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Sparse Linear Regression With Structured Priors and
Application to Denoising of Musical Audio

Cédric Févotte, Bruno Torrésani, Laurent Daudet, and Simon J. Godsill

Abstract—We describe in this paper an audio denoising tech-
nique based on sparse linear regression with structured priors. The
noisy signal is decomposed as a linear combination of atoms be-
longing to two modified discrete cosine transform (MDCT) bases,
plus a residual part containing the noise. One MDCT basis has a
long time resolution, and thus high frequency resolution, and is
aimed at modeling tonal parts of the signal, while the other MDCT
basis has short time resolution and is aimed at modeling transient
parts (such as attacks of notes). The problem is formulated within
a Bayesian setting. Conditional upon an indicator variable which
is either 0 or 1, one expansion coefficient is set to zero or given a hi-
erarchical prior. Structured priors are employed for the indicator
variables; using two types of Markov chains, persistency along the
time axis is favored for expansion coefficients of the tonal layer,
while persistency along the frequency axis is favored for the ex-
pansion coefficients of the transient layer. Inference about the de-
noised signal and model parameters is performed using a Gibbs
sampler, a standard Markov chain Monte Carlo (MCMC) sam-
pling technique. We present results for denoising of a short glock-
enspiel excerpt and a long polyphonic music excerpt. Our approach
is compared with unstructured sparse regression and with struc-
tured sparse regression in a single resolution MDCT basis (no tran-
sient layer). The results show that better denoising is obtained, both
from signal-to-noise ratio measurements and from subjective cri-
teria, when both a transient and tonal layer are used, in conjunc-
tion with our proposed structured prior framework.

Index Terms—Bayesian variable selection, denoising, Markov
chain Monte Carlo (MCMC) methods, nonlinear signal approx-
imation, sparse component analysis, sparse regression, sparse
representations.

I. INTRODUCTION

MOST commonly used representations of audio signals,
for example for coding or denoising purposes, make

use of local Fourier bases. Among these, lapped orthogonal
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transforms [1] such as the modified discrete cosine transform
(MDCT) are a popular choice since they provide an orthonormal
decomposition without blocking effects, and have fast imple-
mentations based on the fast Fourier transform (FFT). Atoms
corresponding to the MDCT transform of a signal of length

and a frame length are defined as

(1)

with being a frequency index and
being a frame index. is a window of

length that meets symmetry and energy-preservation
constraints. Decomposing a signal onto the dictio-
nary is simply done with dot products:
with .1 In other words, as with any orthonormal
transform, the synthesis coefficients are identical to the
analysis coefficients.

A main reason for the success of such expansions is the
fact that they are sparse: the signal is characterized by a small
number of coefficients, the remaining ones being either equal
to zero or at least numerically negligible. However, for most
audio signals, using the MDCT with a constant frame size

does not provide approximations that are sufficiently
sparse, i.e., where most of the coefficients are small and can
be neglected. Typically, one would use a frame size of 23 ms
(1024 coefficients at 44.1-kHz sampling rate), which is ade-
quate for the tonal part of the signal. However, there might
also be a number of so-called “transient” components, e.g., at
attacks of percussive notes, that evolve on much smaller time
scales, typically a few milliseconds. For audio coding purposes,
this leads to an overly large number of coefficients to encode,
and current state-of-the-art transform coders such as MPEG 2
Advanced Audio Coder (AAC [2]) switch to a shorter frame
size at transients. Similarly, for denoising purposes, with a
model of the kind

(2)

using a single frame size results in a large number of
small coefficients at the attacks, that are thresholded to zero to-
gether with the noise term . This leads to a loss of percussive

1Here, k replaces (q; n) and � = [� (1); . . . ;� (N)] .

1558-7916/$25.00 © 2007 IEEE



FÉVOTTE et al.: SPARSE LINEAR REGRESSION WITH STRUCTURED PRIORS 175

strength, typical of many denoising algorithms. Again, adaptive
switching of the frame size is possible but does not reflect the
additive nature of sounds; it is indeed quite common to have
steady tones together with percussive transient signals, and it is
not desirable that the analysis of one component introduces a
bias in the analysis of the second. Therefore, one needs over-
completeness, with a basis of atoms having long frame
length together with a basis of atoms having short
frame length . Our signal model now becomes

(3)

where and the atoms belong to the dictionary

(4)

Because of the nonuniqueness of the expansion (3), finding
the expansion coefficients above involves more than just
computing scalar products, and an additional selection criterion
has to be introduced. We choose to emphasize sparsity: among
all possible decompositions one has to find one that is (nearly)
optimally sparse, according to some prespecified sparsity
criteria. This problem is often referred to as sparse linear
regression. Numerous practical methods have been developed
for finding sparse approximations in overcomplete dictionaries,
with different computational complexities. Seminal contri-
butions include Matching Pursuit [3], Basis Pursuit [4], the
FOCUSS algorithm and its regularized version [5], [6], as
well as Figueiredo’s algorithm [7]. Computational complexity
of these algorithms can be reduced when the dictionary is
the union of two orthonormal bases, as described in [8] and
[9]. However, none of these methods considers dependencies
between significant coefficients, and this often results in a
number of isolated large coefficients that are nearly equally
well represented in both bases. In the reconstructed signal, after
thresholding small coefficients, these isolated components give
rise to so-called “musical noise.” Clearly, in such situations,
one would like to favor clusters of coefficients rather than
isolated coefficients, along spectral lines for the tonal part (the
amplitude-varying harmonics), or across adjacent frequency
bins at a given time frame for the transient part (attacks). This
strategy will penalize those isolated coefficients that have no
physical meaning. We will term such additional constraints
structure, and when interpreted in a probabilistic setting they
will be used to define a structured prior distribution over the
basis coefficients.

In [10] and [11], structural information in a similar tones
+ transients + noise model was enforced through the use of
hidden Markov chains for time persistency in the tonal MDCT
layer, and hidden Markov trees for the transient part in the tran-
sient discrete wavelets layer. However, in this case, the esti-
mation of the two layers is sequential (first the tonal part is
estimated and subtracted, then the transient part is estimated);
this sometimes leads to a biased estimate in the relative im-
portance of these layers. References [12] and [13] study the

use of structured priors (both vertical, horizontal, and spatial in
the time–frequency plane) in an overcomplete Gabor regression
framework, operating however in one single time–frequency
resolution.

The goal of this paper is to present a framework for simul-
taneous estimation of both layers, while imposing structural
constraints on the set of selected coefficients with the help
of Markov chains: “horizontal structures” for the tonal layers
and “vertical structures” for the transients layer. Unlike prior
works implementing horizontal and vertical time–frequency
structures, our approach allows one to avoid the sequential
approach used in [10], [11], and [14] and estimate tonal and
transient layers simultaneously. Within our Bayesian setting,
inference of the targeted expansion coefficients is done through
Markov chain Monte Carlo (MCMC) inference, using similar
inference methodology as in [9], [12], [13], and [15]. Though
these computational methods are more demanding than their
expectation-maximization (EM)-like counterparts, they offer
increased robustness (reduced problems of convergence to
local minima) and a complete Monte Carlo description of the
posterior density of the parameters. Preliminary results can
be found in [16]; here, we propose significant improvements
to the signal model (particular care is brought to modeling
of the initial probabilities of the Markov chains, and the use
of frequency profiles is investigated), we include additional
technical details (including efficient sampling schemes for the
Markov chain parameters) and present detailed results.

Although we focus here on the single application of music de-
noising, which allows a rather straightforward quantitative eval-
uation, we shall emphasize that what we describe in this paper is
a semantic object-based representation of musical audio, where
the sound objects are transient and tonal components. It pro-
vides a mid-level representation of sound from which many
audio signal processing tasks could benefit, such as very low
bit-rate audio coding, automatic music transcription, and more
general processing tasks such as source separation, interpolation
of missing data, and removal of impulse noise.

This paper is organized as follows. In Section II, we detail
the signal model and develop the explicit form of the structured
priors. The estimation technique is presented in Section III,
where a Gibbs sampler-based MCMC scheme is described.
Section IV presents denoising results over a short Glockenspiel
excerpt and over a longer polyphonic music excerpt. We com-
pare the benefits of our approach with respect to overcomplete
unstructured sparse regression on the one hand, and with sparse
regression in a single long time resolution MDCT basis with
horizontal structures (no transient layer) on the other hand.
Finally, Section V is devoted to conclusions and perspectives.

II. SIGNAL MODEL

We here formalize the concepts introduced above and specify
more precisely the functional model and the priors on all the
parameters of our model.
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A. Functional Model

Starting from a couple of MDCT bases
and of [see (1)], and using the dictio-
nary defined in (4), we rewrite the model (3) as

(5)

Note that this three-layer model is similar to the sines + tran-
sients + noise models used in many low bit-rate parametric audio
coders [17]. In essence, in the generative model described by
(5), is an error term, i.e, the noise term, that will be modeled
as Gaussian white noise with variance .2 A central ingredient
of the model to be presented is the fact that the two vectors

and (which gen-
erate respectively the tonal and transients layers) are sparse, i.e.,
most coefficients vanish, while the noise term is dense and
does not admit any sparse expansion with respect to the dictio-
nary. The signal model will also assume some structure in the
coefficient domain that will be expressed in terms of suitable
prior distributions, as we describe below.

In the following, we will use the matrix notation
, . is a MDCT

basis with long time resolution and thus high-frequency
resolution (aiming at representing tonals), is an
MDCT basis with short time resolution (aiming at rep-
resenting transients). The index will sometimes
be more conveniently replaced by with
being a frequency index (where is either or

) and being a frame index, with
and such that .

B. Coefficients Priors

Sparsity is explicitly modeled in the coefficients through in-
troduction of indicator random variables attached
to all coefficients, and use of the following hierarchical prior for

, ,
(6)

(7)

where and are the normal and inverted-
Gamma distributions defined in Appendix I, and is the
Dirac delta function. As can be seen from the above, when

, is set to zero and sparsity is precisely enforced
for that coefficient; when , has a normal distri-
bution conditional upon , which is itself given a conjugate
inverted-Gamma prior.3

2Colored or non-Gaussian noise can routinely be incorporated into the same
framework, but they will affect the computational efficiency of the coefficient
sampling steps, as discussed in Section V.

3If a parameter � is observed through data x via the likelihood p(xj�), the
prior p(�) is said to be conjugate when p(�) and p(�jx) / p(xj�)p(�) belong
to the same family of distributions. Here, v is observed through ~s (when

 = 1) via p(~s j
 = 1; v ), its prior is IG(v j� ; f ) and its pos-
terior p(v j
 = 1; ~s ; � ; f ), given in (19), is also inverted-Gamma.
Conjugate priors belonging to families of distributions easy to sample from or
whose moments are analytically available are often used in Bayesian estimation,
because they allow to keep the inference tractable [18].

This sparsity-enforcing coefficient implies that the marginal
distribution of any given coefficient is a mixture of a Dirac point
mass at zero and a Student- distribution.4

is a parametric frequency profile whose expression is
given by

where

(8)
This frequency profile aims at modeling the expected energy
distribution of audio signals, which is typically decreasing with
frequency. Here, we chose a frequency shaping based on the
frequency response of a Butterworth low-pass filter, where
acts as a gain or scale parameter, acts as a cutoff frequency,
and acts as the filter order. However, any other profile can
be chosen (and readily fits in the proposed framework). Apart
from the frequency profiles, the model defined by (6) and (7) is
similar to the sparse prior used in [9].

C. Indicator Variable Priors

The sequences of coefficients and are each modeled
as independent conditionally upon and . The structural
properties of the prior are obtained through dependent prior
distributions over the binary indicator variables . As dis-
cussed above, the dependency is either across time for the first
(tonal) basis or across frequencies for the second (transient)
basis. Below, we use the conventional representation for the
time–frequency plane, and refer to the time axis as the hori-
zontal axis and the frequency axis as the vertical axis.

1) “Horizontal” Markov model for tonals: In order to model
persistency in time of time–frequency coefficients corre-
sponding to tonal parts, we give a horizontal prior struc-
ture to the indicator variables in the first basis. For a fixed
frequency index , the sequence is
modeled by a two-state first-order Markov chain with tran-
sition probabilities and , assumed equal for all
frequency indices . The initial distribu-
tion of each chain is taken to be its
stationary distribution (see remark below), namely

and

(9)

4Indeed, v can be “integrated out” of (6) as follows:

p(~s j
 = 1; � ; f )

= p(~s ; v j
 = 1; � ; f )dv

= N (~s j0; v )IG(v j� ; f )dv

= t(~s j2� ; f =� ):

where t(uj�;�) is the Student t density, defined in Appendix I. The hierarchical
formulation (6), (7) is preferred because the auxiliary variable v allows to
update ~s easily, by alternatively updating ~s conditionally upon v and
v upon ~s , as shown in Section III. Updating ~s directly from its Student-t
prior formulation would require more elaborate strategies.
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Fig. 1. This figure illustrates the tonal model. Each square of the time–fre-
quency tiling corresponds to a MDCT atom. To each atom corresponds an in-
dicator variable 
 which controls whether this atom is selected (
 = 1)
or not (
 = 0) in the signal expansion described in (5). The set of indicator
variables 
 is modeled as “horizontal and parallel” Markov chains of order 1,
with common transition probabilities P and P , and with initial proba-
bility taken as its equilibrium value.

The tonal model is illustrated in Fig. 1. The transi-
tion probabilities are estimated and given Beta priors

and .
2) “Vertical” Markov model for transients: we favor vertical

structures for the transients. For a fixed frame index , the
sequence is modeled by a two-state
first-order Markov chain with transition probabilities

and , assumed equal for all frames. The tran-
sition probabilities are estimated and given Beta priors

and . The
initial distribution is learned and
given a Beta prior . The transients model
is illustrated in Fig. 2.

Remark 1: The stationarity of the horizontal Markov chain
is important, as it implies that the distribution of the cor-
responding indicator variables is shift invariant. Therefore,
the tonal layer possesses some built-in weak form of sta-
tionarity property, as follows. Denote by the expectation
taken with respect to the random coefficients (integration
over ), and by the expectation
with respect to the indicator random variables of the tonal
layer (integration over ). Denoting by

the tonal signal, one readily shows
that

(10)

Fig. 2. This figure illustrates the transients model. A shorter time resolution
than the one used for tonals is used in order to capture short sound components.
The set of indicator variables 
 is modeled as “vertical and parallel” Markov
chains of order 1, with common transition probabilities P and P and
initial probability � .

If the horizontal Markov chain is in its stationary regime,
is independent of , and further assuming that

the variances are also independent of , one is led to

(11)

In other words, the (doubly averaged) second-order moment of
the tonal layer is invariant under time shifts that are multiple of
the horizontal time resolution. Notice that this calculation does
not assume to be independent of the frequency
index. This assumption will be made in the class of models con-
sidered here, but can be relaxed easily.

Remark 2: In contrast with modeling of the tonal part, we do
not see any good reason for assuming (frequency) stationarity of
the transient indicator variables, i.e., the vertical Markov chain
needs not be at equilibrium (for example, the “vertical wavelet
chains” considered in [10] do not admit an equilibrium distribu-
tion). Moreover, significant physical information regarding the
nature of transients is likely to be contained in such a lack of fre-
quency translation invariance: very “percussive” transients have
a much more important high-frequency content than smoother
ones. This may be described by the behavior of the indicator
variables as well as the frequency profiles .

D. Residual Model

The variance of the residual signal , assumed indepen-
dent and identically distributed (i.i.d) zero-mean Gaussian, is
given an inverted-Gamma (conjugate) prior

.

E. Frequency Profile Parameters Priors

In the following, only the scale parameter will be esti-
mated, while the filter cutoff and order are fixed in advance.
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The cutoff frequency is set to while several values of
are considered in the results section. is given for each basis

a Gamma (conjugate) prior .
The value of the degrees of freedom in (7) was found to have
little influence over the results and we set it to 1 in practice.

III. MCMC INFERENCE

It is proposed to sample from the posterior distribution of
the parameters ,
using a Gibbs sampler. The Gibbs sampler is a standard MCMC
technique which simply requires to sample, iteratively with re-
placement, from the distribution of each parameter conditioned
upon the others [19]. Point estimates or more generally com-
plete posterior density estimates can then be computed from the
samples obtained from the posterior distribution . Since
most of the parameters in our model are chosen to have conju-
gate priors, derivations for the Gibbs sampling steps are rather
straightforward, and have thus been skipped. Derivations that
required particular care can be found in Appendix II. Note that
except in a few cases where Metropolis–Hastings (M–H) steps
are needed, all conditional posterior distributions can be easily
sampled.

A. Alternate Sampling of and

One approach is to sample and
successively. Denoting , this strategy is
akin to standard Bayesian variable selection [20] and re-
quires the storage and inversion of matrices of the form

at each iteration of the sampler,
which might not be feasible when is large. The structure of
our dictionary allows for efficient alternate block sampling
of and , in the fashion of [8] and [9]. Indeed,
because the Euclidean norm is invariant under rotation, the
likelihood of the observation can be written

This means that conditionally upon (resp. ) and the other
parameters, inferring (resp. ) is a simple filtering problem
with data (resp. ), variable (resp. ) modeled as i.i.d
conditionally upon (resp. ), and i.i.d noise, and thus does
not require any matrix inversion. In the following, we will write,
for

(12)

where is either or and . is Gaussian
i.i.d with variance .

B. Update of

As pointed out in [20], an implementation of the Gibbs sam-
pler consisting of sampling alternatively and
cannot be used as it leads to a nonconvergent Markov chain (the
Gibbs sampler gets stuck when it generates a value ).
Instead, we need to sample jointly, by:

1) sampling from ;

2) sampling from
where denotes the set
and where is the set of probabilities in the Markov model for

.
The computation of the first posterior distribution is akin to

solving a hypothesis testing problem [21], with

(13)

(14)

The ratio
is thus simply ex-

pressed as

(15)

Values of the ratio
are given in Appendix II-A. is thus drawn from

the two states discrete distribution with probability masses

(16)

(17)

When a value is drawn, is set to zero. Oth-
erwise, when , inferring conditionally upon
simply amounts to inferring a Gaussian parameter embedded in
Gaussian noise, i.e, Wiener filtering. The posterior distribution
of is thus written as

(18)

with and .

C. Update of

The conditional posterior distribution of is simply

(19)

When a value is generated, is simply sampled from
its prior (no posterior information is available); otherwise, it is
inferred from the available value of . In the latter case, the
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posterior distribution is easily calculated because of the use of
a conjugate prior for .

D. Update of

The conditional posterior distribution of is given by

p(�2j~s1; ~s2; x)=IG �
2 N

2
+��;

kx��1~s1��2~s2k
2

2

2
+�� :

(20)

E. Update of the Scale Parameters

The full posterior distribution of the scale parameters is

(21)
As noted in [9] and [12], because we are expecting sparse repre-
sentations, most of the indicator variables take the value 0,
and thus most of the variances are sampled from their prior
[see (19)]. Thus, the influence of the data in the full posterior
distribution of becomes small, and the convergence of these
parameters can be very slow. A faster scheme consists of making
one draw from , then
one draw from and finally one draw
from .

Let us mention that the conditional posterior density of and
can also be written, yielding

(22)

This posterior distribution is not easily sampled and, in an effort
to estimate and possibly as well, we resorted to Metropolis
random walk strategies to address this task. We observed very
slow converging chains for and convergence did not
seem to be obtained before several thousands of iterations. To
complete this task more efficiently, a better sampling scheme is
yet to be found. However, the results section will show that the
exact value of (with fixed to the reasonable value )
is not of the highest importance.

F. Update of the Markov Chains Transition and Initial
Probabilities

The posterior distribution of probabilities and
mostly involve counting the number of changes from

to , where and the
posterior distribution of involves counting the number of
values of equal to 1. These variables have Beta posterior
distributions whose expressions are given in Appendix II-B2.
Because we have assumed the initial probability of the chain
to be equal to its equilibrium probability, the posterior dis-
tributions of and do not belong to a family of
distributions easy to sample. Their expressions are given in
Appendix II-B1 where we describe an exact M–H scheme as
well as a deterministic scheme to update these variables.

IV. RESULTS

A. Denoising of a Short Glockenspiel Excerpt

1) Experimental Setup: We present denoising results of a
glockenspiel excerpt, sampled at 44.1 kHz with length

s . White Gaussian noise was added to the clean
signal with input signal-to-noise ratios (SNRs) {0, 10, 20} (dB).
We applied the following strategies to the noisy excerpt, with in
every case ms , ms :

1) the proposed dual-resolution approach, with and
;

2) the proposed dual-resolution approach, with ,
;

3) a single-resolution approach, in which no transient
model is used. The signal is solely decomposed as

, with horizontal structured priors used
for . The MCMC inference strategy described in
Section III still holds, with and ;5

4) the dual-resolution approach of [9], in which indepen-
dent Bernoulli (unstructured) priors are considered for

and and flat frequency profiles are used.
Remark 3: In cases 1) and 2), was chosen greater than to

model our belief that transients should have a slower decreasing
frequency profile than tonals. The choice of frame lengths was
motivated by our tests on real audio signals. Even though a short
frame of approximately 3 ms does not make much sense from
the point of view of acoustics (this is shorter than the duration
of short attacks), this choice turned out to be better in prac-
tice, because the two frame lengths need to be sufficiently dif-
ferent to discriminate tonals and transients. For example, taking

ms generally results in worse separations,
in the sense that transients start to sound significantly “tonal.”
This is why we have made such a choice, at the price of some-
times needing several consecutive “vertical lines” for describing
a transient.

The Gibbs samplers of methods (1–4) were run for 1000 it-
erations, which, on Mac G4 clocked at 1.25 GHz with RAM
512 MB, takes 68 min for (1,2), 12 min for 3) and 63 min for
4). The hyperparameters of the priors for , , and were
chosen as to yield Jeffreys noninformative distributions. The hy-
perparameters and were respectively fixed to 50
and 1, thus giving more weight to values ranging from 0.8 to 1.
Finally, we set and , yielding a prior den-
sity for favoring very low values of this parameter. If rather
noninformative priors could be chosen for , , , and

as enough data is available to estimate them, we found
out in practice that, on the contrary, the prior parameters for
had to be set to realistic values. Indeed, choosing a noninfor-
mative prior for this parameter could lead to unsatisfying re-
sults on some signals. The algorithm would find many spurious
transients, yielding significance maps (see below) full of short
vertical lines in the very low part of the frequency range. The
values and yielded satisfactory results
over a wide range of signals.

We computed MMSE estimates of the parameters by aver-
aging the last 300 sampled values. A source estimate was recon-

5This “tonal-only” model is very close to one of the models considered in
[12], where a Wilson basis is employed instead of the MDCT.
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TABLE I
OUTPUT SNRS (dB) OBTAINED WITH EACH OF THE METHODS

FOR THREE DIFFERENT VALUES OF INPUT SNRS

Fig. 3. Sampled values of (a): P (�), P (��), (b): P (�),
P (��) (c): � (�), � (��), (d): � , (e): �, in the 10-dB input SNR case
and with approach 1). The original value of � used in the simulation is 0.0158,
its MMSE estimate is 0.0166 � 0.0027.

structed by . Table I shows the
overall output SNR obtained with
each method. Audio files can be found in [22]. Fig. 3 shows the
values of generated by the
Gibbs sampler of approach 1), in the 10-dB input SNR case.
Fig. 4 shows significance maps of the selected atoms in each
basis with all methods, computed here as the MMSE estimates
of and [only in case 3)], in the 10-dB input SNR case.

2) Discussion: On the quality of denoising, we can draw two
major conclusions from the latter results. One of them is that
there is a gain at using structured priors. This is revealed on the
one hand by the higher output SNRs obtained by approaches 1)
and 2) as compared to approach 4), see Table I, and more con-
vincingly on the other hand by the sound samples, which con-
tains less artifacts in the first two cases. These artifacts originate
from isolated atoms in the time–frequency plane, as illustrated
on plots (d1) and (d2) of Fig. 4. Because of the structured priors
employed in approaches 1) and 2), much of these isolated atoms
have been removed, and the significance maps have been regu-
larized, as can be seen on plots (a1), (a2), (b1), (b2) of Fig. 4.

Another conclusion is that there is a gain at modeling the
transients as well as the tonals. This is revealed by the higher
output SNRs obtained by approaches 1) and 2) as compared to
approach 3) and also by the sound samples, which in the first
two cases sound “crisper” than with the tonal-only model used

Fig. 4. Significance maps of the selected atoms in � and � for each method,
in the 10-dB input SNR case. The maps are computed as the MMSE estimates
of the indicator variables 
 and 
 , so that values range continuously from 0
(white) to 1 (black). Significance maps from approach 1) to approach 4) are
shown top to bottom.

in approach 3). The lack of transients model in 3) also creates
some pre-echo at the beginning of the notes.

The results tend to show that the values of and do not
have a strong impact on the results, especially in terms of output
SNRs. More atoms are indeed selected in the high-frequency
range with approach 2) as compared with approach 1), as can be
seen on plots (b1) and (b2) of Fig. 4, but listening to the audio
samples does not reveal a large perceptual difference. One might
find that the source estimate obtained with approach 2) sounds
slightly “brighter” than the other. However, we noticed that in
low-input SNRs conditions, setting a high value of could help
detecting some transients that would have been undetected with
a low value. For example, in the 0-dB input SNR case, the audio
samples reveal that the attack of the second note is not captured
by 1), while it is detected by 2). Note also that both approaches
miss the attack of the third note.

On the computational side, modeling the transients does lead
to an important increase of the computational burden, which is
multiplied by 4 between approaches (1,2,4) and (3). This is be-
cause of the MDCT and inverse MDCT (IMDCT) operations re-
quired at each step of the Gibbs sampler in approaches (1,2,4):
the computations of and each require one MDCT op-
eration and one IMDCT operation. On the opposite, approach
3) only requires one MDCT operation at the beginning to ob-
tain the input data to the Gibbs sampler and one IMDCT opera-
tion at the end to reconstruct a source estimate. However, using
structured priors in approaches 1) and 2) instead of unstructured
priors as in approach 4) has little cost, only 68 min of CPU time
for 1000 iterations instead of 65 min (4% increase).

The Gibbs sampling strategies used for (1–4) are of course
computationally more demanding than EM approaches such as
the one used in [8]. However, they do not suffer from problems
of convergence to local minima, problems that we did encounter
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Fig. 5. MMSE and MAP estimates of 
 and 
 obtained with approach 2) for
the 0-dB input SNR case. (a) MMSE estimate of 
 . (b) MAP estimate of 
 .
(c) MMSE estimate of 
 . (d) MAP estimate of 
 .

in our earlier trials of using EM with the source model described
in (6) and (7). Because MCMCs strategies yield a full descrip-
tion of the posterior distribution and not only one point estimate
[typically a maximum a posteriori (MAP) estimate], they can be
used to compute a wide range of point estimates, including un-
common ones. As such, in order to further eliminate the residual
artifacts in the MMSE estimates, we computed the following
source estimates:

(23)

where denotes vector element-wise multiplication, and where
and are MAP estimates of and .6 This leads

to slightly lower output SNRs and slightly “MIDI-like” sound
quality, but removes all of the artifacts. The output SNRs values
and corresponding sound samples are available in [22]. MMSE
and MAP estimates of and obtained with approach 2) can
be compared in Fig. 5, for the 0-dB input SNR case. Note that
for this latter case, the output SNRs for and are,
respectively, 16.0 and 15.8, but that the total number of selected
atoms is, respectively, 12467 (4.8%) and 1407 (0.5%), so that
our proposed model and inference technique could be relevant
to simultaneous denoising and very-low bit-rate coding of noisy
musical signals.

B. Denoising of a Long Polyphonic Audio Excerpt

1) Experimental Setup: We now present denoising results of
a long polyphonic excerpt. The data is a 24-s-long excerpt of the
song Mama Vatu from Susheela Raman, sampled at 44.1 kHz
with . The excerpt starts with drums
only, then enters an acoustic guitar and then the voice. White
Gaussian noise was added to the excerpt with . The
data was segmented in “superframes” of length and each
superframe was processed separately with approach 2). Three

6The MAP estimate of 
 is simply computed by thresholding to 0 all the
values of 
 lower that 0.5 and thresholding to 1 all the values greater than
0.5. Note that other threshold values could also be considered.

TABLE II
STATISTICS RELATED TO THE DENOISING OF THE

24-s-LONG POLYPHONIC MUSICAL EXCERPT

values of were considered, as shown in Table II. In every
case, the superframes are overlapping over 1024 samples, where
a sinebell window was used for analysis and overlap-add recon-
struction of the full denoised signals.7 The sampler was now run
on a more recent computer, a Mac Pro clocked at 3 GHz with
4-GB RAM, and computation time is divided by 4, supporting
the possibility that MCMC approaches get more and more pop-
ular as computational power increases.

The input and output SNRs in each superframe and for each
value of are represented on Fig. 6. For comparison, we also
applied to the whole signal the standard MMSE short-time
spectral amplitude (STSA) estimator under uncertainty of
signal presence of Ephraim and Malah [21]. The short-time
Fourier transform of the signal was computed with same time
tiling as the first MDCT basis: sinebell window of length 2048

, 50% overlap. The noise variance was fixed to its
true value, the signal variance at each time–frequency point
was estimated through moving average over the three precedent
frames. The signal presence probability was arbitrarily fixed to
0.1 (which seemed to give a good tradeoff between perceptual
quality and overall output SNR). Running the Ephraim and
Malah STSA estimator only takes seconds and yields 19.3-dB
overall output SNR. Sound samples can be found in [22].

2) Discussion: As can be seen in Fig. 6, the input SNR ranges
roughly around 10 dB before the voice enters and then around
15 dB. The output SNRs range around 20 dB throughout, with
a low variance in cases and . The
global estimates are of acceptable audio quality with best results
obtained to our opinion in the case. The denoising
of the first part of the signal, containing music only, is especially
good. The denoising of the last part, containing voice and music,
is less satisfying, probably because the signal is “richer” (and
thus less sparse) but also because our model does not take into
account the specificities of voice: vibrato/glissando, unvoiced
phonemes, etc.

If the local estimates in each superframe in particular have a
good quality, the reconstructed global estimates however suffer
from changes of “regime” from one superframe to another,
which result in slight changes of loudness and timbre. Again,
even though it has a lower output SNR, contains less
artifacts than and is more pleasant to listen too. Note
also that, as shown in Table II, employs in every case
only 5% of the total numbers of atoms while

7In every case the last superframe was dropped because it contained mainly
zeros originating from the prior zero-padding of the signal. The denoised signal
is thus slightly shorter than the original noisy signal, the missing bit is replaced
by light noise in the audio results .
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Fig. 6. Evolution of the local input SNR (�x�), MMSE output SNR (�o�)
and MIX output SNR (� � �) for each value of l . The x-axis represents the
superframe index (ranging from 1 to n ).

employs around six times more of them. In comparison,
the STSA estimate sounds the same throughout, contains less
musical noise but still contains quite a lot of noise. It also
sounds “flatter,” mainly because the transients are attenuated.

V. CONCLUSION

In this paper, a new approach for audio signal denoising has
been presented and demonstrated, based upon prior probabilistic
modeling of the signal. The main two aspects of the model are:

• the overcompleteness of the waveform dictionary that is
used for expanding the signal;

• the introduction of (various sorts of) dependencies in the
transform domain, i.e., between the coefficients of the
expansion.

These two aspects may be seen as attempts to move towards
models that are more realistic than the usual waveform models.
Different types of waveforms (here, broad and narrow MDCT
atoms) are used to capture different components in the signal
(here, tonals and transients). Since these waveforms are still
not sufficient to model directly such components, the introduc-
tion of dependencies between coefficients (structures) provides
a way to improve the modeling. Components may be viewed as
chains (modeled here as Markov chains) of dependent time–fre-
quency atoms, that could be called time–frequency molecules.

The modeling involving two layers proposed in this paper
seems rather accurate, as advocated in [10] and [14]. In addi-
tion, the proposed algorithm avoids most problematic param-
eter tunings that were present in [14] and has the advantage of
simultaneous estimation of the two layers, unlike the algorithm
of [10]. The model is versatile enough to allow other ingredi-
ents, such as for example the frequency profiles in (8).

The numerical results presented here demonstrate the effi-
ciency of our approach in the framework of a denoising problem.
Since it provides a fairly simple description of signals in terms
of limited numbers of coefficients, one may also think of using
this approach as a preprocessing step for further applications,

such as tempo identification, segmentation, or source separa-
tion. However, let us stress that in the current version of the al-
gorithm, the signal model of (5) is in fact driven by the noise
term , which implies that the approach is bound to denoising
problems, and not directly transposable to other tasks such as
coding. Indeed, running the algorithm on “clean” signal results
in poor signal decompositions. This is due to the fact that unlike
noisy signals, “clean signals” have a sparse expansion in the dic-
tionary, and the number of degrees of freedom to be taken into
account is unknown a priori. As a result, the algorithm may pro-
duce very sparse representations of signals when a small noise
is added, but the quality of the reconstruction may be problem-
atic if high precision is needed.

Let us stress that stationary colored noise can be considered
as well, but destroys the conditional independence structure of
the coefficients and thus impairs computational efficiency. In
the general case where , [defined in (12)] is
still a Gaussian process but with covariance . Thus,
data is not i.i.d anymore, and inferring now requires in-
verting . In fact, as in the general
Bayesian variable selection setting, full block update of now
requires computing posterior probabilities corresponding to
every possible value of , the computation of each requiring it-
self to invert a matrix of the latter form. However, it is still fairly
cheap to implement a component-by-component Gibbs sampler
where one expansion coefficient is updated conditionally upon
the others and the indicator variables, like in [23] (where a para-
metric AR model of the noise is used), or to some extent like
in [12] where the noise is white but where the coefficients are
updated pairwise. Another possibility to keep the conditional
independence structure of the coefficients, is to approximate

and by diagonal matrices.
As to the applicability of our approach to the denoising

of long musical excerpts, if the strategy that we propose in
Section IV-B yields encouraging results, it is yet not optimal. A
much better strategy would consist of taking an online approach
of the problem, in which frames (of size or a multiple)
of the noisy signal would be processed sequentially, using
dynamic models of the parameters , , and , and
possibly . The classical approach to such updating problems
is the Kalman filter. Here, however, we have intractable updates
that will require numerical computations. Particle filters are
a state-of-the-art method that might be used to deal with a
complex model such as this (see [24]–[26] for introductory
material and some audio noise-reduction applications). Such
an approach should prevent the audible “changes of regime”
encountered in our results here.

Further work can extend the models in several useful ways.
First, it will be natural to extend the framework to use multiple
bases of different resolutions, rather than the two proposed here.
Then, one can envisage models for long, slowly varying tonals
as well as shorter, more rapidly varying, tonals. One can also
readily extend the framework to include other types of bases,
especially wavelet bases (and corresponding wavelet tree prior
models [27]). Open questions remain about how best to con-
struct the structured priors in such settings: for example, one
might expect dependencies of indicators both within a single
basis and between different bases. As such, one might want to
lift the independence assumption between transients and tonals
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of our model, and model the fact that in real signals, tonals are
most often preceded by a transient (the attack). More general
spatial Markov random field structures can also be envisaged
for modeling of these dependencies in a tractable and physically
meaningful way. Finally, one may consider the fixed time–fre-
quency grids imposed in this framework as too constraining
altogether, and more general multiresolution frameworks that
allow arbitrary time–frequency locations and resolutions for the
atoms, accompanied by appropriate structured priors, may be
considered (see, e.g., the work of [28] for some advances in this
direction). However, while the latter models are not difficult to
think of, the corresponding estimation and denoising algorithms
will no doubt require greater computational sophistication.

APPENDIX I
STANDARD DISTRIBUTIONS

Gaussian:

Student :

.
Beta:

,
Gamma:

inv-Gamma:

The inverted-Gamma distribution is the distribution of
when is Gamma distributed.

APPENDIX II
CONDITIONAL POSTERIOR DENSITIES

A. Prior Weight

This section gives the expression of the prior weight
required in (15).

1) Horizontal Markov Chains: :
•

if

if

•

if and

if and

if and

if and

•

if

if

2) Vertical Markov Chains: :
•

if

if

•

if and

if and

if and

if and

•

if

if

B. Markov Transition and Initial Probabilities

1) Horizontal Markov Chain: We have

where is defined as the cardinality of the set {
, , }
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and is the cardinality of the set
. Hence, we have

can be updated using a M-H step, and we used the proposal
distribution

The acceptance probability of candidate is
simply

(24)

Similarly we have the following, as shown by the equation at
the top of the page. can be updated using a M-H step, for
which we use the proposal distribution

The acceptance probability of candidate is
simply

(25)

However, because of the exponent in (24) and (25), the
acceptance ratios can stay very low for long periods of time,
yielding poorly mixing chains and long burn-in periods. Instead,
we found very satisfying in practice to update the transitions
probabilities and to the modes of their posterior
distributions. After calculations of their derivatives, this simply
amounts to root polynomials of order two and to choose the root
with value lower to one. We favored this latter option in practice.

2) Vertical Markov Chain: We have

where is defined as the cardinality of the set {
, , }

and is the cardinality of the set
. Hence, we have

Similarly

and finally
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