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Subwavelength focusing in bubbly media using broadband time reversal
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(Received 25 March 2015; revised manuscript received 27 May 2015; published 12 June 2015)

Thanks to a multiple-scattering theory algorithm, we present a way to focus energy at the deep subwavelength
scale, from the far field, inside a cubic disordered bubble cloud by using broadband time reversal (TR). We show
that the analytical calculation of an effective wavenumber performing the independant scattering approximation
(ISA) matches the numerical results for the focal extension. Subwavelength focusings of λ/100 are reported for
simulations with perfect bubbles (no loss). A more realistic case, with viscous and thermal losses, allows us to
obtain a λ/14 focal spot, with a low volume fraction of scatterers (� = 10−2). Bubbly materials could open a
new perspective for acoustic actuation in the microfluidic context.
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I. INTRODUCTION

Time-reversal acoustics [1,2] is an efficient way for focus-
ing ultrasound deeply inside heterogeneous media. In a typical
time-reversal focusing experiment, the wave field radiated by
a broadband source is recorded with a set of detectors located
on a surface named a “time reversal mirror.” The detectors
then become sources sending back the time-reversed sequence
of the recorded field. The result is a time-reversed field that
focuses at the source location. In the mid-1990s Fink and
Derode carried out the first time reversal focusing experiment
for ultrasound propagating in a disordered multiple scattering
medium [3]. They showed that waves could thereby be focused
with a finer resolution than in a homogeneous medium. That
important result contributes to create a new paradigm for
the manipulation of waves in complex media: contrary to
long-held beliefs, disorder is not an impediment to focusing
and imaging but can be turned into an ally for controlling
waves.

More recently, it has been shown that it is even possible to
beat the diffraction limit with the help of a complex medium
structured on a subwavelength scale and using a time-reversal
mirror placed in the far field [4]. This led to the concept of
resonant metalens [5], a new kind of lens comprising a dense
arrangement of tiny resonators, each smaller than the relevant
wavelength. The key idea is that a finite size medium made out
of subwavelength resonators supports modes that can radiate
efficiently in the far field spatial information of the near field
of a source. First tested with microwaves, that concept has also
been transposed to acoustics in the audible range [6] as well
as in optics [7,8]. It actually appears that any medium of finite
size consisting of resonant unit cells supports subwavelength
modes and can therefore be used for subwavelength focusing
from the far field using time reversal. Many such media
have been studied recently in the field of metamaterials, i.e.,
engineered materials consisting of a distribution (generally
periodic) of subwavelength resonant unit cells.

Among all possible acoustic subwavelength resonators,
bubbles in water seem to be very interesting candidates since
they exhibit a low-frequency acoustic resonance, known as the
Minnaert resonance [9]. Here we investigate numerically the
ability of an ultrasound time-reversal mirror to focus inside a
bubbly metamaterial with a subwavelength resolution. To that

goal we build a multiple- scattering theory (MST) code that
fully incorporates the multiple-scattering effect. We carefully
investigate the link between the wave dispersion observed in
bubbly media and the spatial extension of the focusing spot
obtained after the time reversal operation. We then address the
most practicable case where viscous and thermal losses cannot
be ignored by considering the appropriate damped scattering
function. We highlight two regimes of frequencies that can
be useful to achieve subwavelength focusing and examine
carefully the influence of bubble concentration.

II. MULTIPLE-SCATTERING CALCULATION

Multiple scattering of acoustic waves is known to be strong
in bubbly media, as shown in many numerical studies [10,11].
Especially they were presented by several authors as promising
candidates for the study of Anderson localization [12].
Multiple scattering calculation for a finite number of bubbles
is simplified by the fact that air bubbles in a liquid can be
considered as monopolar scatterers on a broad range of fre-
quencies. Indeed, even at the first resonance of a bubble, known
as the Minnaert [9] resonance, the wavelength in the liquid
remains much larger than the size of the bubble. When excited
by a monochromatic pressure p(0) exp[−iωt], with complex
amplitude p(0), a bubble oscillates and generates at distance r

a spherical pressure field p(r,t) = f sp(0) exp[i(k0r − ωt)]/r ,
where k0 is the wavenumber in the liquid. The scattering
function is given by

f s = a

(ωM/ω)2 − 1 − iδ
, (1)

where a is the radius of the bubble, ωM its Minnaert
resonance [9], and δ its damping constant [13–15].

In the case of a collection of N bubbles, where bubble i

is described by its position rrri and scattering function f s
i , the

pressure field experienced by bubble i is not limited to the
incident pressure p

(0)
i but also includes the field generated by

all the other bubbles [16,17]:

pi = p
(0)
i +

∑
j �=i

f s
j pj

eik0||rrrj −rrri ||

|| rrrj − rrri || , (2)
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where c is the speed of sound in the liquid (k0 = ω/c).
Equation (2) can be written in a condensed matrix form:

pi =
∑

j

M−1
ij p

(0)
j with Mij =

{
1, i = j,

−4πf s
j G0(ω; rrri,rrrj ), i �= j

in which G0(ω; rrri,rrrj ) = exp[ik0||rrrj −rrri ||]
4π ||rrrj −rrri || is the homogeneous

Green’s function between points rrri and rrrj . The total pressure
field at any point rrr �= rrri (i.e. not occupied by a bubble) is the
sum of the incident wave p0(rrr) and the N scattered waves. We
thus obtain the effective Green’s function between rrr0 and rrr:

G(ω; rrr,rrr0) = G0(ω; rrr,rrr0) +
∑

i

4πf s
i G0(ω; rrr,rrri)

×
[ ∑

j

M−1
ij G0(ω; rrrj ,rrr0)

]
. (3)

Providing that the locations and scattering functions of all the
bubbles are known, Eq. (3) enables us to calculate the acoustic
(linear) response of a bubble cloud to any excitation. It is
important to note that the multiple scattering is fully taken into
account by this scheme, without any approximation. Solving
the multiple scattering problem thus amounts to inverting
a N × N matrix, the only limitation being the number of
scatterers N included in the calculation. In practice, we were
able to solve the MST with N as large as 30 000 bubbles due
to computing resource limitations.

III. TIME-REVERSAL NUMERICAL EXPERIMENT

In a typical time reversal (TR) experiment, a signal s(t) =∫
p(ω)e−iωtdω is emitted by a point source at rrr0, and recorded,

after propagation through the multiple scattering medium, by
receptors located at rrri , which acquire

Si(t) =
∫

p(ω)G(ω; rrri,rrr0)e−iωtdω. (4)

The MST calculation is thus processed independently for every
frequences and the temporal signal is recovered performing an
inverse Fourier transform. In Fig 1, we show the results of a
numerical experiment performed with a 2-cm-edge cubic cloud
corresponding to bubbles of radius a = 50 μm in water, with
a concentration of 210 bubbles per cm3 (gas volume fraction
� = 10−4). For this value of a, the resonance frequency of the
bubbles is ωM/(2π ) = 59 kHz, and we assume that the only
source of damping for the bubbles is radiative δrad = k0a, thus
neglecting thermal and viscous dissipation at this stage. Also,
the bubbles are assumed to remain still during the whole TR
process. Although, this assumption could appear as a severe
drawback for most bubbly liquids, it has been shown [18–20]
that it is possible to realize highly monodisperse and stable
bubble collections thanks to yield-stress fluids or elastomers.
A short wavepacket with a central frequency of 55 kHz is
emitted from the center of the cloud, and four receptors record
the signals at four different locations, in the far field. Note that,
at such frequency, δrad = 0.012. When bubbles are present, the
acquired signals are significantly longer than the emitted one,
due to multiple scattering, as illustrated in Fig. 1(a). The last
step of the TR consists of emitting the time-reversed signals
Si(−t) by each of the receptors now acting as sources. Using
Green’s function, one can easily calculate the back-propagated
signal at point rrr:

P (rrr,t) =
∑

i

∫
p∗(ω)G∗(ω; rrri,rrr0)G(ω; rrr,rrri)e

−iωtdω (5)

where ∗ denotes the complex conjugation. Figure 1(b) shows
the time-reversed signal along the x axis as a function of time
(b-scan), in the absence of bubbles. In such a homogeneous
medium, TR produces a focused signal nearly as short as the
initial one. However, the spatial focusing is limited by the
diffraction limit. We obtain a focus spot with full width at
half maximum (FWHM) that is slightly larger than the half-
wavelength λ/2. Furthermore, intense side lobes are visible.

(a) (b) (c)

FIG. 1. (Color online) (a) A source located at rrr0 sends a broadband wave packet in the 50–60 kHz range, and the field Si(t) is recorded by
a four-element TR mirror. (b) Back-propagated field within a line in the x direction as a function of time (b-scan), in pure liquid (no bubble).
(c) The same b-scan when a L = 2 cm, � = 10−4 cloud of 50-μm-radius bubbles is present.
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As shown in Fig. 1(c), the presence of bubbles makes the
focusing much more efficient: the focal spot is subwavelength
in size, with no visible side lobes. To quantify the performance
of the focusing, we compare the focal width to the diffraction
limited width with a numerical aperture of 1, i.e., λ/2. We
thus look at dimensionless parameter 2w/λ, where w is the
measured FWHM and λ the wavelength in the homogenous
medium, at the central frequency. When focusing is limited
by diffraction, one obtains 2w/λ � 1, whereas low values of
2w/λ indicate efficient subwavelength focusing. In Fig. 1(c),
we measure w = 3.5 mm, which leads to 2w/λ = 0.27: the
focal spot is almost four times smaller than the diffraction
limit in free space. Note that this subwavelength focusing is
obtained with a quite dilute bubbly medium: for � = 10−4,
the mean distance between two bubbles is larger than 30 times
their radii.

IV. PREDICTION OF THE FOCAL SPOT SPATIAL
EXTENSION

The performance of the superfocusing depends on several
parameters such as the frequency bandwidth, the size of the
bubbles, and the number of bubbles per unit volume. In this
section, we show it is possible to predict the focal spot length
by analyzing the bubble cloud in terms of an effective medium.
When a wave propagates through an heterogeneous medium,
in the general case, the field splits into a coherent and a
fluctuation contribution. It can be shown that the coherent
term, which results from an averaging of the field over disorder,
can be well described by an effective medium approach, i.e.,
by considering an homogeneous multiply scattering medium
with an effective wavenumber k. The independent scattering
approximation (ISA) predicts that this effective wavenumber
is given by

k2 = k2
0 + 4πnf s, (6)

where k0 is the wavenumber in the host medium, n the number
of scatterers per unit volume, and f s their forward scattering
function [21].

The ISA neglects loops of scattering, i.e., sequences that
involve the same scatterer several times. As the contribution
of loops are expected to be strong at resonance in a bubbly
medium [22,23], corrections to the ISA should be taken
into account. However, experiments with bubbly media up to
� = 10−2 showed that the prediction of the ISA was in good
agreement with the experimental data, even at resonance [17].

Figure 2 shows the dispersion relation predicted by the ISA
for bubbly water with a gas volume fraction � = 10−4 and
perfect bubbles (without dissipation) of radius a = 50 μm.
The bubbly medium appears as very dispersive, with three
regimes. (i) Below 59 kHz (i.e., the Minnaert resonance of
the bubbles), the wavenumber is purely real and corresponds
to a phase velocity (ω/k) that is below that in pure water
(black dashed line in Fig. 2). (ii) Between 59 and 100 kHz,
waves are evanescent, with very low values of the real part of
k. (iii) Above 100 kHz, the waves become propagative again,
the wavenumber getting closer to the value for propagation
in pure water as frequency increases. These three regimes
of propagation can be retrieved with our MST calculation,
as shown by solid symbols in Fig. 2. The typical S shape

FIG. 2. (Color online) Dispersion relation for a � = 10−4 bubbly
medium with 50-μm-radius bubbles. Lines are the ISA prediction
for the real part of the wavenumber (blue solid line for the bubbly
medium, black dashed line for free space), symbols come from a
numerical experiment with the MST code. The numerical experiment
consists of sending a monochromatic signal on a large cloud of
bubbles (L = 7 cm), recording the field within a horizontal section of
the cube (see inset), and analyzing this field to measure the effective
wavenumber. Only the real part of the wavenumber is shown here,
but the imaginary part was also checked to match the ISA prediction.

of the dispersion relation is the signature of a polariton-like
dispersion (a.k.a. hybridization), due to the presence of low-
frequency resonators [24]. From the focusing point of view,
the low frequency branch is particularly interesting because
the effective wave propagates with wavenumbers significantly
larger than the wavenumber in pure water (compare the solid
and dashed curves at low frequencies in Fig. 2). It means that,
thanks to bubbles, the waves can carry spatial information
that would have been lost in pure water. It is then tempting
to predict that the FWHM of the focal spot is directly linked
to the effective wavelength on the considered bandwidth. For
instance, the w = 3.5 mm focal spot obtained in Fig. 1 could
be interpreted as coming from a 7 mm effective wavelength,
i.e., a wavenumber 2π/7 = 0.9 mm−1 at 55 kHz, which is
indeed well verified in Fig. 2 (see dashed lines).

To test this hypothesis, we have carried out two numerical
TR experiments with the same bubble cloud as previously,
but on different frequency bandwidths (BW). BW1 is close
to the resonance of the bubbles, i.e., at frequencies for which
the ISA predicts a high effective wavenumber, with k/k0 � 6
[see Fig. 3(a)]. BW2 corresponds to the low frequency part
of the dispersion, with k/k0 � 2, almost constant on the
bandwidth. The results, reported in Fig. 3, show that in both
cases the TR operation successfully focus at the targeted
position. Figures 3(b) and 3(c) confirm that focusing with
BW1 beats the diffraction limit by a factor of 6, whereas
a factor of 2 is obtained with BW2. A further confirmation
of the effective medium interpretation is brought by Fig. 4:
the FWHM of the focal spot is measured for increasing gas
volume fractions � and compared to the ISA prediction on
the two bandwidths. Surprisingly, even on the resonant BW,
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FIG. 3. (Color online) (a) The same dispersion relation as in Fig 2, rescaled by the resonance angular frequency ωM and the wavenumber
in liquid k0. Two bandwidths are highlighted: BW1 is close to the resonance (56–59 kHz, in red), with an average k/k0 of about 6; BW2 is on
the low frequency branch (10–45 kHz, in green), with k/k0 around 2. (b) Pressure fields obtained on the central section of a � = 10−4 cubic
cloud when TR focusing is performed on BW1 (top) and BW2 (bottom), in the absence of (left) and with scatterers (right). Bubble clouds sizes
are λ/2, i.e., adapted to the central wavelength of the chosen bandwidth (λ = 2.6 cm on BW1, centered at 57.5 kHz; and λ = 5.5 cm on BW2,
centered at 27.5 kHz). (c) Pressure fields measured along the colored lines of (b) and normalized by the the field obtained without bubble. We
measure w = 2 mm for BW1 and w = 1.5 cm for BW2.

the ISA is found to correctly predict the width of the focal
spot. We also emphasize that monochromatic focusing cannot
yield to such performances and that the use of broadband TR is
required.

V. ACCOUNTING FOR DISSIPATION

As evidenced in Fig 4, very efficient subwavelength
focusing can be obtained with perfect bubbles. For instance
with � = 10−2, a TR focusing on BW1 can lead to a λ/100
spot. However, such focal spots can only be obtained with
numerical experiments, in which dissipation can be totally
neglected. In practice, bubbles are strong scatterers but they
also absorb part of the incoming energy, due to viscous and

FIG. 4. (Color online) Dimensionless FWHM 2w/λ as a function
of gas volume fraction � (symbols), compared to the dimensionless
effective wavelength k0/k predicted by the ISA (lines).

thermal losses. Thermal losses are proportional to γ − 1 [25],
γ being the ratio of the heat capacities of the gas. Viscous
losses are proportional to η, the viscosity of the liquid. Let
us examine a realistic case with γ = 1.1 (air with vapors of
perfluorohexane, for instance), and η = 10−3 Pa s (water).
With such values, the damping constant of a single bubble,
which appears in Eq. (1), is δ = 0.04, while it was δ = 0.012
in previous simulations, when only radiative damping was
considered.

Figure 5 reports the results of the TR numerical experiments
in a � = 10−2 bubble cloud without and with dissipation,
on the two bandwidths. As already seen in Fig. 4, extremely
narrow focal spots are obtained when no dissipation is consid-
ered: λ/100 on BW1, and λ/25 on BW2. When dissipation
is taken into account, the situation is much different: no focal
spot is recovered on BW1, and the one on BW2 broadens
but remains subwavelength with a width of λ/14. The effect
of dissipation is thus stronger for frequencies close to the
resonance of the bubbles. Yet, even with dissipation, the S
shape of Fig. 2 is preserved, and the ISA still predicts very
high values for the real part of the effective wavenumber.
The explanation comes from an ingredient we have neglected
so far: modes. Having access to high wavenumbers is not
sufficient for subwavelength focusing; one also needs to excite
enough modes, with the right phase, to build the desired
spot. The effect of dissipation on modes is well illustrated in
Fig. 6, which shows the pressure measured at one point of the
bubble cloud as a function of frequency, for two cases: with
and without dissipation. Without dissipation, many narrow
peaks are visible in the spectrum. They are signatures of
many modes implying individual scatterers. As the density of
modes is high, a quite narrow BW is sufficient to gather many
of them and thus reconstruct the focusing spot. The exact
combination of modes one needs to reconstruct the desired
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FIG. 5. (Color online) Focal spots obtained with BW1 (left) and
BW2 (right) in three configurations: in pure water (top), in a � = 0.01
bubble cloud with no dissipation (middle), and in the same cloud with
dissipation (bottom). The bubble cloud is a 1-cm-edge cube. Fields
are normalized by the maximum of pressure obtained in the absence
of bubbles.

FIG. 6. (Color online) Pressure spectra obtained at one point of
the z = 0 section of a � = 0.01 bubble cloud with (thick pink line)
and without (thin black line) dissipation. Edges of the cubic cloud are
1 cm long. Insets on the top are 2D field maps at different frequencies
(represented by pink arrows) within the z = 0 section, in the case of
bubbles with dissipation.

spot is provided by the TR process. When dissipation occurs,
the quality factors decrease and modes start to overlap. As a
consequence, fewer modes can be controlled independently
and the focus spot deteriorates [26]. This effect appears to be
even more critical for high frequencies. Indeed, the closer we
get to the Minnaert resonance, the smaller the group velocity
becomes. As a consequence, corresponding modes have longer
life times in the medium and suffer more from dissipation. On
BW1, all the modes disappear because of dissipation, making
subwavelength focusing ineffective. On BW2, on the other
hand, the effect of dissipation is less dramatic and some of
the modes survive to dissipation. Examples of modes are
represented in Fig. 6 (see insets). Because fewer modes are
available than in the ideal case, the w = λ/25 predicted by
the ISA cannot be obtained, but a good λ/14 subwavelength
focusing is still possible (see Fig. 5).

It thus turns out that subwavelength focusing with bubbles
can be very effective, but not for frequencies close to the
individual resonance of the bubbles because, in realistic cases,
the quality factor of the bubbles is not good enough to
ensure the presence of independent modes available for the
reconstruction of the spot. It is well known that a good
quality factor is indeed a critical requisite for subwavelength
focusing with resonators [5,26]. Another limitation of focusing
at resonance is the sensitivity to polydispersity: numerical
investigations (not shown here) with polydisperse bubble
clouds showed that a 5% polydispersity severely impacts
the quality of the focal spot on BW1. In bubbly media,
subwavelength focusing is nevertheless possible, at low fre-
quencies. Indeed, as shown in Fig. 2 even for frequencies much
lower than the resonance frequency, the dispersion relation
in a bubbly medium gives access to high wavenumbers. It
comes from the high compressibility of bubbles, which makes
bubbly liquids compressible liquids, with a particularly low
effective phase velocity at low frequencies, and hence a
small effective wavelength [27]. Furthermore, the focusing
was found to remain unaffected by polydispersity on this
range.

VI. CONCLUSION

Broadband time reversal in perfect 3D bubbly media
leads to very efficient subwavelength focusing. For instance,
a bubble volume fraction of � = 10−2 can lead up to a
super-resolution of λ/100. It was also evidenced that the
spatial extension of the spot matches the effective wavelength
predicted by the independent scattering approximation (see
Fig. 4). We then considered the realistic case where thermal and
viscous losses are included. Although the focusing becomes
totally ineffective in the resonant range, we take advantage
of the compressibility of bubbly liquids in order to reach low
effective wavelengths in the low frequency regime where the
modes remain usable. Under such conditions we were able to
reach a resolution of λ/14. This result could still benefit from
optimization techniques such as inverse filter [28] or iterative
time reversal [29] to enhance the resolution.

One of the perspectives of this work is to use bubbly
materials to focus a large amount of acoustic energy on a small
volume. As shown in Fig. 5, the presence of the bubbles not
only makes the spot narrower, it also multiplies the amplitude
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of the field by more than a factor of 2. In practice, one
could imagine depositing even more energy, thanks to the time
compression offered by the TR operation [30]. An important
aspect of bubbly media is the low concentration of bubbles
one needs to obtain strong effects. For � = 0.01, the bubbles
are 7.5 radii apart, which means there is space to consider
placing other objects in the medium. This could open up new
horizons for manipulation of objects in microfluidic flows,
for example [31,32]. Many microfluidic devices are actually
fabricated in a soft elastic solid, in which air cavities behave as

bubbles [18], making the calculations described in this article
directly applicable.
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