqS13displays the same statistical prop- channeli;
erties as the experimental one. The singular value decompo-

i, . L 7 oaTe it
sition of the transmission matrixis then performed, Ti = 0itoto Uy (817)

t — u/Tv (S14)  Their mean distributionp(7") is shown in Fig.4(d). H(7")
closely follows the bimodal law. The comparison wijtfil”)

u and v are unitary matrices of dimensiodv x N (Fig. 4(b)) illustrates how the normalization &fallows to re-
whose columnsu; and v;, correspond to the transmission trieve almost completely the open eigenchannels. The maxi-
eigenchannels at the input and output, respectively—= mumtrue transmission coefficient is here of 97.5%. Thisisin
diag(71, ..., Ty)is adiagonal matrix containing thé trans-  agreement with the wave-field associated to the open eigen-
mission eigenvalues aft’. Their mean distributiop(T) is  channel deduced from the measu®dmatrix displayed in
computed by averaging their histogram over the whole set oFig. 3(d) of the accompanying letter. This channel was shown
realizations ofS. The result is shown in Figl(a)and com- to be almost fully transmitted across the scattering medium
pared to the expected bimodal law. As in our experiment[see Fig. 3(g) of the accompanying letter].



FIG. S4: Mean distributiongy(T) (a), p(T") (b), p(T") (c) andp(1")
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and7” versus the transmission eigenvaliBsand 7. Not
surprisingly, the transmission eigenvalu€sdeduced from
thenoisyS—matrix do not match the associated transmission
coefficientsT”, especially for large transmission eigenvalues.
Interestingly, the transmission eigenvaliBsdeduced from
the normalizedS—matrix are strongly correlated to the
associated transmission coefficieflts since the associated
cloud of points is close to the line of slope 1 in Fig5
This proves again the validity of t&—matrix normalization
that allows to retrieve the open eigenchannels across the
disordered medium in presence of noise and obtain with a
good precision the associated transmission coefficientsr(e

of 7%).

MEASUREMENT OF THE WAVE-FIELD ASSOCIATED TO
EACH EIGENCHANNEL

(d), obtained by averaging over the whole set of numerical realiza-

tions of S for a SNR of 8.5 dB (analogous to the experimental SNR).
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This section describes the experimental procedure followe
to measure the wave-field associated to each eigenchannel.
Impulse responses are measured between the line of sources
and a grid of points that maps the scattering medium, follow-
ing the same procedure used for the measurement ds-the
matrix. The grid pitch is 1 mm. The whole set of impulse re-
sponses forms a transmission makix). A temporal Fourier
transform ofk is performed. The wave-field associated to an
incident plane wave is obtained by performing the produet be
tween the eigenvectdt - - - 1] and the matrixk(f). For the
wave-field associated to each eigenchannel, the columns of
k are first decomposed in the channel basis. The wave-field
associated to an eigenchannel corresponds to the product be
tween the corresponding eigenvecigrof tt and the matrix
k.

Transmission eigenvalues

FIG. S5: True transmission coefficients, (blue circles) and” (red
squares), vs transmission eigenvalugsand 7', respectively. The * Electronic addressalexandre.aubry@espci.fr
line of unity slope is shown for comparison (black continuous line).[1] M. C. Cross and R. LifshitzPhys. Rev. B54, 085324 (2001).
The T vs T' cloud of points are fitted with a slope of 0.93 (black [2] D. H. Santamore and M. C. Cros®hys. Rev. B66, 144302
dashed line). (2002).
[3] S. Krishnaswami,Ultrasonic Nondestructive EvaluatiofCRC
Press, Boca Raton, FL, 2004), chap. Theory and applications of

Fig. S5 displays the true transmission coefficierifd laser-ultrasonic techniques, pp. 435-494.
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